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Abstract

In the network querying problem, one is given a protein complex or pathway of species A

and a protein–protein interaction network of species B; the goal is to identify subnetworks

of B that are similar to the query in terms of sequence, topology, or both. Existing

approaches mostly depend on knowledge of the interaction topology of the query in

the network of species A; however, in practice, this topology is often not known. To

address this problem, we developed a topology-free querying algorithm, which we call

Torque. Given a query, represented as a set of proteins, Torque seeks a matching

set of proteins that are sequence-similar to the query proteins and span a connected

region of the network, while allowing both insertions and deletions. The algorithm uses

alternatively dynamic programming, integer linear programming, and fast heuristics.

We tested Torque with queries from yeast, fly, and human, and with queries from less

studied species, where only topology-free algorithms apply. Torque detects many more

matches than previous approaches, while giving results that are highly functionally

coherent. Our implementation is available to the public via a web interface.
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Chapter 1

Introduction and summary

Sequence-based searches have revolutionized modern biology, serving to infer gene

function, homology relations, protein structure, and more. In the last few years, there has

been an effort to generalize these techniques to the network level. In a network querying

problem, one is given a small subnetwork, corresponding to a pathway or a complex of

interest. The goal is to identify similar instances within a large target network, where

similarity is measured in terms of sequence or interaction patterns. The matched instance

is then assumed to correspond to a protein complex or pathway in the target network,

and its properties and function may be inferred from our knowledge about the query.

The focus thus far has been mostly on methods that require an exact match of edges

in the query and target subnetworks. A limitation of these approaches is that they rely

on precise information on the interaction pattern of the query pathway. However, this

information is often missing. For example, hundreds of protein complexes have been

reported in the literature for yeast [58], human [55], and other species, but for most of

these complexes no information exists on their interaction patterns [72], motivating a

topology-free approach for the querying problem.

This work introduces Torque (TOpology-free netwoRk QUErying), a novel approach

for network querying that does not rely on knowledge of the query topology. The input

to our method is a set of proteins, representing a complex or pathway of interest and a

protein–protein interaction (PPI) network in which the search is to be conducted. The

goal is to find matching sets of proteins that span connected regions in the network.

The corresponding theoretical problem that we study is searching a colored graph for

connected subgraphs whose vertices have distinct given colors. We provide dynamic

programming algorithms that are polynomial when the complex size is bounded by a

constant. Some of our algorithms utilize the color-coding paradigm [2]. In addition,
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2 1 Introduction and summary

we provide an integer linear programming formulation of it. This formulation includes

a novel way to describe subgraph connectivity constraints, which can be useful in

other problems as well. The methods can handle edge weights, insertions of network

vertices (that do not match any query protein), and deletions of query nodes. We also

develop a fast heuristic approach to the problem. By using a combination of the three

approaches, we can solve most query complexes of practical sizes within current networks

in reasonable time.

We applied Torque to query about 600 known complexes of size 4–25 from a variety

of species in the PPI networks of yeast, fly and human. We tested our algorithm both

on queries from species for which a PPI network is available, where we compared it to

the QNet [17] topology-based approach, and on queries from less studied species, where

only topology-free algorithms apply, where we also compared to the methods of Lacroix

et al. [37] and their MOTUS [36] software. Torque detected many more matches than

QNet and MOTUS, while giving results that receive high functional coherence.

An extended abstract based on this thesis appeared in the proceedings of the 13th

RECOMB conference [12]. An additional paper describing the Torque web-server

appeared in [13].

The thesis is organized as follows: in Chapter 2 we present the necessary biological

and theoretical background, review some of the relevant literature, and briefly intro-

duce our model and its extensions. In Chapter 3 we present an exact algorithm for

network querying based on dynamic programming, and an integer linear programming

formulation of the problem. In Chapter 4 we describe several fast heuristics for differ-

ent variants of the problem. In Chapter 5 we explain our implementation, expanding

upon the preprocessing stage and highlighting the Torque web-server. In Chapter 6

we present and discuss our results for querying more than 600 in various PPI networks.

Finally, in Chapter 7 we discuss the limitations of our method and suggest some possible

future directions. Some technical details and experimental results are described in the

Appendix.



Chapter 2

Preliminaries and Background

2.1 Biological background

The study of proteins and their interactions is very important in biology and medicine.

Proteins play a key role in every cellular process, from signal transduction to gene

expression regulation and metabolism. Protein–protein interactions (PPIs) are stable

or temporary connections between proteins that take part in almost every level of cell

function. For example, signaling proteins transfer signals from the exterior of a cell to its

interior by interacting with one another.

Many approaches exist to detect and identify PPIs [27]. One standard method is

co-immunoprecipitation [49, 39]. In standard immunoprecipitation, an antibody is used

to isolate a specific protein from a solution. The process of co-immunoprecipitation

(CoIP) begins in a similar manner. When a protein is being isolated, other proteins “stick”

to it. These are its putative interaction partners, that can be determined using other

methods (e. g., western blotting [14]). Another method is two-hybrid screening, or the yeast

two hybrid (Y2H) system [15, 41]. Here, each of the two tested proteins is fused to a

different domain. When the two domains bind together, they can form a transcriptional

activator that goes on to transcribe a reporter gene, whose activation can be detected

visually. Those two domains can bind only as a result of a physical interaction between

the tested proteins. Thus, the activation of the reporter gene implies the existence of

a physical interaction between the proteins. Y2H can be used to study the interaction

between two predetermined proteins that are suspected to interact. Alternatively, given a

protein (the bait), Y2H can find proteins that interact with it (its preys). More information

about these and other methods can be found, e. g., in the Protein Interactions Guide [51].

The knowledge gained from these experiments can be used to reconstruct the PPI
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4 2 Preliminaries and Background

network of a studied species. A PPI network is the complete set of the species’ proteins and

all the known binary interactions among them. Mathematically, it is a graph whose nodes

are the proteins and whose edges are the PPIs. As more interactions are observed and

experimentally validated, larger parts of the full underlying PPI network are uncovered.

For some well-studied species many interactions are known (the yeast network, for

example, contains about 40,000 interactions and 5,000 proteins), making it possible to

visualize and analyze the PPI network [35, 25]. Naturally, the PPI networks of different

species are related through evolution. Thus, when enough information is available about

the network of some individual species, it might be possible to learn new information by

comparing it to the networks of other species.

A protein complex is a group of two or more proteins, linked by PPIs, that together

perform a particular role. Complexes form various types of molecular machinery, and

perform a vast array of biological functions. Complexes are therefore essential to many

biological processes, and their investigation is a central research area [35, 25]. Different

complexes usually perform different functions, and the same complex can sometimes

perform very different functions that depend on a variety of factors [25]. In addition, the

same protein can participate in the formation of several complexes. The experimental

methods for identifying complex members most commonly identify the proteins that

take part in the complex, but not the individual interactions between pairs of proteins

in the complex. For example, the CoIP method described above is commonly used to

identify protein complexes by isolating a protein, identifying its interaction partners, and

then repeating the process for some of the partner proteins. This process will yield a

possible set of interaction partners for each protein, without specifying the interactions

among the partners themselves. One consequence of this limitation is that, for many

protein complexes, their internal structure — or topology — is not known. It is useful,

therefore, to have methods that can study complexes without relying on their topology.

Proteins in related species that are similar due to shared ancestry are orthologs [1,

Chapter 1]. One way of inferring orthology of proteins across species is via sequence

similarity between their respective DNA or amino-acid sequences. This similarity can

be quantified using methods of sequence alignment, where the sequences are arranged

in a way that allows identifying similar, or conserved, regions and then scoring the

similarity. A standard method for computing sequence alignment is BLAST (Basic Local

Alignment Search Tool [3]), which aligns the sequences, computes a score called S-score

of the alignment, and outputs the significance of the result as a number, the e-value

(Expectation value). The e-value is defined as the number of different alignments with

scores equivalent to or better than the S-score that are expected to occur in a database
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search by chance. The lower the e-value, the more significant the score [44]. This score for

similarity between proteins can be used as a building block in determining similarities

between larger components of the networks, such as pathways or complexes [33].

2.2 Computational background

Several important concepts in theoretical computer science underlie algorithms detailed

in this work.

The problems we attempt to solve are NP-complete problems, therefore it is widely

assumed that there is no algorithm that solves them and runs in time polynomial in the

size of the problem. Vast literature exists on NP-complete problems, see, e. g., [23].

Fortunately, some NP-complete problems can be solved efficiently in a parametric

sense. Parameterized complexity studies the complexity of problems with multiple

input parameters. The theory introduced by Downey and Fellows [18] originated from

the observation that while NP-complete problems are believed to require exponential

running time in terms of the input size, some of them can be solved in time polynomial in

the input size and only exponential in some (small) parameter k. Thus, if k is small, such

problems can still be considered “tractable”. A problem is called fixed-parameter tractable

(FPT) with respect to a parameter k if an instance of size n can be solved in f(k) · nO(1)

time, where f is an arbitrary function. Thus, fixed-parameter algorithms allow solving

relatively large instances of NP-hard problems exactly, as long as the parameter value is

modest. More information about fixed-parameter algorithms can be found, e. g., in [45].

One useful fixed-parameter algorithm is color-coding. Color-coding is a randomized

method for searching graphs for specific connected substructures of bounded size k

having certain properties, such as paths or trees. Specifically, Alon et al. [2] showed

that finding the minimum weight simple path of length k in a graph can be done with

high probability in O(− ln(ε)5.44km) time, where m is the number of edges and the

probability of not finding an optimal solution is bounded by ε. They also give similar

results for finding a k-vertex cycle or a subgraph of bounded treewidth and show that

the method can be derandomized.

In color-coding, the solution space that needs to be searched is reduced from all

possible subgraphs of size k (of which there are nk) to cO(k)m for, e. g., paths, where

m is the number of edges in the graph. Each vertex is assigned one of several colors at

random. Then the new solution space contains only those possible subgraphs of size k

that are colorful: each of the vertices has a different color. If the subgraph is colorful, then

the task of finding it can be greatly simplified. The problem becomes fixed-parameter
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tractable, and can be solved, for example, by dynamic programming (see below). Of

course, there is no guarantee that the real solution will be colorful: Most of the time

it will not be. Hence, the process of randomly coloring the vertices and applying the

search algorithm must be repeated many times, until with sufficiently high probability

(determined by ε) the solution will be colorful at least once. This number of times is

exponential, but only in the size of the solution k. Therefore, the problem is FPT.

Dynamic Programming (DP) is a general strategy for solving complex problems by

breaking them down into simpler subproblems. It has many uses, including the search

of colored structures in color-coding algorithms as described above. A DP algorithm is

applicable to problems where an optimal solution can be constructed efficiently from

optimal solutions to its subproblems, and those solution can be reused [16]. A simple

example is computing the Fibonacci sequence: Since F(n) = F(n − 1) + F(n − 2), the

problem of computing the n-th Fibonacci number F(n), can be broken down into two

subproblems, computing F(n− 1) and computing F(n− 2). This is a recursive process,

since the subproblem of computing F(n−1) can itself be broken down into the subproblem

of computing F(n − 2) and F(n − 3). Thus, the computation of F(n − 2) is reused. The

general DP paradigm is: Solve subproblems of the problem first, record these solutions

for later, then put together a solution to the problem. Further information and examples

can be found, e. g., in [16] or [6].

Another approach we apply to our problem is integer linear programming. Linear Pro-

gramming (LP) is a technique for optimizing a value (such as a profit) under constraints

(such as availability of raw material). More formally, it optimizes a linear objective

function on the real variables x1, . . . , xn, subject to linear equality and/or inequality

constraints. Geometrically, this corresponds to finding a point in an n-dimensional space

that maximizes the objective. Each inequality corresponds to a half-space, and their

intersection forms a convex polyhedron; the solution has to be inside the polyhedron.

Due to the linearity, the optimum will always be attained at a corner or a facet of the

polyhedron. This is a key reason why it can be solved efficiently. The seminal method

for solving LPs is the Simplex algorithm, due to George Dantzig [43]. The algorithm

consists of “walking” on the edges of the polyhedron to find a solution. This algorithm

has no polynomial worst case guarantees on running time, but is usually very efficient in

practice. Newer polynomial algorithms for LP were developed using the ellipsoid [63]

and interior point [32] methods. In Integer Linear Programming (ILP) we add the addi-

tional constraint that the values assigned to some of the variables must be integers. This

makes the problem much harder, and the general ILP is NP-hard. Numerous methods

for solving ILPs in practice were developed over the years, and implemented efficiently.
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Some of them rely on branch-and-bound methods and good preprocessing. In this work

we utilize the ILOG CPLEX solver(http://www.ilog.com/products/cplex/), a commercial

optimization software package. More information on LP and ILP can be found, e. g.,

in [16] and [56, chapter 29].

2.3 The network querying problem

In this thesis we study the problem of network querying in the context of PPI networks.

In a network querying problem, one is given a small subnetwork, corresponding to a

pathway or a complex of interest. The goal is to identify similar instances in a large target

network, where similarity is measured in terms of sequence or interaction patterns. Such

a matched instance is then assumed to be a protein complex or pathway in the target

network. If this match overlaps with a previously known complex or pathway, then new

characteristics of this complex or pathway could be inferred from the query, such as

its functionality. Otherwise, the matched complex or pathway could be novel. Hence,

network querying can also help identify previously unknown complexes. We now sketch

problem formulations that have been used in the literature so far. We will give a formal

definition of our models in Section 2.5.

In its simplest form, when ignoring sequence similarity, and requiring exact match of

edges in the query and target subnetworks, this problem corresponds to the NP-hard

Subgraph Isomorphism problem. This basic model is usually augmented in several ways

to make it more realistic.

First, restrictions are often imposed on the target nodes a query node can map to,

e. g., based on sequence similarity of the corresponding proteins in the network, or other

measures of similarity. In a restrictive formulation, every target vertex is similar to at

most one query vertex. In a more flexible model, a single target vertex can be similar to

many vertices in the query. Even more generally, there could be a score assigned to every

possible match between a query vertex and a target vertex.

Further, it is often desirable to relax the required match by allowing to omit query

vertices (deletions) or add additional vertices to the match to fulfill some constraints

(insertions). This may correspond to evolutionary changes in the complex or pathway, or

compensate for noisy or missing data. A variant of this is graph homeomorphism [28],

which allows an arbitrary number of insertions of degree-2 vertices. Biologically, this

model is a good description of, e. g., metabolic networks, where a single enzyme in one

pathway may replace a few consecutively acting enzymes in another pathway [50].

Different scoring models are available that can take into account the similarity of

http://www.ilog.com/products/cplex/
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vertices, the confidence score of the interactions represented by the edges of the target

network, and other factors.

Since our knowledge of the PPIs for many species is noisy and incomplete, and hence

the data available on the topology of complexes are sparse, researchers have also began to

consider methods for network querying that do not require a correspondence between the

edges in the query and the match in the target network. To ensure the consistency of the

matches they instead demand that the match is connected. This topology-free formulation

is a main feature of our methods.

2.4 Previous work

Here we detail the previous literature regarding network querying and related problems.

We begin by describing some network alignment algorithms and their relation to network

querying. We then discuss network querying algorithms that rely on the topology of the

query, first the exact algorithms that are applicable to queries of a limited topology and

then the heuristic and enumerative algorithms that can be used to query general graphs.

Finally, we describe methods for finding colorful motifs in networks that provide a base

for our approach.

2.4.1 Network alignment

Network querying has firm connections to the problem of network alignment [33]. Network

alignment is the process of comparing two networks, identifying regions of similarity

and dissimilarity. The algorithms for network alignment can be divided into methods for

local and global alignment. In global alignment the goal is to find a mapping between the

nodes of the two networks, that maximizes some score. The score can take into account

sequence similarity, topology, interaction probabilities, and other factors. This problem

continues to attract a lot attention: In the recent ISMB 2009 conference, two papers present

new approaches to global alignment. The paper by Zaslavskiy et al. [73] formulates

PPI network alignment as a graph matching problem, and uses well-known matching

algorithms to resolve it. Liao et al. [38] propose an algorithm based on spectral clustering

that improves on the previous IsoRank [64] algorithm that matches proteins from different

networks if they are similar to each other and their neighborhoods are similar to each

other. Local alignment is concerned with finding subnetworks that are conserved across

species and, hence, likely to represent true functional modules [60]. Local alignment was

introduced in 2000 by Ogata et al. [46] with the aim of detecting functionally related
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enzyme clusters (FRECs) by aligning metabolic networks. This heuristic alignment

algorithm allows for insertions and deletions (termed gaps and mismatches) and a many-

to-many similarity between the vertices of the two graphs being compared, hence the

resulting matches were not necessarily isomorphic subgraphs. Another variant of the

local network querying problem was studied by Narayanan and Karp [42]. They identify

conserved modules by finding subgraphs between the two network graphs composed of

locally similar proteins: sequence-similar to each and having similar neighborhoods. This

definition of similarity is less rigid than those of other methods that require isomorphism,

although there is no obvious way to include indels. An advantage of their approach is

that its running time is provably polynomial.

Finally, a recent ISMB 2009 paper [29] presents an algorithm for local alignment that

operates on similar interactions rather than similar proteins. The algorithm constructs

a set of pairs of edges that can be aligned based on the domains that participate in

the interactions, and then heuristically searches the graph induced on those edges for

conserved complexes.

The first line of research that was concerned with network querying is an extension

of the problem of local network alignment: instead of comparing two large networks,

align a query and a network, and try to find the region in the network where the query

is best aligned.

PathBLAST [34] is a web-tool and algorithm for network querying and local alignment.

The core algorithm [33] is concerned with the local alignment of two networks from

different species in order to identify their conserved pathways, while the web-server

deals with network querying, which is our focus. The algorithms are topology-based:

The input is a linear path of proteins from one species, and the PPI network of a different

species. The goal is to find a set of matching paths in the network most similar to the

query path, where a matching path must contain similar proteins to the query in the

same order, and the similarity between proteins is measured by sequence similarity.

Insertions, deletions and mismatches are allowed, and the scoring scheme takes into

account interaction probabilities. The query algorithm is based on the PathBLAST

network alignment algorithm: the two networks (or the query and the target network) are

combined into a single alignment graph, where every vertex is a pair of sequence-similar

proteins (one from the query, one from the network), and edges represent a conserved

interaction or a mismatch. The goal is then to find a path in the graph. The alignment

algorithm was applied to the yeast and H. pylori networks, resulting in the identification

of many evolutionarily conserved pathways, of which a large number appear to have

duplicated and specialized within yeast. The PathBLAST web-tool allows for querying
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paths in many other networks as well, such as fly, human, and worm.

2.4.2 Exact Topology-based approaches to network querying

Following the success of network alignment methods, new approaches appeared that

are specific to the network querying problem. A large body of work exists on querying

methods that are topology-based. These methods rely strongly on the structure of the

query and the network. The algorithms presented below are exact methods for network

querying when the queries or target networks are limited to structures like paths and

trees. Those algorithms have provable bounds on running time, and obtain results that

are accurate and significant. However, they are limited due to their reliance on topology

and may miss many potential matches.

Pinter et al. [50] propose MetaPathWayHunter, a topology based network querying

tool that matches query trees in a larger collection of trees. The authors also provide a web

implementation. The method compares the metabolic networks of two species, and can be

applied to cross-species PPI querying. It begins by defining a local similarity between the

network vertices (functional homology between the enzymes they represent) and a scoring

scheme. Unlike our model, the similarity is part of the scoring scheme, thus allowing

flexibility in finding solution that match proteins that may not be similar if the overall

score is high. Insertions are not supported, and deletions are possible only for vertices of

degree 2, and only in the large target tree and not in the query. The metabolic pathway

alignment engine is based on the subtree homeomorphism model, and thus can be solved

in polynomial time. The paper then introduces a novel algorithm for finding the best-

matching subtree. The algorithm is a dynamic programming, bottom up procedure that

finds the best score, first for pairs, and then for subtrees of increasing size, until a solution

is reached. The method can be extended to directed, multi-source trees which may be

better models in some scenarios. The running time is O(n2
2n1/ logn2 + n2n1 logn1),

where n1 is the size of the large tree and n2 is the size of the query. The advantage of

the method is in its flexibility in scoring, while its main limitation is its restriction to

querying trees in forests, rather than general graphs. The authors applied the approach

to the genome-scale metabolic networks of bacterium E. coli and yeast, resulting in many

statistically significant, confirmed matches.

QPath [62] is a fixed-parameter algorithm for querying linear paths in networks. It

matches query paths to paths in the target network where the proteins are sequence-

similar to those of the query proteins, in the same order, while allowing insertions and

deletions. The QPath algorithm is based on color-coding and dynamic programming,
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utilizing similar principles to those upon we later build our own algorithms. The

dynamic programming formula incorporates a scoring scheme that takes into account

the sequence similarity, the number of insertions and the number of deletions. The

running time is ln(nε )2O(k+Nins)mNdel, where ε is the probability of error, Nins and

Ndel are the upper bounds on the number of allowed insertions and deletions, n,m

are, respectively, the number of vertices and edges in the network, and k is the size

of the query complex. QPath was tested with cross-species queries on networks from

yeast, human, and fly to obtain tens of significant, functionally coherent matches. A

substantially faster implementation is given by [31].

QPath was succeeded by QNet [17]. QNet is an exact fixed-parameter algorithm

for PPI network querying when the query is a tree with a known topology, and is thus

applicable to more general queries than QPath. QNet uses dynamic programming and

color coding, and finds homeomorphic matches as in MetaPathwayHunter [50]. The

algorithm is supplemented by a heuristic for reducing the number of iterations in the

cases of queries whose protein members tend to have non-overlapping sets of homologs.

Since the algorithm does not handle general graph queries, but only trees, QNet adds a

preprocessing step that produces several possible tree structures (spanning trees) on the

query proteins from the known interactions in the network of the query species. Each of

those trees is then queried in the target PPI network and the best solution is returned.

The running time of this algorithm is 2O(k)m. QNet presents an additional algorithm for

queries of bounded treewidth, also with known topology. It uses a tree decomposition to

transform the query graph to a tree with “supernodes”, each containing a small subset

of the original query nodes, and uses a similar dynamic programming algorithm to

match this transformed graph. The running time is 2O(k)nt+1, where t is a bound on

the treewidth of the query graph (finding the exact treewidth of a general graph is an

NP-hard problem). This variant of the algorithm has not been implemented at this time.

QNet was used to query yeast complexes from MIPS in the fly network, resulting in

many identified matches that point to strong conservation between the two species.

PADA1 [10] is an alternative network querying algorithm, which attempts to extend

the QNet algorithm to more general query graphs. Similarly to QNet, PADA1 transforms

the query into a tree and queries that tree, allowing insertions and deletions. While both

QNet and PADA1 exploit the fact that the queries are tree-like, while QNet assumes

they have small treewidth, PADA1 assumes they have a small feedback set (vertices to

delete to make the graph into a tree). The algorithm transforms the graph into a tree by

iteratively finding a cycle, duplicating a node of the cycle, and then breaking the cycle by

deleting an edge from it. The result is a tree that contains duplicated vertices, from which
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the original graph can be easily reconstructed. The time complexity of the algorithm

depends on the number of those duplicated vertices, which translates to the size of the

feedback vertex set. Once the query is transformed, a dynamic programming similar to

QNet is applied; it seeks a best match for the query, mapping all the duplicates of a node

to the same network vertex. The running time is 2O(k)n|F| where F is the feedback set.

The theoretical running times of QNet and PADA1 are difficult to compare since they

depend on the graph treewidth and the size of the feedback set respectively. The authors

claim, however, that their method is fast in practice. PADA1 was tested on the data sets

proposed by QNet, and obtained comparable results in the number of queries matched.

2.4.3 Other Topology-based approaches to querying general graphs

The following methods apply enumerative or heuristics-based algorithms for matching

general subgraphs in target graph. Since such algorithms can have high running times in

practice, they are usually applied to searching small subgraphs, of size 2–5.

GraphFind [21] is an algorithm for identifying exact and approximate matches of small

graphs in large databases of graphs, or in a single large graph. It is also implemented as

a Cytoscape [59] plugin called NetMatch [20]. The input is a labeled query graph and the

output is the set of its occurrences as a subgraph in a large, labeled target graph, or in the

graph database. The occurrence must match both in topology and in the labels, allowing

some mismatches. Since this requires solving the Subgraph Isomorphism problem,

heuristic methods are used to reduce the search space by filtering the database and then

using well-known methods for approximate matching to find the best candidates from

the filtered ones. The filtering is done via graph indexing, where structural features

of the target and query graphs such as short paths (length 2 or 3) are extracted and

compared. The experimental framework for querying a single graph in a much larger

graph, as relevant to our application, was to-date performed only on synthetic data.

Yang and Sze [70] propose a method for path queries and an enumerative method for

general ones. They relax the matching requirements by allowing query vertices to repeat

in the solution, which seems to make the problem easier. This allows them to simplify

the problem by making the graph acyclic. They thus reduce the path matching problem

to the polynomial problem of finding a longest weighted path in a directed acyclic graph.

The general graph query is solved by first enumerating all possible deletions and then

finding matches by brute force. Since the method is based on exhaustive enumeration,

it can handle only queries with few possible similarities between query and network

vertices.
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Several methods propose a more general approach to pattern finding in networks

which is not exclusively motivated by network querying, but can be easily adapted to

the problem. Sohler and Zimmer [65] developed a general framework for subnetwork

querying. Their network query is differently defined and motivated: a query is some

small labeled graph corresponding to a hypothesis one has about the existence of some

structure in the labeled network. Their model then allows for, e. g., edges in the query

matching paths in the target, and single query proteins matching multiple target proteins.

The problem is then similar to the labeled Subgraph Isomorphism problem as above,

under some relaxations. The method employed by the authors is based on translating

the problem to that of finding a clique in an appropriately defined graph. Due to its

complexity, their method is applicable only to very small queries.

NetGrep [5] is a web-tool for identifying subgraphs of interest in the network, where

those subgraphs match “network schemas”: small graphs where the nodes have certain

properties, such as functionality, or putative domains, and the edges between them

correspond to interactions. The matched subgraph in the network must have the same

topology as the network schema (allowing some mismatches), making this approach

structure-dependent as well. The algorithm used is based on heuristic pruning of the

possible solution space. A major advantage of this method is its running time, which is

fast due to the emphasis on implementation and the highly specialized nature of their

small queries.

2.4.4 Topology-free methods

Another line of research that can be applied to network querying is searching a vertex-

colored network for colored motifs. The query to these methods is a set of k colors and

the goal is to search the network for a subgraph that is both connected and colorful,

with no other restriction on the topology of the match. A first algorithm for searching

networks for such connected motifs was given by Lacroix et al. [37]. Similarly to the

methods we present in this work, the motif is modeled as a set of colors and the vertices

of the graph are colored by the same colors. The goal is to find a colorful, connected

subgraph. The authors propose a brute-force algorithm that traverses the solution space

using breadth-first-search in an attempt to find a colorful subgraph. The model allows

for insertions, adding an additional parameter that restricts the number of sequential

insertion vertices allowed between a pair of matched vertices. The authors do not consider

the variant of multiple colors per vertex and do not allow deletions. This topology-free

algorithm has been applied to metabolic networks but is applicable to cross-species PPI
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network querying. It has so far been attempted on small (sizes 2–5) queries. Due to

the algorithm’s heuristic nature, no theoretical bound on the running time can be given.

MOTUS [36], the software implementing this algorithm, is available for download and

web-use.

Another theoretical viewpoint is presented by Betzler et al. [8]. The authors seek

a connected colorful subgraph as defined above. They give a theoretical framework

similar to the one we propose in this thesis, providing fixed-parameter algorithms whose

running time is improved by a subset convolution trick (see [9] for details). The problem

is then solved using a dynamic programming algorithm very similar to our own, with the

same running time. The extended model proposed does not explicitly include insertions

and deletions, but can be solved by a fixed-parameter algorithm with running time

O(| ln(ε)|4.32kk2m) that finds a subgraph with up to d connected components for some

d where the subgraph is colored by the colors of the motif. The authors also present

a variant that parallels our multiple colors per vertex variant — list coloring. They

suggest a color-coding based algorithm that disregards edge weights, with a running

time O(| ln(ε)|10.88km), which is prohibitive in practice. An extension is also provided

for the case when the color motif is a multiset and can contain more than one instance of

the same color. The paper does not include any implementation or experiments.

2.5 Definition of problem variants

In this section we present the problem variants formally. All these variants will be

analyzed in subsequent chapters.

Preliminaries Let G = (V ,E) be a PPI network where vertices represent proteins and

edges correspond to PPIs. Denote |V | = n and |E| = m. For a vertex v, let N(v) denote

the set of its neighbors, i. e., N(v) = {u : (u, v) ∈ E}. For two disjoint sets S1 and S2, we

write S1 ] S2 for their union S1 ∪ S2. We denote by G[K] the subgraph of G induced by

the vertex set K.

Given a set of colors C = {1, 2, . . . ,k}, a coloring constraint function Γ : V → 2C

associates with each v ∈ V a subset of colors Γ(v) ⊆ C. For S ⊆ C, we define a subset

H ⊆ V as S-colorful if |H| = |S| and there is a function c that assigns each v ∈ H a color

from Γ(v), such that there is exactly one vertex in H of each color in S.

Problem variants The central problem that we study is the Colorful Connected Subgraph:
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Figure 2.1: Network query problems. Left: the network, where vertex j is non-colored.
Right: queries. For the basic problem disallowing indels, Q1 is solved by {c,b, i}, while
Q2 and Q4 have no solution. When allowing a single arbitrary insertion, Q2 has solution
{a,d,h, i} and Q4 has the solution {a,b, c,d, i}. When allowing a single special insertion,
Q3 has the solution {a,b,g, j}. When allowing one deletion, Q2 has the solutions {a,d},
{i, f}. When allowing repeated nodes and no indels, Q5 has the solution {b, c, i, f,g}.

Problem 1 (Colorful Connected Subgraph). Given a graph G = (V ,E), a color set C, and

a coloring constraint function Γ : V → 2C, is there a connected subgraph of G that is C-colorful?

This problem was shown to be NP-complete by Fellows et al. [19], even for the case

of trees of maximum degree 3. Here we provide fixed-parameter algorithms for several

variants of this problem, where the parameter is the number of colors |C| = k.

We first consider the single color per vertex variant, which allows only coloring con-

straint functions that associate each v ∈ V with a single color. In this case, the input is

a graph where each vertex is assigned a color from C, and we aim to find a connected

subgraph having exactly one vertex of each color. We later extend this to multiple colors

per vertex variant, where we give a reduction from the general case to the single color

case. These variants and the others we present here can all be generalized to the case

where the edges are weighted, and we seek the maximum-weight solution.

Further variants of the problem add flexibility to the model by allowing insertion

and deletions (indels). We would like to allow deletions of query proteins that cannot be

matched and insertions of network proteins that assist in connecting matched vertices.

When allowing insertions, there are several problem variants to consider (see Figure 2.1).

In the first variant, some network vertices are not assigned a color, and only non-

colored vertices can be inserted. For convenience, assign non-colored vertices the color 0.

Let us call such insertions special.

Definition 1. An S-colorful solution allowing special insertions is a connected subgraph
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H ⊆ G, where ∃H ′ ⊆ H such that V(H ′) is S-colorful and all other vertices of H are non-colored.

In a second variant of insertion handling, any vertex can be inserted (rather than only

non-colored ones). We call such insertions arbitrary. The exact methods we propose in

the next chapter support solutions with deletions and the two types of insertions.



Chapter 3

Exact algorithms

3.1 Dynamic Programming

3.1.1 Colorful Connected Subgraph

In this section we show how to solve Problem 1 using a randomized DP approach. We

first consider the variant where the coloring constraint functions associate each v ∈ V
with a single color. In this case, the input is a graph where each vertex is assigned a color

from C, and we aim to find a connected subgraph having exactly one vertex of each color.

Since every connected subgraph has a spanning tree, it suffices to look for colorful

trees. As we noted in the previous chapter, this problem has been studied by Scott et al.

[57] in another context, as well as by Betzler et al. [8]. We provide a DP algorithm, which

is the unweighted version of the algorithm given by Scott et al. [57]. We construct a table

B with rows corresponding to vertices and columns corresponding to subsets C ′ ⊆ C.

We define B(v,S)= True if there exists in G a subtree rooted at v that is S-colorful, and

False otherwise. For S = {γ} and v ∈ V we initialize B(v,γ) =True if and only if Γ(v) = {γ}.

Other entries of B can be computed using the following recurrence:

B(v,S) =
∨

u∈N(v)
S1]S2=S

Γ(v)∈S1,Γ(u)∈S2

B(v,S1) ∧ B(u,S2), (3.1)

See Figure 3.1 for an example execution of the algorithm and DP table. The algorithm

runs in O(3km) time1. One can easily generalize (3.1) to the weighted case, where each

edge is assigned a weight, and the heaviest tree is sought. In this case, the algorithm

1It can be further reduced to O(2km) using the techniques of Björklund et al. [9]; however, this version
cannot be generalized to the weighted case, so we do not use it.

17
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A
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3

1

1

2

3

1

A 0 --- --- --- 1 2 1 --- --- --- 4 3 3 --- 6

B --- --- 0 --- --- 2 --- --- --- 1 --- 3 3 4 6

C --- --- --- 0 --- --- --- --- 3 1 4 3 --- 4 6

D --- 0 --- --- 1 --- --- --- 3 --- 4 --- 3 4 6

E --- --- --- 0 --- --- 1 --- --- 3 2 4 --- --- 5

F --- --- 0 --- --- --- --- --- --- 3 --- 4 --- --- 5

Figure 3.1: A single run of the dynamic programming. Top: a vertex-colored graph with
weighted edges. Bottom: The dynamic programming the table. The columns correspond
to the possible color subsets, and the rows correspond to the vertices. Each cell (v,S)
contains the score of the maximum-weight tree rooted in v and colored exactly by S. For
easier tracking of the algorithm, the values in the cells in the stages where there were
several trees to choose from are underlined.

finds, for each vertex, the heaviest (maximum total edge weight) colorful subtree rooted

at it. We note that this does not guarantee finding the heaviest subgraph containing a

given vertex. The latter variant seems not to be amenable to this approach, unless some

structure is assumed on the heaviest subgraph (such as being of bounded treewidth).

Initialization: For S = {γ} define B(v,γ) = 0 if and only if Γ(v) = γ, B(v,γ) = −∞
otherwise.

Recursion:

B(v,S) = max
u∈N(v)
S1]S2=S

Γ(v)∈S1,Γ(u)∈S2

B(v,S1) + B(u,S2) +w(u, v), (3.2)

where B(v,S) is now a real number instead of a Boolean value. The weight of an optimum

match is given by maxv B(v,C).

3.1.2 Indels

We now consider extensions to the algorithm that include deletions, special insertions

and arbitrary insertions.
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Deletions. Deletions can be directly handled by the DP algorithm: If no C-colorful

solution was found, then B(v,C) =False for all v. Allowing up to Ndel deletions can be

done by scanning the entries of B. If there exists Ĉ ⊆ C such that |Ĉ| > |C| −Ndel, and

B(v, Ĉ) =True then a valid solution exists.

Special insertions. An obvious extension of the DP algorithm to handle up to Nins

special insertions is based on the color-coding paradigm of Alon et al. [2]: Randomly

color the non-colored vertices with Nins new colors and use DP to look for colorful

trees. This procedure is repeated a sufficient number of times to ensure that every tree is

colorful with high probability. However, the running time increases by a factor of (3e)Nins .

We provide a more efficient solution below.

Theorem 1. Finding a C-colorful connected subgraph with up to Nins special insertions can be

solved in O(3kmNins) time.

Proof. We extend the DP table to represent also the number of special insertions used in

an intermediate solution. Formally, B(v,S, j) if and only if there is an S-colorful subtree

rooted at v that allows j special insertions, and j is the minimal number of insertions

possible. Here j ranges between 0 and Nins. We initialize the table by setting all entries to

False, except: (i) For γ 6= 0, B(v, {γ}, 0) if and only if Γ(v) = γ; and (ii) if Γ(v) = 0, B(v, ∅, 1).

Entries for which |S| > 1 and j > 0 are then computed using the following recurrence:

B(v,S, j) =
[ ∨
u∈N(v)
S1]S2=S
j1+j2=j

B(v,S1, j1) ∧ B(u,S2, j2)
]

∧ ∀j ′ < j : ¬B(v,S, j ′) (3.3)

We prove correctness by induction on |S| and j. The cases j = 0 and S = ∅ are immediate.

Therefore, consider j > 0 and as the first case S = {γ} (i. e., |S| = 1). By definition:

B(v, {γ}, j) ⇐⇒ ∃u ∈ N(v),S1,S2, j1, j2 :

B(v,S1, j1), B(u,S2, j2), S1 ] S2 = {γ}, j1 + j2 = j, ∀j ′ < j : ¬B(v, {γ}, j ′) (3.4)

We prove the case |S| = 1, j > 0 by induction over j. Assuming there are u,S1,S2, j1, j2
as above, then S1 cannot be {γ} since ∀j ′ < j : ¬B(v, {γ}, j ′). It follows that S1 = ∅ and

S2 = {γ}, implying that Γ(v) = 0, j1 = 1, and j2 = j − 1 (see initialization of B). By the

induction hypothesis on j, B(u, {γ}, j − 1) implies that there exists a tree T rooted at u

having one vertex colored γ and a minimal number of j− 1 non-colored vertices. Clearly,

v /∈ T . Otherwise, there will be a tree T ′ rooted in v having one vertex colored γ and
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j ′ < j special vertices, in contradiction to the minimality of j. Since u ∈ N(v), then T ] {v}

is a tree having one vertex colored γ and j non-colored vertices, as desired.

It remains to handle the case where |S| > 1 by induction over |S| and j. By definition:

B(v,S, j) ⇐⇒ ∃u ∈ N(v),S1,S2, j1, j2 :

B(v,S1, j1), B(u,S2, j2), S1 ] S2 = S, j1 + j2 = j, ∀j ′ < j : ¬B(v,S, j ′) (3.5)

Suppose such u,S1,S2, j1, j2 exist. Then by the induction hypothesis, there is a tree Tv
rooted at v that is S1-colorful and contains a minimal number j1 of special vertices.

Similarly, there is a tree Tu rooted at u that is S2-colorful and contains a minimal number

j2 of special vertices. Tu and Tv are clearly disjoint: Otherwise, there would be another

tree T ′ rooted at v which is S-colorful and contains j ′ < j1 + j2 special vertices, in

contradiction to ¬B(v,S, j ′). Since u ∈ N(v), the union of these trees is (S1 ] S2)-colorful

and has j1 + j2 special vertices, as desired.

To achieve the stated running time, we maintain an auxiliary function t(v,S) which is

evaluated to j when for the first time B(v,S, j) is true for some j. In the recursion (3.3),

we replace the condition j1 + j2 = j by t(v,S1) + t(u,S2) = j. Since the table is (Nins + 1)

times the size of the table in the basic case, the running time increases by a factor of Nins

compared to the basic case.

Arbitrary insertions. In this second variant of insertion handling, any vertex can be

inserted. We solve this variant by using the algorithm for the problem with special

insertions as a black box. Instead of running the algorithm on the input graph G, we

run it on an auxiliary graph G ′ = (V ′,E ′), which is constructed as follows: Add a non-

colored copy v0 for each v ∈ V , and set E ′ = E∪ {(v0,u) | (v,u) ∈ E}∪ {(v0,u0) | (v,u) ∈ E}.

Asymptotically, this does not change the running time.

Theorem 2. The above algorithm solves the arbitrary insertions variant in time O(Nins3km).

Proof. A match in G can be translated to a match in G ′ by replacing vertices of repeating

colors with their copies. Conversely, let T̃ ⊆ G ′ be a subgraph satisfying the coloring

constraints, having j special insertions. Let U = T̃ ∩ V and U ′ = T̃\U. The crucial

observation is that T̃ does not contain a pair {v, v0}, as otherwise we obtain a contradiction

to the minimality of j (we can replace each edge (u, v0) with an edge (u, v) and obtain a

solution having j− 1 insertions). It follows that U ∪ {v | v0 ∈ U ′} is a valid match in G.

The bound on the running time follows from the observation that the size of G ′ is

linear in the size of G.
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3.1.3 Multiple colors per vertex

We now turn to the more general case, where a color constraint function can associate

each vertex with a set of colors and not just a single color. This problem arises when

a target protein is homologous to several query proteins. Betzler et al. [8] gave a fixed-

parameter algorithm for the problem, where the running time was increased by a factor

of (2e)k compared to the case of single color constraints. Here we give an alternative

fixed-parameter algorithm (coupled with some speedup heuristics). The basic idea is to

reduce the problem to the single color case by randomly choosing a single valid color for

every vertex. Our main effort is in computing an upper bound on the number of coloring

iterations needed.

Define a color graph to be a bipartite graph B = (V ,C,E) where V is the set of network

vertices, C is the set of colors and (v, c) ∈ E ⇐⇒ c ∈ Γ(v). Consider a possible match to

the query; for clarity, we assume that this match does not contain insertions or deletions.

Then we can prove the following bound:

Theorem 3. The probability Pc for a subset of vertices of size k to become colorful in a random

coloring is at least 1
k! .

Proof. Take a solution set S = {v1, . . . , vk} and the color subgraph B ′ induced by S ∪ C.

Let di denote the degree of vi in B ′. Suppose, w.l.o.g., that d1 > . . . > dk. Finally, denote

by Perm(B ′) the number of perfect matchings in B ′. Note that there is a 1-1 mapping

between colorful colorings of S in G and perfect matchings in B ′.

The probability in question is equal to the ratio of number of perfect matchings to the

number of ways to color the vertices of the solution, i. e., Pc =
Perm(B ′)∏k

i=1 di
. We claim that if

Perm(B ′) > 0 then Pc > 1
k! . Indeed, under the conditions set above, Ostrand [47] proved

the following bound:

Perm(B ′) >
k∏
i=1

max{1,di − i+ 1} (3.6)

Let D1 = {di | di > i} and D2 = {di | di < i}. Observe that if di ∈ D1, then di−i+1
di

> 1
i .

Otherwise, di < i and 1
di
> 1
i . Thus,

Pc >

∏k
i=1 max{1,di − i+ 1}∏k

i=1 di
=

∏
i∈D1

di − i+ 1
di

∏
i∈D2

1
di

>
∏
i∈D1

1
i

∏
i∈D2

1
i

=

k∏
i=1

1
i

=
1
k!

.

(3.7)
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Theorem 3 implies an overall running time of O(k!3kmN2
ins) in the case of multiple

color constraints. However, this bound is excessive in many instances, for the following

reason. Let V ′ be a set of colored vertices. Following Dost et al. [17], define the constraint

graph G(V ′) as follows: the vertices are the colors, and an edge exists between two

colors γ1,γ2 if there is a vertex v in V ′ such that γ1,γ2 ∈ Γ(v). The resulting graph is then

partitioned into connected components P1,P2, . . . ,Ps. This partition induces a partition of

the colored network vertices into sets Q1,Q2, . . . ,Qs, where all the vertices of Qi can be

colored only by colors from Pi. The expected number of iterations required for a Pi-sized

subset of Qi to become colorful is bounded by |Pi|!, and thus the number of iterations

required for a solution of size k to become colorful is bounded by
∏s
i=1 |Pi|!. Therefore,

the expected number of iterations of the algorithm is also bounded by
∏s
i=1 |Pi|!.

We can reduce this upper bound using the following two rules: (i) If for some i, the

product of all color degrees in Qi is smaller than |Pi|!, then it is beneficial to exhaustively

enumerate all possible colorings of Qi. (ii) By Hall’s Theorem [40], if a graph has a

perfect matching and its minimum degree is d, then it has at least d! perfect matchings.

Therefore, if the minimal color degree in Qi is d, |Pi|!
d! random iterations suffice.

In practice, we find that the above reductions bring the number of required iterations

to under 100 in the majority of cases. This is considerably less than the theoretical bound

proposed by Betzler et al. [8]. For example, when querying for human complexes in

yeast, we obtain an improvement of at least 50% in the number of iterations in 45% of the

complexes.

Preprocessing. We apply a preprocessing step in each iteration of the DP algorithm to

reduce the graph size. Each such iteration assigns each vertex a single color from its set

of allowed colors. We then look at the subgraph H induced by the set of vertices that are

assigned a private color, i. e., a color that was not assigned to any other vertex. We split H

into its connected components, and merge the vertices of each connected component to a

new vertex. Each new vertex is assigned a new color, and this reduced set of new colors

replaces the private colors. The DP algorithm then receives as input a reduced graph and

set of colors, resulting in a faster running time and no effect on the quality of the results.

3.2 Integer Programming formulation

In this section we provide an ILP formulation of the network querying problem, allowing

us to employ ILP solvers that on certain instances are faster than DP. Formally, the

problem that we aim to solve using the ILP is Problem 1 (C-colorful Connected
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Subgraph) with exactly Nins arbitrary insertions and exactly Ndel arbitrary deletions.

Further, we are given edge weights ω : E→ Q and wish to find a vertex subset K ⊆ V of

size t := k+Nins −Ndel that maximizes the total edge weight
∑

(v,w)∈E,v,w∈Kωvw.

We declare binary variables {cv : v ∈ V} that express whether a vertex v is selected

into the complex K. It is easy to give constraints that ensure correct coloring; the difficulty

is in expressing the connectivity. The idea is to find a flow2 with t− 1 selected vertices as

sources of flow 1, and a selected sink r that drains a flow of t− 1, while disallowing flow

between non-selected vertices. We use the following variables:

{cv : v ∈ V}, cv ∈ {0, 1} vertex v is selected (v ∈ K) (3.8)

{evw : (v,w) ∈ E, v < w}, evw ∈ {0, 1} edge (v,w) is in G[K] (3.9)

{rv : v ∈ V}, rv ∈ {0, 1} vertex v is the sink (3.10)

{fvw, fwv : (v,w) ∈ E}, fvw, fwv ∈ Q flow from v to w/w to v (3.11)

{gvγ : v ∈ V ,γ ∈ Γ(v)},gvγ ∈ {0, 1} vertex v has color γ (3.12)

and the following constraints

∑
v∈V

cv = t (3.13)

∑
v∈V

rv = 1 (3.14)

evw 6 cv ∧ evw 6 cw ∀(v,w) ∈ E (3.15)

2evw > cv + cw − 1 ∀(v,w) ∈ E (3.16)

fvw = −fwv ∀(v,w) ∈ E (3.17)∑
w∈N(v)

fvw = cv − trv ∀v ∈ V (3.18)

fvw, fwv 6 (t− 1)evw ∀(v,w) ∈ E (3.19)

2That is, a function f : V × V → Q that satisfies skew symmetry (∀v,w ∈ V : f(v,w) = −f(w, v)) and flow
conservation (

∑
w∈V f(v,w) = 0) for all vertices v except sources and sinks; see e. g. Cormen et al. [16] for an

introduction on flows.
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∑
γ∈Γ(v)

gvγ 6 1 ∀v ∈ V (3.20)

∑
v∈V

gvγ 6 1 ∀γ ∈ C (3.21)

∑
v∈V

∑
γ∈Γ(v)

gvγ = t−Nins (3.22)

gvγ 6 cv ∀v ∈ V ,γ ∈ Γ(v) (3.23)

with the objective

maximize
∑

(v,w)∈E

ωvwevw. (3.24)

We now turn to proving the correctness of the formulation above.

Theorem 4. The ILP defined by (3.8)–(3.24) correctly solves Problem 1.

Proof. The integrality constraints (3.8) and (3.9) and the inequalities (3.15) and (3.16)

ensure that evw = 1 if and only if cv = 1 ∧ cw = 1. Therefore, the two objectives match.

It remains to show that the constraints of Problem 1 are met if and only if the constraints

(3.13)–(3.23) are met.

“⇒”: Given a solution of Problem 1, set cv, evw, and gvγ as described in (3.8), (3.9),

and (3.12), respectively. Select an arbitrary r ∈ K and set rr = 1 and rv = 0 for each

v ∈ V , v 6= r. Let T be a spanning tree of G[K] (which exists because G[K] is connected)

with edges directed towards r. Set fvw for (v,w) ∈ E(T) to the number of vertices in the

subtree of T rooted in v, and set fwv = −fvw and fvw = 0 for v /∈ K or w /∈ K. It is then

easy to verify that (3.13)–(3.23) hold.

“⇐”: Given a solution of the ILP, let K, r, and c be defined by (3.8), (3.10) and (3.12),

respectively. Because of (3.13), we have |K| = t, and because of (3.14), r is well-defined.

Constraints (3.20) make g be well-defined, and (3.21) make sure it is colorful. Because

of (3.22), there are exactly t−Nins colored vertices, and with (3.23) they must all be in K,

implying that there are exactly Nins uncolored vertices in K.

It remains to show that G[K] is connected. For this, we show that every v 6= r ∈ K has a

path to r consisting only of vertices from K. Constraint (3.17) ensures flow skew symmetry.

Constraint (3.18) ensures that the outgoing flow
∑
w∈N(v) fvw is 1 for v ∈ K, v 6= r and

0 for v /∈ K. For the root r, we always have cr = 1, since (3.17) and (3.18) requires at

least one edge with positive flow incident on r, and so (3.19) and (3.15) force cr = 1.

Thus, for the root r, the outgoing flow is −(t− 1), and f forms a valid flow with (t− 1)

sources K \ {r} and one sink r.
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Consider now v 6= r ∈ K. Because of (3.18), v has at least one neighbor w with fvw > 1.

Because of (3.19), we have w ∈ K. We continue this way until reaching r or reaching a

vertex w ′ for the second time. If we reached w ′ again, we can decrease the flow on all

edges traversed after w ′ by 1, yielding another valid flow without violating any of (3.17),

(3.18), and (3.19). This will eventually provide a path to r.
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Chapter 4

Heuristics

The similarity measure we employ between query and network proteins is sequence-

based. Therefore, the distribution of colors among the vertices of the network is often far

from uniform: some vertices can be assigned many colors, some are assigned a single

color or two, and many others are not similar to any query node and thus receive no

color at all. Also, different colors can match a different number of vertices, hence, some

colors may appear once or twice in the network while others may appear many times.

Here we propose several heuristic speedups that try to take advantage of the unique

properties of the color distribution.

4.1 Shortest path based heuristic

We often observed that the majority of network proteins were not sufficiently sequence-

similar to any query protein, and can be used only as “special” insertion vertices.

Therefore, in practice, only a small fraction of the network proteins are colored. We thus

developed a fast heuristic that solves problem 1 when the number of colored vertices is

small, without allowing indels. We then use this method as a preliminary step, accepting

the solutions it returns and running the DP or ILP algorithm in the cases where the

heuristic returns no solution (either because it failed to find one, or because indels are

required).

Our heuristic is based on a shortest-path algorithm to obtain a fast solution. Several

fast iterations are run. During each iteration, one new vertex is added to the solution

while a set of vertices is removed from the network, making the problem smaller. The

model includes weighted edges and supports multiple colors per vertex. A “vertex of

color c” in this context is a vertex that has c in its coloring constraints.

The algorithm maintains a partition of V into three sets, Vin, Vout and Vopen. Starting

27
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with Vopen = V , vertices are greedily moved from Vopen either to Vin, meaning that they

are to be part of H, or to Vout, meaning that they are not to be part of H.

We define several dynamically changing variables, functions and properties deter-

mined by the partition (Vin,Vout,Vopen).

• A vertex in Vopen is unique if there is no other vertex of the same color in Vopen.

• For v in Vopen, let d(v) denote the number of edges in a shortest path in G[Vin∪Vopen]

from v to the closest vertex of Vin (or ∞ if no such path exists.)

• For any color c such that Vopen contains at least one vertex of color c, let dist(c) =

minv|c∈Γ(v) d(v). Let c∗ = argmaxc dist(c). Let v∗ be a vertex with color c∗ and

d(v∗) = dist(c∗). If there are several options for v∗, break ties according to the sum

of the edge weights along the path from the candidate to Vin.

The following actions occur automatically at any point in the algorithm and take

priority over the other steps of the algorithm.

• If a vertex becomes unique it is moved from Vopen to Vin;

• If a vertex is placed in Vin, all other vertices of the same color are placed in Vout, if

they cannot be assigned any other colors that are not already represented in Vin.

• If v ∈ Vopen and d(v) = ∞ then v is placed in Vout.

We assume that there is at least one unique vertex at the beginning of the algorithm.

If there are no unique vertices, we choose the least frequent color and run the heuristic

several times, keeping only a single vertex of this color and removing the rest each time.

A connected component of G[Vin ∪ Vopen] is called essential if there is some color c such

that the component contains a vertex of color c, and no other component contains a

vertex of color c. The partition (Vin,Vout,Vopen) is called bad if G[Vin ∪Vopen] contains two

or more essential components. The algorithm tries to keep adding vertices to Vin without

creating a bad partition. A path in G is called feasible if it can be colored in such a way

that every vertex on it has a different color.

Now we are ready to describe a general step of the algorithm, in which Vin, Vout, and

Vopen are given. We may assume that there are no unique vertices in Vopen, since they

would have been automatically added to Vin.

General step: Execute the first case for which the precondition holds.
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Case 1 G[Vin] is connected and Vopen is empty: Return SUCCESS

Case 2 G[Vin] is connected or the degree d(v∗) in the graph induced by Vin ∪Vopen is > 3:

Vin ← Vin ∪ {v∗}.

Case 3 There is no feasible path joining two connected components of G[Vin]: Return

FAILURE

Choose a shortest feasible path joining two connected components of G[Vin]. This path

can be found, e. g., by a simple depth search first (DFS) procedure, where we also keep

a list of all possible color combinations that are feasible along the path. When a path

is extended and it has several options of colors, combinations repeating a color are

eliminated. If there are several options for this path, break ties according to the sum of

the edge weights along it. Let the first vertex of Vopen in that path be v.

Case 4 Adding v to Vin and the other vertices of the same color as v to Vout does not

create a bad partition: Vin ← Vin ∪ {v}

Case 5 There is a vertex w of the same color as v such that adding w to Vin does not

create a bad partition: Vin ← Vin ∪ {w}

Case 6 Return FAILURE

4.2 Color-frequency based heuristics

In many cases we observed that some of the colors can be assigned to only a few of the

vertices (“infrequent colors”). We already take advantage of this fact in the preprocessing

step for the DP (Section 3.1.3) in the single color per vertex variant. We thus attempted

to extend this approach to obtain larger reductions even in the multiple colors per vertex

model, while forfeiting optimality. This heuristic centers around the notion of merging

vertices with infrequent colors, assigning those new vertices a new color, and running

the ILP algorithm on the reduced graph with the new set of colors.

The heuristic consists of four steps:

1. Construct the set of infrequent colors: For each color, in increasing order of frequency,

mark all vertices that can be assigned this color (regardless of the other colors they

could be assigned). Vertices with no color (which can serve as insertion vertices)

are considered to be frequent. Stop when 50% of the colored vertices are marked.
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2. Construct H, the induced graph on the marked vertices with infrequent colors.

Split H into connected components. Then greedily select a subset of the components

such that the vertices in the selected components cover all the infrequent colors.

More precisely, repeatedly add the component with the best ratio of new colors

covered to number of vertices in the component. Each such step increases the

size of a matching between the infrequent colors and the vertices in the selected

components. Remove the unselected components.

3. Merge the vertices of each selected component. Each merged component gets a

single new color, and the new set of colors is the frequent colors plus the new

colors; the infrequent colors disappear. The new merged vertices have only one

color, while the remaining vertices retain their multiple color assignment with the

frequent colors.

4. The reduced instance is then given as input to the ILP solver. For this, we made

several small modifications to the ILP formulation to accommodate for the fact that

deleting a “component vertex” actually corresponds to several deletions.

Since the ILP solution can only select components as a whole, it can contain many

redundant vertices. We get rid of them by taking as a new input graph only the

graph induced by the solution vertices, and repeating the whole process until no more

improvement is possible.

Unfortunately, the heuristic often failed to find the optimal solution; further, the

speedup was not as pronounced as we hoped. Therefore, we do not include this heuristic

in our pipeline. More details about the results as well as several other variants that we

tested are described in the Appendix.
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Implementation

We implemented a pipeline called Torque for querying a complex given as a set of

proteins from a source species in the PPI network of a target species. Torque runs with

increasing number of allowed indels until a match is found or a pre-specified bound on

the number of indels is reached. Matches are assigned a score based on edge weights, and

the highest scoring match is finally output. The problem version addressed is the multiple

colors per vertex model with arbitrary insertions. Before applying the computationally

intensive DP or ILP methods, we try the fast heuristic based on shortest paths that does

not allow indels but works well in practice on small instances (our tests show it returns

a good match about 60% of the time, see below). We now describe the stages of the

algorithm, the scoring scheme, and the parameters we used for our testing.

5.1 Preprocessing

A protein complex is specified as a set of proteins. We associate a distinct color with

each query protein and define a corresponding coloring constraint function. Each vertex

in the target network is associated with a subset of colors corresponding to the query

proteins it is sequence-similar to (see Section 6.1). In practice, only 5% of the vertices on

average are associated with one or more colors. The rest are treated as non-colored.

While some of the non-colored vertices can be used as insertion vertices, many

are too far from any colored vertex to be feasible insertions under the given upper

bound Nins. Let v be a non-colored vertex, and let d0(u, v) be the the length (number

of edges) of the shortest path between u and v where every vertex on the path is

required to be non-colored. We keep v if there are colored vertices u1,u2 such that

d0(u1, v)+d0(u2, v) 6 Nins+1, and the corresponding paths are vertex-disjoint. Otherwise,

we remove v from the network. On the networks and complexes that we tested (see
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below), subnetworks containing only colored vertices are usually of size less than 50,

those allowing 1–2 insertions have 200–1000 vertices, and those allowing more insertions

typically cover up to 99% of the network.

After computing the current subnetwork to search in, we partition it into its connected

components and search in each one independently. A component is feasible if the color

constraints of its vertices contain at least k−Ndel colors of the query. Next, we process

feasible connected components of increasing size, searching for the highest scoring

matched complex using any of our methods. We increase the number of indels, generating

larger connected components, until a solution is found that contains the minimal number

of insertions and deletions, where insertions are preferred over deletions, as they can

be better attributed to incomplete data. Thus, a solution having two insertions and

no deletions is preferred to one having a single insertion and a single deletion. A

solution having no insertions and two deletions is preferred over a solution having

three insertions. We have found that for the majority of queries, between one and two

connected components had to be generated and tested.

5.2 Algorithm pipeline

When querying a connected component, its unique properties dictate which of our

methods will find a match more efficiently. In the case when the connected component

does not contain any special insertion vertices, we begin with the shortest-path heuristic

described in Chapter 4, which terminates quickly. If it returns a match, we accept it

as the solution for this connected component. Otherwise, we attempt either the DP or

the ILP methods. While the ILP solution is faster on many cases, its running time is

unpredictable, unlike the DP algorithm, which tends to be more stable in running time

and to also guarantee optimality or determine that no solution exists. We therefore chose

to use it only in certain cases: As a rule of thumb, when the number of vertices is very

close to the number of colors k, and k is large, the ILP algorithm is preferable, since we

observed that its running time is less sensitive to k, while the color-coding algorithm

is exponential in k. Based on empirical tests, we apply the ILP algorithm whenever

2n−k < 3k, where n is the size of the connected component. This condition was satisfied

in about 2/3 of the connected components we tested. For the DP algorithm, we used the

multiple colors per vertex model, generating color assignments for the vertices using the

bounds described in Section 3.1.3, thus reducing the number of iterations required.
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5.3 Scoring

We score a set of proteins matching a query using the approach of Sharan et al. [61].

Briefly, a match is assigned a likelihood ratio score, which measures its fit to a protein

complex model (assuming that every two proteins in a complex should interact with

high probability, independently of all other pairs) versus the chance that its connections

in the target network arise at random. The protein complex model assumes that every

two proteins in a complex should interact, independently of all other pairs, with high

probability β. The random model assumes that the PPI graph was chosen uniformly at

random from the collection of all graphs with the same vertex degrees as the observed

one. This random model induces a probability of occurrence puv for each edge (u, v)

of the graph. To accommodate for information on the reliability of interactions, the

interaction status of every vertex pair is treated as a noisy observation, and its reliability

is combined into the likelihood score. Overall, for a match U, the likelihood ratio score is

expressed as a sum over the vertex pairs in the match:

L(V) =
∑

(u,v)∈U×U

log
βPr(Ouv | Tuv) + (1 − β)Pr(Ouv | Fuv)

puvPr(Ouv | Tuv) + (1 − puv)Pr(Ouv | Fuv)
, (5.1)

where Ouv denotes the set of experimental observations on the interaction status of u

and v, Tuv denotes the event that u and v truly interact, and Fuv denotes the event the u

and v do not interact. The computation of Pr(Ouv | Tuv) and Pr(Ouv | Fuv) is based on

the reliability assigned to the interaction between u and v.

When applying the DP algorithm, we output the highest scoring tree rooted at each

vertex. Then, for each such solution tree, we compute the score of the subgraph that is

induced by its vertices, taking into account edges and non-edges, to produce a final score

for this vertex set.

5.4 Web server

The Torque web-server (http://www.cs.tau.ac.il/∼bnet/torque.html) implements the al-

gorithms presented in this work for querying protein sets across species. This section

describes the technical details on using the service.

5.4.1 Input

The input for Torque consists of:

http://www.cs.tau.ac.il/~bnet/torque.html
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1. A query set of proteins in species A.

2. Their protein sequences.

3. A PPI network for species B.

4. The sequences of the network proteins.

All inputs are in simple text format:

• The query set can be entered directly as a comma-delimited or whitespace-delimited

list.

• Protein sequences are given in the standard FASTA format.

• The PPI network is given as a text file, where each row represents an interaction

and contains the IDs of the interacting pair and a confidence value for it in the

range [0, 1].

It is possible to use a single FASTA file (input 2) for many queries, if it contains the

sequences for all proteins in all queries. When the query field is left blank, Torque

will use all the proteins in input 2 as the query. If input 1 contains Uniprot protein

IDs (www.uniprot.org), their sequences need not be entered in input 2; instead, Torque

automatically retrieves them from the Uniprot database. For several target species, the

user needs not provide inputs 3 and 4. Currently, the server supports this option for the

three target species S. cerevisiae, D. melanogaster and H. sapiens. The user can indicate

one of these target species instead of providing inputs 3 and 4. Details on how these

networks were constructed can be found in Chapter 6 and in the appendix.

The user can control two parameters of the algorithm, setting a trade-off between

speed and sensitivity. First, the user can control the threshold for sequence similarities.

Torque applies BLAST to find putative matches between query and target proteins. The

user can set the threshold for BLAST similarity (e-value). By setting a lower threshold,

less homologs will be identified for the query proteins, making the algorithm faster

but less sensitive. The second parameter is a threshold for the confidence values of PPI

network edges provided as part of input 3. Edges whose confidence value is lower than

the threshold are discarded; hence, this parameter determines the sparsity of the target

network and affects the number of possible matches and the running time.

5.4.2 Processing

The running time of Torque is typically a few minutes, but may be up to an hour,

depending on the size and other properties of the query (See Chapter 6 for details).
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Figure 5.1: An example of the output of a Torque run. The query consists of 13 proteins.
The match has 12 proteins with two insertions and three deletions.

If several queries are submitted to the server at the same time, they are queued and

executed sequentially. Rather than waiting for the results online, they can be accessed

later, in two ways:

• When a Torque job is started, it is assigned a 9-digit job ID. This ID can be used to

access the results later from the main Torque page.

• Before submitting a query, the user may enter an email address. Once Torque has

finished processing the query, the results will be sent to the email address provided.

This process is done automatically and the email address is then discarded.

5.4.3 Output

The web-server generates a web page (see Figure 5.1) with the image of the top-scoring

match for the query in the target network, as well as an auxiliary file in .sif format that

can be viewed using the Cytoscape software [59]. The content of the .sif file includes, for

each edge, a numerical value representing the confidence in the interaction it represents,

as provided in the input. This value determines the thickness of the edge in the Cytoscape

visualization. The image shows the subgraph induced by the top-scoring match in the

PPI network. Each vertex is labelled with its protein name in the PPI network and

its matching query protein, if such exists. Insertion vertices are shown in grey, and
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proteins from the query for which there was no match in the solution (deletions) are

listed separately.



Chapter 6

Experiments

We applied Torque to query protein complexes within the three largest eukaryotic PPI

networks available to date: yeast (5430 proteins, 39936 interactions), fly (6650 proteins,

21275 interactions) and human (7915 proteins, 28972 interactions). As queries, we used six

collections of protein complexes from different species: yeast, fly, human, bovine, mouse,

and rat. The first three served us to validate our algorithm and compare it to the state-of-

the-art QNet algorithm [17]1. The last three, for which no large-scale PPI information

exists, allowed us to explore the power of the algorithm in querying protein complexes

for which no topology information is available. We compared our results for all data

collections in yeast with those of MOTUS (http://genome.imim.es/∼vlacroix/motus/), a

program for querying for colorful motifs in networks that is based on the work of Lacroix

et al. [37]. In the following we describe the data, the evaluation measures, and the results

obtained.

6.1 Setup

Data acquisition. For yeast, fly and human, we used the networks recently published

by Yosef et al. [71]. These networks were obtained using up-to-date PPI data gathered

from several papers [66, 54, 67, 24, 35, 53] and from public databases [69, 22, 48]. High-

throughput mass spectrometry data [24, 35] was translated into binary PPIs using the

spoke model [4]. The networks can now be downloaded from http://www.cs.tau.ac.il/

∼bnet/TORQUE Input format.htm. Yeast complexes were downloaded from SGD [58]

(Macromolecular Complex GO-Slim category). Fly complexes were obtained using the

AmiGo [26] browser to collect all proteins annotated with GO:0043234 (protein complex).

1A comparison to GraphFind [21] was not feasible, since its interface does not allow automated execution
of the more than 600 queries.
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The complexes for all mammals (human, mouse, rat, bovine) were downloaded from the

CORUM website [55]. The source of the FASTA data for the BLAST computations of all

the species was the ENSEMBL database [30, Version 55], which we accessed through the

interface of the BioMart web-site (http://www.biomart.org).

Parameter settings. Our tests were performed using the following set of parameters.

We queried complexes of size 4–25. Query and network protein sequence similarities

were evaluated using BLAST. We ran the blastall program with the standard settings on

every pair of query and target species. The output of this process is a table of protein

pairs, one from each network, and an e-value quantifying their similarity. For a vertex v

and a color γ, we let γ ∈ Γ(v) if the BLAST e-value obtained by comparing the sequences

of v and the query protein corresponding to γ was less than 10−7, the same threshold

used by QNet [17]. Such protein pairs are sequence similar. For each complex, we allowed

Torque to run at most one hour, and took the best solution up to that point. We set the

maximum number of allowed insertions and deletions to 2 of each for small complexes

(size < 7), 3 of each for medium sized complexes (size 8–14), and 4 of each for larger

complexes.

6.2 Evaluation

To evaluate the quality of the matches, we used two measures: functional coherence

and specificity. The first measure reports the percent of matches that are significantly

functionally coherent with respect to the Gene Ontology (GO) annotation [68]. Note that

while the query is functionally coherent, the reported matches may not be so due to

permissive homology matching and the noise in the PPI data. To compute the functional

coherence of a match, represented as a set of proteins, we used the GO TermFinder

tool [11]. The p-values returned by the tool were further corrected for multiple match

testing using the false discovery rate (FDR) procedure [7].

The second measure reports the specificity of the suggested solution, i. e., the fraction

of matches that significantly overlap with a known protein complex. The significance of

the overlap was evaluated using the hypergeometric distribution. The resulting p-value

was compared to those obtained on 100 random sets of proteins of the same size to

produce an empirical p-value. Those p-values were FDR-corrected for multiple testing.

This specificity computation was applied to the matches that had a non-zero overlap

with the collection of complexes to which they were compared. We also report separately

those novel matches that had no overlap with known complexes. Although it is possible

http://www.biomart.org
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Figure 6.1: Comparison of number of matches for Torque and QNet.

that some of these non-overlapping matches are false positives, we believe that the high

percentage of specific matches indicate that some—or most—of these are indeed novel

complexes.

Comparison to QNet. Our first set of experiments focused on the yeast, fly and human

networks and protein complex collections. For each of the three species, we queried its

complexes in the networks of the other two species. As large-scale networks are available

in this setting, we could compare ourselves to the QNet algorithm [17], which was

designed to tackle topology-based queries. While exact topology for the query complexes

is mostly unknown, QNet infers it by projecting the complexes onto the corresponding

network. This results in a set of possible spanning trees for the complex that are hence

provided to QNet as inputs. This makes QNet very dependent on the quality of the

source network, in addition to the usual dependence on the quality and completeness

of the target network. We used the original QNet code with the same machine setup

and parameters as our algorithm: sequence similarity, insertions and deletions, and time

limits.

A striking difference between Torque and QNet can be seen from the results in

Figure 6.1—out of 433 feasible (as defined in Section 5.1) queries overall, Torque detected

matches for 311 of them, while QNet found matches for 114 only. As we show below,

this 170% gain in sensitivity did not harm the specificity of the results.

Next, we turned to evaluate the results using the functional coherence and specificity

measures described above. The results for the three data sets are summarized in Table 6.2.

As evident from the table, even though Torque matched many more queries, its results
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Functional coherence Specificity Novel matches

Network Complex Torque QNet Torque QNet Torque QNet

Yeast Fly 23 (100%) 2 (100%) 19 (82%) 2 (100%) 7 0
Human 134 (95%) 49 (98%) 119 (85%) 47 (94%) 8 2

Fly Yeast 8 (100%) 3 (60%) 8 (100%) 4 (80%) 1 0
Human 56 (90%) 21 (87%) 62 (100%) 23 (95%) 22 5

Human Yeast 48 (84%) 25 (78%) 43 (75%) 23 (71%) 8 6
Fly 21 (72%) 0 (—) 21 (72%) 0 (—) 7 0

Total 290 100 272 99 46 13

Table 6.1: Quality evaluation. The table lists the number and percentage of matches, out
of all found matches that pass a significance threshold of 0.05, and the number of novel
complexes detected.

exhibit higher functional coherence and similar specificity levels.

Comparison to MOTUS. MOTUS [36] is a software for colored motif search and

inference in vertex colored graphs. Its inputs are a network (list of unweighted edges),

where each vertex has a label, and a query motif, modeled as a set of labels. MOTUS

then lists all connected occurrences of this motif in the network. The version we tested,

provided by the authors in March 2009, does not include support for multiple labels

per vertex (equivalent to our multiple colors per vertex), deletions and gaps (insertions),

or weighted edges. Therefore, we tested MOTUS on our data in the cases where every

network protein was similar to at most one query protein, implying that there is only a

single color (or label) per vertex. We removed from the query all nodes that had no similar

vertex in the network at all (a priori deletions). For each occurrence found, we looked at

the subgraph induced by this occurrence on our original weighted-edges network, and

scored the subgraph as described in section 5.3. We tested MOTUS on complexes from

all species queried in the yeast PPI network. On this reduced set of instances, MOTUS

found a match for 44 out of 220 feasible complexes (∼ 20%), while Torque found a match

in 199 (∼ 90%) of the cases. MOTUS returned a match for most small motifs (sizes 3–5)

that did not require insertions or deletions, while larger motifs or those that Torque

matched using indels were usually not found within the time constraint of one hour and

the memory constraint of 8 GB. Since MOTUS finds all possible occurrences of the motif,

the optimal, highest scoring solution is output as well.

Topology-free queries. A unique characteristic of Torque is its ability to query protein

complexes for which a topology is not known. Here we apply our algorithm to query,

for the first time, sets of protein complexes of mouse (59 complexes), rat (55) and bovine
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Network Complex #Feasible #Matches Functional coherence Specificity Novel matches

Yeast Bovine 4 4 4 4 0
Mouse 17 17 16 13 1
Rat 23 20 19 9 6

Fly Bovine 3 0 - - -
Mouse 14 7 0 1 6
Rat 34 21 17 7 14

Human Bovine 4 4 2 1 0
Mouse 48 46 32 24 6
Rat 44 43 32 24 4

Total 191 162 122 83 37

Table 6.2: Statistics of querying protein complexes for which no topology information is
available.

(10)—species for which no large scale PPI data are currently available. In Table 6.2, we

present the results of querying these complexes within the networks of yeast, fly and

human. As evident from the table, more than 95% of the feasible queries had a match,

and the majority of the matches were functionally enriched or matched a known complex.

Indels and Running time. A major advantage of our approach is its flexibility in

allowing insertions and deletions. Indeed, only 80 of our 482 identified matches required

no insertions or deletions at all. We attempted to further explore the insertions and

deletion in our results, see appendix A.4 for details. The number of allowed insertions

affects the size of the components tested, and therefore affects the running time. In

general, the running time of Torque depends on many factors: complex size, number

of homologs for each query protein, and the size of the connected component tested.

Figure 6.2 gives the running time distribution of all queries, i. e., the fraction that were

completed within each time frame, for each of the three target networks. As the graph

shows, more than 30% of queries from all networks were processed in 10 seconds or less,

and 100 seconds are enough for more than 70% of queries. For a few of the queries the

running time required is higher, however approximately 95% of the queries ended under

the 1 hour time bound. Of the 624 feasible complexes, only 32 did not end in time. The

three networks show similar behavior, and we attribute the minor differences among

them to the difference in the quality and completeness of the networks.
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Figure 6.2: Runtime distribution of queries. The figure shows the cumulative percentage
of queries completed within each running time. Queries were stopped after 3600 seconds,
so 100% is not reached.



Chapter 7

Conclusions

7.1 Summary

In this study we presented a method and a tool for querying protein complexes within a

PPI network, where no topology information about the complex is available. Our method

combines three algorithms: a dynamic programming exact algorithm, an integer linear

programming formulation, and a fast heuristic. Compared to a topology-based approach

and to heuristics for colorful motif finding, our approach produces substantially more

matches, while preserving high functional coherence. Thus, our tool is appropriate for a

wide range of network query tasks, and in particular when interaction data on the query

species are sparse or unavailable. Our method also suggests new complexes for which

no prior experimental evidence is available, as they do not overlap any known complex.

Checking these hypotheses experimentally is an interesting next step.

7.2 Limitations and possible extensions

Our approach has several limitations that we hope to address in future work.

• The running time for some queries is still prohibitively high, depending on the

problem size and the number of colors (query size) and their distribution. We

are examining additional heuristics in an attempt to bring the running time down

further.

• The integer linear programming formulation proved very powerful, and usually

performs well in practice, especially when commercial software was used. However,

the performance depends on the availability of such software, and the specific
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algorithm chosen by such software is often not transparent and hence its behavior

is less predictable.

• Since our methods do not rely on the topology of the query, they do not depend on

PPI data from the query species. However, our approach is sensitive to the quality

of the PPI data in the target species, and specifically to the false negative rate in

that network (fraction of true interactions that are still unknown). A true complex

in the target network, which biologically is a match to the query complex, may not

be found if the corresponding subnetwork is disconnected due to false negative

edges. This can be seen, for example, in the fly network, which is noisier than the

human and mouse networks: there are many feasible queries for which Torque

finds no solution. False positive edges in the target network are less problematic,

as they do not disrupt the connectivity (but can create spurious solutions).

• Extending the notion of similarity between query and target proteins might also

improve the solutions. Currently we rely on sequence similarity, and a fixed

threshold for sequence similarity is used. Combining other similarity measures

such as structural similarity could be considered. Furthermore, replacing the

threshold by a weighted model could improve the results.

On the theoretical side, several follow-up directions are of interest. The main prob-

lem that we addressed can be generalized also to allowing special insertions where

colored vertices may repeat freely without penalty for reuse. The DP approach may be

generalizable to cover that version as well, and we intend to explore it

We are also interested in continuing the development of the Torque web-server. We

are considering adding more predefined data: networks and sequences for additional

target species, when such high-quality data become available. Another interesting

direction is allowing the user more control over the query by exposing more parameters:

manually setting the number of insertions and deletions, specifying network proteins

that must take part in the solution, etc. If the tool gains a faithful user-base, as we hope it

will, integration with other platforms such as Cytoscape [59] should also be considered.
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Appendix A

Supplemental Material

A.1 Query statistics

In the following we give additional statistics on our experiments from Chapter 6.

Figure A.1 shows the size distribution of all queries and of the feasible queries.

A small number of queries of size > 18 are omitted. We see that the distribution is

exponentially decreasing, reflecting the size distribution of complexes. We also see that

the fraction of feasible queries is roughly the same (40-50%) for queries of size > 10.

Table A.1 shows the average size of connected components in which a solution was

found, as a function of the number of insertions in the solution. As expected, the size of

the component increases dramatically with the number of insertions, which explains the

difficulty of handling a high number of insertions.

Figure A.2 displays the distribution of the number of indels in the solution as a

function of the query size. We see a growing number of indels as a function of the query

size (the numbers for query size > 10 are based on a small sample, and thus are less

reliable, compare Figure A.1). Note that part of that effect is due to the constraints set by

our algorithms for the number of allowed indels (compare Section 6.1).

Finally, Figure A.3 plots the success rate as a function of query size. Like in Figure A.1,

we distinguish between the statistics for feasible queries and for all queries. The plot

shows a general decreasing trend of the success rate with query size, for all queries.

Interestingly, while only few of the queries of size greater than 13 are feasible, more of

those are successfully solved. Again, this is based on a rather small sample.
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A.2 Heuristics results

The heuristic we presented in Section 4.2 for reducing the problem size by merging

vertices with infrequent colors did not improve the running time as we hoped. Indeed,

the running time of this heuristic when tested on human complexes in yeast was slower

than than the running time of ILP alone in more than 90% of the queries we tested, and

in many cases, solutions were not found or were did not contain the optimal number of

insertions and deletions. The problem is that even when selecting components optimally

with respect to color coverage, we do not take distances between them into account,

and therefore might need many extra vertices to connect them. This means that we

often fail to find solutions with the allowed number of insertions. Possibly, an improved

component selection process that takes distances into account might mitigate this. As far

as the speedup is concerned, the speedup obtained by the reduction in vertices and colors

was mostly offset by the amount of time the heuristic selection process required and the

fact that we ran the ILP repeatedly. Thus, the average running time of the heuristic on

the human queries in yeast was 37.2 seconds, while ILP ran on the same queries in 19.9

seconds on average.

A.3 Variants of the color-frequency based heuristic

In addition to the basic color-frequency based heuristic described in Section 4.2, we also

considered several variants, by changing steps 3-4 of that heuristic.

Our goal was to reduce the dependency on the ILP solver to obtain an algorithm

that can run without commercial software. Instead, we attempt to find a Steiner tree

connecting the components using frequent color vertices, e. g., using some Steiner tree

approximation algorithm [52]. Another alternative is to find a minimum spanning tree

(MST) [16] on the complete graph whose vertices are the merged components and whose

edges are weighted according to the length of the shortest path through the frequent

color vertices between the components they connect. As stated above, the results of the

ILP were unsatisfactory both in quality and running time. Since the ILP gives optimal

solutions and is very fast according to our tests, this implies that the first two steps of

the heuristic are the source of the problem. Thus we did not pursue this line of research

further.

We considered adding a postprocessing heuristic to avoid the running time costs

of repeating the heuristic several times on the progressively reduced solution. In this

heuristic, we repeatedly prune the leaves of solution received after the first round. We
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remove a leaf if there is still a matching between the set of query colors and the vertices

of the solution when it is discarded. Naturally, removing a leaf could create a new leaf in

the graph. Thus we run this process until all the leaves that remain are essential to the

match. Regrettably, this heuristic did not perform as we had hoped, as the poor quality

of the generated solutions outweighed the improvements to the running time.

A.4 Exploring indels

We provide a closer look at insertions and deletions and analyze their contribution to

the results. As we stated previously, only 80 of our 482 identified matches required no

insertions or deletions at all. The majority of solutions required 1–3 indels, while 39

matches required 4 or 5 indels. We distinguish between two types of deletions: apriori

deletions are query proteins that are not sufficiently sequence-similar to any network

protein. arbitrary deletions, on the other hand, are similar to at least one network protein,

but do not participate in the solution. Similarly, we distinguish between special and

arbitrary insertions (as defined in 2.3), where the special insertions are network vertices

not similar to any query protein, and arbitrary insertions match at least one query protein.

We tested the following hypothesis: If a query solution requires an equal number

of special insertions and apriori deletions, then the insertions in the target networks

correspond to the deleted query proteins. Hence, they are actually similar, but their

sequence similarity is higher (poorer) than the cutoff e-value. However, out of 99 matches

with an identical number of such insertions and deletions, we found no insertion-deletion

pairs that had meaningful similarity values, even when raising the cutoff to 0.1. Thus, we

could not deduce a correspondence between the special insertions and apriori deletions

in a solution based on sequence similarity. Different measures of similarity between

proteins, such as structural similarity, could still potentially prove a connection between

the indel pairs.
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Figure A.1: Size distribution of queries

Number of insertions Connected component size

0 32
1 209
2 564
3 1304

Table A.1: Average size of the connected component a solution was found in
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Figure A.2: Indel distribution. The figure shows the average number of indels in the
solutions as a function of the query size.
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Figure A.3: The figure shows, for each query size, the ratio of queries for which a solution
was found to the total number of queries and to the total number of feasible queries.
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