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Abstract. The NP-hard Colorful Components problem is, given a
vertex-colored graph, to delete a minimum number of edges such that
no connected component contains two vertices of the same color. It has
applications in multiple sequence alignment and in multiple network align-
ment where the colors correspond to species. We initiate a systematic
complexity-theoretic study of Colorful Components by presenting
NP-hardness as well as fixed-parameter tractability results for differ-
ent variants of Colorful Components. We also perform experiments
with our algorithms and additionally develop an efficient and very accu-
rate heuristic algorithm clearly outperforming a previous min-cut-based
heuristic on multiple sequence alignment data.

1 Introduction

We study a maximum parsimony approach to the discovery of heterogeneous
components in vertex-colored graphs:

Colorful Components
Instance: An undirected graph G = (V,E) and a coloring of the ver-
tices χ : V → {1, . . . , c}.
Task: Find a minimum subset of edges E′ ⊆ E such that in G′ =
(V,E \ E′), all connected components are colorful, that is, they do not
contain two vertices of the same color.

Such an edge set E′ is called a solution, and we denote its size by k. Color-
ful Components is an edge modification problem originating from biological
applications in sequence and network alignment as described next.

The first application of Colorful Components stems from Multiple Se-
quence Alignment. This is the process of aligning at least three protein, DNA, or
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RNA sequences such that positions believed to be homologous, that is, resulting
from inheritance from a common ancestor, are written in a common column.
This serves to illustrate the similarity or dissimilarity between the sequences and
makes it possible to investigate their evolutionary relationship. Corel et al. [6]
present an algorithm for this problem where a central step is to find connected
subgraphs in graphs whose vertices are positions of the sequences, edges indicate
that a pair of positions should be aligned, and the colors one-to-one correspond
to sequences. These subgraphs correspond to partial alignment columns and
thus may contain at most one vertex from each input sequence. This yields the
Colorful Components problem. The solution of Colorful Components
is then used by the DIALIGN software to compute a multiple alignment. Corel
et al. [6] solve Colorful Components using a greedy algorithm, subsequently
called “min-cut heuristic”: Find two vertices of the same color in some connected
component, find a minimum edge cut between them, and remove it; repeat this
until all connected components are colorful.

A second biological motivation for Colorful Components arises in Network
Alignment for multiple protein–protein interaction (PPI) networks. We propose a
method for network alignment that is based on solving Colorful Components.
Given networks Gi = (Vi, Ei) and a similarity relation S between the proteins
of different species, first create a network whose vertex set is

⋃
Vi and in which

vertex v ∈ Vi receives color i. Then, add an edge {u, v} if uSv. The detected
colorful components are then sets of matched proteins. Every protein appears in
exactly one component, and every component has at most one protein from each
species, which is a very strict model. The results can then be viewed as functional
orthologs [14], or they can form the basis for further analysis. Deniélou et al. [7]
suggest a three-step framework for network alignment where the first step is to
aggregate the proteins from the different species into subsets, and Colorful
Components offers a way of performing this task that results in consistent,
disjoint aggregated groups.

Related combinatorial problems. Colorful Components can be seen as the
problem of destroying by edge deletions all bad paths, that is, simple paths between
two vertices of the same color. Thus, it is a special case of the well-known NP-hard
Multicut problem, which has as input an undirected graph and a set of vertex
pairs and asks for a minimum number of edges to delete to disconnect each given
vertex pair. Multicut is fixed-parameter tractable with respect to the number k
of edge deletions, with a running time of 2O(k3) · |V |O(1) [3, 13].

Colorful Components is also a special case of Multi-Multiway Cut [1].
This problem asks to disconnect by edge deletions all paths between vertices from
the same vertex set of some given vertex sets. Thus, Colorful Components is
the special case where the vertex sets form a partition. Finally, there is related
work on “clustering with diversity” [11] which extends a traditional clustering
problem by asking that in each resulting cluster all points of the underlying
colored metric space must have different colors.



Contributions. On the theoretical side, we present a first systematic study on
the computational complexity of Colorful Components, exhibiting both
tractable and intractable cases. First, we observe that Colorful Components
is NP-hard even in trees. Then, we present a complexity dichotomy concerning
the number c of colors showing that Colorful Components is polynomial-
time solvable for two or less colors and NP-hard otherwise. For three or more
colors, we also obtain super-polynomial running time lower bounds (based on
the Exponential Time Hypothesis) even in the case that the input graph has
bounded degree. On the positive side, we present fixed-parameter algorithms with
running time 2c · |V |O(1) for Colorful Components in trees and with running
time O((c− 1)k · |E|) in general graphs. In experimental work we demonstrate
that, somewhat surprisingly, we can get better results by solving the more general
Weighted Multi-Multiway Cut problem, since this allows us to merge
vertices. We take advantage of this in data reduction rules, a simplified branching,
and a new heuristic. With the branching algorithms, we can solve to optimality
more than half of the instances generated from the BAliBASE 3.0 benchmark [15]
each time within five minutes on a standard PC, with up to 5 000 vertices and
13 000 edges. Our heuristic has an average error of 0.6 %, a large improvement
over the 29.2 % of the previously suggested min-cut heuristic [6]. We also show
the strength of the developed data reduction rules.

Preliminaries. We consider only undirected and simple graphs G = (V,E)
where n := |V | and m := |E|. We assume that n = O(m) since isolated vertices
can be removed from the input in linear time. A bad path is a simple (that is,
cycle-free) path between two vertices of the same color. The length of a path is
the number of its edges. An edge cut is a set of edges whose deletion increases
the number of connected components. For a nonnegative number t, a graph is
t-edge connected if it does not have an edge cut of size less than t.

The Exponential Time Hypothesis (ETH) states that, for all x ≥ 3, x-SAT,
which asks whether a boolean input formula in conjunctive normal form with n
variables and m clauses and at most x variables per clause is satisfiable, cannot
be solved within a running time of 2o(n) or 2o(m); see Lokshtanov et al. [12]
for a recent survey. A problem is fixed-parameter tractable with respect to a
parameter k if it can be solved in f(k) · nO(1) time for an arbitrary (typically
exponential) function f in k.

2 Computational Hardness

In this section, we present hardness results for two restricted variants of Color-
ful Components.

First, we consider the special case where the input graph is a tree. For
obtaining our hardness result, we exploit the connection between Colorful
Components and Multicut. Note that Multicut is NP-hard and MaxSNP-
hard even if the input is a star, that is, a tree consisting of a central vertex with
attached degree-1 vertices [8]. Multicut in stars can be reduced to Colorful



Components as follows: for every pair {s, t} to be disconnected, create degree-1
vertices s′ and t′ attached to s and t, respectively, and color s′ and t′ with the
same unique color. Each original vertex gets a further unique color. Since this
reduction produces trees whose diameter is four, we arrive at the following.

Proposition 1. Colorful Components is NP-hard even in trees with diam-
eter four.

In stars, however, Colorful Components turns out to be polynomial-time
solvable: If the central vertex v has two neighbors with the same color, one can
delete the edge between v and one of the two identically colored degree-one
vertices. If v has no two neighbors of the same color, then every connected
component is colorful.

Second, we study the computational complexity of Colorful Components
if the number of colors is fixed. This is of interest since the number of colors may
be small in practical cases.

Theorem 1. Colorful Components with three colors in graphs with max-
imum degree six is NP-hard; it cannot be solved in 2o(k) · nO(1), 2o(n) · nO(1),
or 2o(m) · nO(1) time unless the ETH is false.

Proof. We present a polynomial-time many-to-one reduction from the NP-hard
3-SAT problem which has as input a Boolean formula φ in 3-CNF.4 For simplicity,
we assume that every clause contains exactly three literals.

The basic idea of the reduction is as follows. For each variable xi of a given
3-CNF formula φ, we construct a variable cycle of length 4mi, where mi denotes
the number of clauses that contain xi. These cycles are colored alternatingly
with two colors ce and co such that deleting every second edge yields a minimum-
cardinality edge deletion set for obtaining colorful components for this cycle. The
corresponding two possibilities are used to represent the two choices for the value
of xi. Then, for each clause Cj of φ containing the variables xp, xq, and xr, we
connect the three corresponding variable cycles by a clause gadget. This gadget
has the property that if the solutions for the variable gadgets correspond to an
assignment that satisfies Cj , then one needs only four edge deletions for the
clause gadget. Conversely, if four edge deletions are sufficient, then the assignment
corresponding to the deletions in the variable cycle satisfies Cj . Let m be the
number of clauses in φ and observe that, since φ is a 3-CNF formula, the overall
number of vertices in the variable cycles is 12m. Our construction guarantees
that there is a satisfying assignment for φ if and only if the constructed graph can
be transformed into one with colorful components by exactly 6m+ 4m = 10m
edge deletions, where 6m edge deletions are used for the variable cycles and
4m modifications are used for the clause gadgets. The details follow.

Given a 3-CNF formula φ consisting of the clauses C0, . . . , Cm−1 over the
variables {x0, . . . , xn−1}, construct a Colorful Components-instance (G =

4 A similar reduction type was previously used to show analogous results for Transi-
tivity Editing [16] and Cluster Editing [10], which, in contrast, are defined on
uncolored graphs.
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Fig. 1. The clause gadget for clause Cj = (xp∨x̄q∨xr). White vertices have color ce, gray
vertices have color co, and black vertices have color cg. The vertex aj is the reserved
vertex for Cj , the other vertices lie on the variable cycles for xp, xq, and xr, respectively.

(V,E), k) as follows. For each variable xi, 0 ≤ i < n, G contains a variable cycle
consisting of the vertices V vi := {i0, . . . , i4mi−1} and the edges Evi := {{ik, ik+1} |
0 ≤ k < 4mi} (for ease of presentation let i4mi

= i0). An edge {ix, ix+1} is even
if x is even, and odd otherwise. A vertex ix receives color ce if x is even; otherwise,
it receives color co. So far, the constructed graph consists of a disjoint union of
cycles and has 12m vertices and edges.

Next, add a clause gadget to G for each clause of φ. In the construction of the
clause gadgets, we need for each clause Cj in the variable cycles of Cj ’s variables a
fixed set of vertices that are “reserved” for Cj . To this end, suppose that for each
variable xi an arbitrary but fixed ordering of the clauses containing xi is given, and
let π(i, j) ∈ {0, . . . , 4mi − 1} denote the position of a clause Cj that contains xi
in this ordering. We now give the details of the construction of the clause gadgets.
Let Cj be a clause containing the variables xp, xq, and xr (either negated or
nonnegated). We construct a clause gadget connecting the variable cycles of xp, xq,
and xr. First, let aj be a new vertex that appears only in the clause gadget for
clause Cj and color aj with a third color cg. Let Egj denote the edge set of the
clause gadget and let Egj contain for each i ∈ {p, q, r} the edges {aj , i4π(i,j)}
and {aj , i4π(i,j)+1} if xi occurs nonnegated in Cj or the edges {aj , i4π(i,j)+1}
and {aj , i4π(i,j)+2}, otherwise. See Figure [figure][1][]1 for an illustration. The

construction of G = (V,E) is completed by setting V :=
⋃n−1
i=0 V

v
i ∪

⋃m−1
j=0 {aj}

and E :=
⋃n−1
i=0 E

v
i ∪

⋃m−1
j=0 Egj .

We show the correctness of the reduction by showing the following claim.

φ is satisfiable ⇔ G can be transformed into a graph with colorful
components by deleting at most k := 10m edges.

“⇒”: Given a satisfying assignment β for φ, we can transform G into a graph
with colorful connected components as follows. For each variable xi delete the
odd edges of the variable cycle of xi if β(xi) = true and the even edges otherwise.
After these deletions, there are no bad paths that contain only vertices from the
variable cycles. Then, proceed as follows for each clause Cj . Assume without loss
of generality that Cj contains the variables xp, xq, and xr, and that the literal
corresponding to xp is true. Then, delete the four edges that are incident with aj



and with one vertex of the variable cycles of xq and xr. After the deletion of these
four edges, there are no bad paths that contain aj , which can be seen as follows.
Clearly, aj is only adjacent to two vertices on the variable cycle of xp. Since the
literal corresponding to xp in Cj is true, the edge between these two vertices
corresponds to the truth assignment that makes this literal true. Consequently,
this edge is not deleted and the edges of the variable cycle that are before and
after this edge are deleted. Hence, aj and its two neighbors in the variable cycle
of xp form an isolated triangle with three different colors.

Summarizing, this means that after deleting the four edges as described above
for each clause gadget, all bad paths containing some aj have been destroyed.
The overall number of edge deletions is 10m: For the variable cycles, we perform
altogether

∑
0≤i<n 4mi/2 = 6m edge deletions, and for each clause gadget

four edges are deleted.

“⇐”: Let S denote an optimal solution for G with |S| ≤ k := 10m. To show
that φ is satisfiable, we make some observations about the structure of G and S.

First, we show that 10m is a lower bound on any solution for G, that is, |S| ≥
10m and thus |S| = 10m. First, note that for each variable xi the variable
cycle contains 4mi/2 edge-disjoint bad paths. Hence, G contains overall 6m
edge-disjoint induced bad paths such that all vertices of the bad paths are in the
variable cycles. Clearly, at least 6m edge deletions are needed for these bad paths.
For each clause Cj , 0 ≤ j < m, at least four edges incident with aj have to be
deleted since aj has degree six and can have degree at most two in a colorful
component. Hence, every solution has size at least 6m+

∑
0≤j<m 4 = 10m and

thus |S| = 10m.

Now, since at least 6m edges are deleted in the variable cycles, this means
that for each clause Cj exactly four edges incident with aj are deleted by S.
Consequently, for each variable cycle either all even or all odd edges are deleted.

Consider the assignment β for φ that, for each xi, 0 ≤ i < n, sets β(xi) := true
if all odd edges of V vi are deleted and sets β(xi) := false if all even edges
of V vi are deleted. We show that β is a satisfying assignment. Consider an
arbitrary clause Cj containing the variables xp, xq, and xr. Since aj is in a
colorful component after the edge deletions, it can have at most two neighbors.
Furthermore, these neighbors must be on the same variable cycle: otherwise, aj
would be in a connected component of size five, because after the edge deletions,
every vertex is adjacent to exactly one further vertex on its variable cycle. Hence,
after the edge deletions, aj is adjacent to at most two vertices of the variable
cycle of one of xp, xq, and xr of Cj . Let xp be this variable. Furthermore, since
exactly four edge deletions are incident with aj , both edges that are incident
with the vertices of the variable cycle of xp are not deleted by S. Without loss
of generality, assume that xp appears nonnegated in Cj . Then the two vertices
of V vp that are adjacent to aj are p4π(p,j) and p4π(p,j)+1. Since S is a solution,
the edge {p4π(p,j), p4π(p,j)−1} is not deleted by S: otherwise, aj is in a connected
component of size five. Hence, all odd edges of V vp are deleted, and therefore the
assignment β fulfills clause Cj .



Altogether, this shows the correctness of the reduction. Since the reduction
can be performed in polynomial time and produces a graph with maximum degree
six, it implies NP-hardness in graphs with maximum degree six. Furthermore, for
formulas with m clauses, the reduction produces graphs with |V | < 13m, k = 10m
and |E| = 18m. Hence, any algorithm with running time 2o(k) · nO(1), 2o(|V |),
or 2o(|E|) implies an algorithm with running time 2o(m) for 3-SAT, contradicting
the ETH. ut

3 Algorithms

Two colors. While Theorem 1 shows that Colorful Components is NP-hard
for three colors, for two colors it can be solved in polynomial time via computing
a maximum matching in bipartite graphs.

Proposition 2. Colorful Components in two-colored graphs can be solved
in O(

√
nm) time.

Proof. We begin by removing all edges {u, v} where u and v have the same
color. The remaining graph is bipartite, since it has a proper 2-coloring. This
instance can be solved by computing a maximum matching: First, observe that
the edges that are not deleted by a solution to Colorful Components must
be a matching in the bipartite graph. This is because the degree of every vertex
in the solution is either one (it is a part of a component of size two, which is
the largest possible component size) or zero. Since maximizing the number of
undeleted edges is equivalent to minimizing the number of deleted edges, we can
obtain a minimum-cardinality solution by computing a maximum matching M ,
and then deleting all edges not contained in M .

Removing all edges between vertices with identical colors can be done in
O(m) time. A maximum matching in a bipartite graph can be found in O(

√
nm)

time using the Hopcroft–Karp algorithm. ut

An efficient algorithm in trees with few colors. Let T = (V,E) denote the input
tree and assume that T is rooted at an arbitrary vertex. The idea is to do
dynamic programming bottom-up from the leaves, storing for each v ∈ V and
C ⊆ {1, . . . , c} the minimal cost T (v, C) of a solution for the subtree rooted at v
where the connected component containing v contains exactly the colors of C.

We describe the algorithm for binary trees. Define Tv to be the subtree of the
tree T that is rooted in node v. We then find, for every vertex v and every subset
of colors C ⊆ {1, . . . , c}, the minimal cost T (v, C). We compute this by dynamic
programming using a table T [·, ·]. Performing a bottom-up traversal starting at
the leaves, for each v we compute T (v, C) for every C. When computing the
cost T (v, C), we choose the minimal cost between four options: In the first case,
we do not delete the two edges from v to its children. The cost of the solution
then is the minimum value of the sum of the costs of the two subtrees for every
combination of colors that will give C. In the second and third case, we delete
the edge to the left or the right subtree, respectively. The cost is obtained by



summing the cost of the solution for the subtree taken and the minimal possible
cost for the rest of the tree. In the last case both edges are deleted. More formally,
this reads as follows.
Initialization: For each leaf v, set T [v, {χ(v)}] := 0 and T [v, C] := ∞ for C ⊆
{1, . . . , c} and C 6= {χ(v)}.
Recursion: Let l and r denote the two children of an inner node v.

T [v, C] := min


minC1]C2]{χ(v)}=C T [l, C1] + T [r, C2],

T [r, C \ {χ(v)}] + 1 + minC′⊆X T [l, C ′],

T [l, C \ {χ(v)}] + 1 + minC′⊆X T [r, C ′],

2 + minC1⊆X T [l, C1] + minC2⊆X T [r, C2]

The running time of this algorithm is O(3c · n). The size of our dynamic
programming table is O(2c · n) to include all possible color subsets. Overall,
the computation can be executed in O(3c · n) time: for each vertex we need
to consider at most O(3c) combinations of color subsets (every subset and the
possibilities to split it into two). For each such combination the computation of
the recursion can be performed in constant time if we maintain for each v the
minimum cost of Tv. To extract the actual colorful components found, one can
use a traceback procedure within the same running time bound. The exponential
factor can be further improved (increasing the polynomial factor) to 2c by using
the convolution-based techniques of Björklund et al. [2].

To extend this algorithm to work in general trees, we use a standard trick
for dynamic programming in trees: Order the children of every node and add an
additional dimension i = 1, . . . , d to the dynamic programming table, where d is
the maximum degree in the tree. We then compute T [v, i, C] by an adaption of
the above approach. We omit the straightforward details.

Theorem 2. Colorful Components on trees can be solved in 2c · nO(1) time.

An efficient fixed-parameter algorithm for graphs with few colors. Whereas on
general graphs due to Theorem 1 there is no hope for fixed-parameter tractability
with respect to the parameter “number c of colors”, additionally using the
parameter “number k of edge deletions” leads to fixed-parameter tractability.

First, we describe a simple O(ck ·m)-time search tree algorithm. Using breadth-
first search, it finds a bad path between two vertices of the same color. This
strategy will be referred to as bad-path branching in the experimental part. This
path has length at most c, since after visiting c+ 1 vertices in the breadth-first
search there must be a bad path. Now, branch into the c cases to destroy this bad
path by edge deletion, and for each case recursively solve the resulting instance.
Since at most k edge deletions are needed, the search tree has depth at most k
and therefore size O(ck); a bad path can be found in O(m) time.

We can get a speed-up by using the observation that we can either find
a bad path of length at most c − 1 or solve the problem in polynomial time.
As a motivation for this improvement, observe that in practical applications
the parameter c denoting the number of colors can be quite small with values



in the one-digit range. Moreover, according to Theorem 1 we cannot expect a
2o(k) ·nO(1)-time algorithm for Colorful Components on three-colored graphs.

Theorem 3. For c ≥ 3, Colorful Components can be solved in O((c−1)k ·m)
time.

Proof. We first describe the algorithm and then bound its running time. In the
following analysis, assume that k is fixed in advance.

As long as the input graph contains a vertex v with degree at least three,
perform a breadth-first search starting at v until either two vertices with the
same color have been found or all vertices of v’s connected component have been
visited. In the second case, v’s connected component is colorful and can therefore
be removed from the graph. In the first case, we have visited at most c+1 vertices
until a vertex pair with the same color has been found. The bad path between
these two vertices has length at most c− 1: since v has degree at least three, at
least one neighbor of v is not on this path.

After a bad path has been found, branch into the at most c − 1 edges to
destroy it. Clearly, one of the edges has to be deleted. Hence, a solution can be
found by recursively solving Colorful Components for each of these cases;
now with k − 1 edge deletions.

In case the graph has only vertices of degree at most two, proceed as follows.
If the connected component is a cycle, then one of the following two cases can
occur. If there is a bad path of length at most c − 1 between any pair of two
vertices, then branch as described above. Otherwise, the coloring on the cycle is
ordered, that is, we can assume without loss of generality that each vertex with
color 1 is adjacent to one vertex with color 2 and one vertex with color c; each
vertex with color 2 is adjacent to one vertex with color 1 and one vertex with
color 3, and so on. In this case, a solution for the connected component is simply
to delete all edges between vertices of color c and 1. In the last remaining case,
the connected component is a simple path. A solution for a path can be found by
visiting the edges along the path starting from one of the two degree-one vertices
until there is a color that has already been visited. Then, the last visited edge
can be deleted; this is repeated until the path is colorful.

The running time of the algorithm can be shown as follows. The search tree
has size O((c− 1)k) since at each search tree node, we branch into at most c− 1
cases, and the depth of the tree is at most k. A path to branch on can be found
in O(m) time since the procedure only uses breadth-first search. Finally, all
presented algorithms for the polynomial-time special cases can be performed
in O(m) time as well; the overall running time follows.

If k is not given in advance, we can start the algorithm described above for
increasing values of k until a solution is found; the running time bound remains
the same since

∑
1≤i≤k(c− 1)i = O(c− 1)k. ut

The observation that we can either find a bad path of length c−1 or solve the
problem in polynomial time also implies the following factor-(c−1) approximation
algorithm: As long as the graph contains a bad path of length at most c−1, delete



all c−1 of these edges. If the graph has none of these bad paths, solve the problem
in linear time. The approximation factor follows from the observation that at
least one of the c− 1 edges has to be deleted, and that deleting “unnecessary”
edges does not create new bad paths.

Corollary 1. Colorful Components can be approximated within a factor
of c− 1 in O(m2) time.

Note that for c ≥ 11 the factor-(4 ln(c+ 1)) approximation which is implied by
the relation to Multi-Multiway Cut [1] gives better approximation ratios,
for c < 11 our bound is better.

Data reduction. The following two polynomial-time executable data reduction
rules for Colorful Components are relevant for the experimental work.

Rule 1 If a connected component is colorful, then remove it from G.

Rule 1 can be executed in linear time. We note that Rule 1 provides a trivial
kernelization [9]5 for Colorful Components with respect to the combined
parameter (k, c): obviously, after exhaustive data reduction, the instance has
at most 2kc vertices, since an edge deletion can produce at most two colorful
components, each of size at most c. This can be improved to a kernelization
yielding only (1 + ε)kc vertices for any ε > 0: The idea of the corresponding data
reduction is to choose any constant ` and to check (by say brute-force) for every
connected component C and for all 1 ≤ i ≤ ` whether (C, i) forms a yes-instance
of Colorful Components and, if so, decrease the parameter k accordingly
by i. The larger we choose `, the smaller ε gets. We omit the details.

Rule 2 is less obvious.

Rule 2 Let B = {b1, . . . , bt} be a minimal edge cut, let GB be one side of the cut
(that is, a connected component of G−B such that each edge in B has exactly
one endpoint in GB), and let N denote the vertices that are incident with B
but not in GB. If GB is colorful and t-edge connected and each color of N also
occurs in GB, then delete B and decrease k by |B|.

Proof (of correctness). The correctness of Rule 2 can be seen as follows. Let S
be a solution that does not contain some {u, v} ∈ B with u ∈ N . Then, the
bad path from u to the vertex in GB with color χ(u) is destroyed by a set X of
at least t edge deletions within GB. Hence, the set S′ := (S \X) ∪ B is also a
solution: First, |S′| ≤ |S|. Second, the deletion of X only destroys bad paths that
visit at least one vertex of V (GB) and all of these bad paths are also destroyed
by deleting B since GB is colorful. ut

Note that so far it is not clear whether Rule 2 is applicable in polynomial time if
t is not a constant.

5 Informally, a kernelization transforms in polynomial time the original instance into
a smaller equivalent instance whose size is upper-bounded by a function solely
depending on the parameter; ideally, this function is a small polynomial.



4 Formulation as Weighted Multi-Multiway Cut

In the Colorful Components formulation, it is not possible to simplify a
graph based on the knowledge that two vertices belong to the same connected
component; we would like to be able to merge two such vertices. For this, we
first need to allow not just a single color per vertex, but a set; moreover, we
need to allow edge weights. Thus, we arrive at the edge-weighted version of
Multi-Multiway Cut [1]: given an undirected graph G = (V,E) with edge
weights w : E → {x ∈ Q | x ≥ 1} and vertex sets S1, . . . , Sc ⊆ V , find a
minimum-weight subset of edges E′ ⊆ E such that in G′ = (V,E \ E′) no
connected component contains two vertices from the same Si.

To emphasize the connection to Colorful Components, for Weighted
Multi-Multiway Cut we define the colors χ(u) of a vertex u as {i | u ∈ Si}.
Note that we require weights to be at least 1.

Now, we can merge two vertices u and v with disjoint colors. This means to
replace them by a new vertex u′ with colors χ(u) ∪ χ(v) and N(u′) := N(u) ∪
N(v)\{u, v}, where w({u′, x}) := w({u, x})+w({v, x}) (assuming w({x, y}) = 0
for {x, y} /∈ E).

Edge branching. Using the merge operation, we can do a simple branching on an
edge [5]: either delete the edge, or merge its endpoints; in the experimental part
this will be referred to as edge branching. Note that merging does not necessarily
decrease the parameter; but it is easy to see that if we branch on each edge of a
forbidden path successively, then the last edge of the path cannot be merged since
it connects vertices with an intersecting color set. This allows us to immediately
delete the edge; thus, the O(ck ·m)-time branching is still possible.

Data reduction. We can also adapt Rule 2 to Weighted Multi-Multiway Cut;
the proof is similar to that of Rule 2.

Rule 3 Let V ′ ⊆ V be a colorful subgraph. If the cut between V ′ and V \ V ′ is
at least as large as the connectivity of V ′, then merge V ′ into a single vertex.
Herein, connectivity is defined as the minimum total weight of edges to be deleted
to obtain at least one more connected component.

Merge heuristic. The idea of the heuristic is to repeatedly merge the two vertices
“most likely” to be in the same component. During the process, we immediately
delete edges connecting vertices with intersecting color sets. The merge cost of
two vertices u and v is the weight of the edges that would need to be deleted
when merging u and v, while the cut cost is defined as

3w({u, v}) +
∑

w∈V |{{u,w},{v,w}}⊆E

min{w({u,w}), w({v, w})}

as a rough approximation of the minimum cut between u and v. The factor 3
has been tuned heuristically. We then always merge the endpoints of the edge
that maximizes cut cost minus merge cost.



Table 1. Instances before and after data reduction. Herein, n, m, and c are the number
of vertices, edges, and colors, respectively, for the whole graph while n′,m′,c′ denote
those values for the largest connected component of the instances.

original after Rule 2 after Rule 3

n m c n′ m′ c′ n m c n′ m′ c′ n m c n′ m′ c′

min. 178 156 3 8 7 3 0 0 0 0 0 0 0 0 0 0 0 0
max. 9311 26344 10 3048 6063 10 2769 5583 10 2769 5583 10 2602 5336 10 2602 5336 10
avg. 1702 3159 6.2 504 921 6.2 486 839 5.2 407 697 4.7 429 712 5.9 354 607 5.3
med. 1187 1401 6 149 232 6 172 262 6 46 90 5 119 128 6 42 58 5

5 Experiments

We performed experiments with instances from the multiple sequence alignment
application. The search tree algorithm, data reduction, and merge heuristic were
implemented in OCaml and compiled with the OCaml native-code compiler
version 3.11.2. The test machine is a 2.66 GHz Intel Xeon X5550 with 8 MB cache
and 16 GB main memory, running under openSUSE 11.3 Linux.

The source code and the test instances are available under the GNU GPL
license at http://fpt.akt.tu-berlin.de/colcom/.

Data. We generated one Colorful Components instance for each multiple
alignment instance from the BAliBASE 3.0 benchmark [15], using the diafragm 1.0
software [6]. We restricted the experiments to the 135 of the 386 instances that
have at most 10 colors (that is, 10 sequences to be aligned). Instances with more
colors can mostly not be solved with our exact methods.

Implementation details. To speed up the branching algorithms from Section 3
and Section 4, we use a transposition table in order to avoid recomputing the
solutions of identical search tree nodes. We also track upper and lower bounds.
These bounds are seeded with the result of the heuristic and a simple greedy
packing, respectively. The branching is always on a shortest bad path. If during
the branching process the instance decomposes into connected components, we
solve them separately.

To efficiently find data reduction opportunities with Rule 2 and Rule 3, we try
starting with each vertex and successively add more vertices with disjoint colors
that minimize the cut to other edges, until we have either found a reduction
opportunity or no more vertices can be added.

Results. We first examine the effect of data reduction (see Table 1), that is, we
compare the size of the instances before and after exhaustively applying the data
reduction rules. With Rule 2, we can solve 47 instances by data reduction alone,
the largest among those having 3115 vertices and 4383 edges. The number of
edges is reduced on average by 76.1 % (median 92.8 %). When considering the
largest connected component, we get an average reduction of 64.5 % (median
65.8 %). Rule 2 reduces the largest component only by 55.4 % on average (median

http://fpt.akt.tu-berlin.de/colcom/


54.9 %). Thus, clearly for many instances only data reduction makes the exact
approaches feasible.

Next, we consider the running times of the branching algorithms. For the
bad-path branching, we have 61 instances that can be solved in less than 1
second, 6 instances that can be solved in 1 second to 10 minutes, and 68 cannot
be solved in 10 minutes. With edge branching, we can solve 70 instances in less
than 1 second, 9 in 1 second to 10 minutes, and 56 remain unsolved. We note
that in ongoing research, we are able to solve several more instances to optimality
with integer linear programming (ILP) based approaches [4].

For the heuristics, we compare the solution quality for the 112 instances
for which we know the optimal solution. The min-cut heuristic [6] has an error
between 0 % (once) and 70.0 %, with an average error of 29.2 % (median 27.8 %).
In contrast, the merge heuristic has an error between 0 % (76 times) and 12.7 %,
with the average error 0.6 % (median 0 %). Without data reduction, the results
are slightly worse with 66 times an optimal result and an average error of
1.0 % (median 0 %). Thus, clearly the merge heuristic is much superior for
these instances, and in fact solves the majority of the instances optimally. Both
heuristics take at most two seconds to solve an instance.

Finally, for the instances for which an exact solution was found, we compared
the solution quality of the alignments obtained by using DIALIGN with and with-
out the partial alignment columns indicated by an exact solution for Colorful
Components, by the merge heuristic, and by the min-cut heuristic. The found
alignments were compared with the BAliBASE reference alignments concerning
the reconstruction of total columns (TC score) and position pairs (SP score). The
exact algorithm had a TC score of 56.6 %, the merge heuristic achieved 55.1 %,
the min-cut heuristic 53.6 %, and the alignment without anchors achieved 54 %;
for SP-score the results are similar. This indicates that minimizing edge deletions
for obtaining Colorful Components is indeed helpful for obtaining better
alignments. Note that, concerning TC score, DIALIGN with the min-cut heuris-
tic is about 10 percentage points worse than current state-of-the-art multiple
alignment methods [6]. Hence, an improvement of roughly 3 percentage points is
a sizable step towards closing the gap between DIALIGN and these methods.

6 Outlook

It is open to obtain a smaller problem kernel, a problem kernel with size inde-
pendent of c, and branching algorithms with branching number less than c− 1.
So far, it is also undetermined whether Rule 2 and Rule 3 can be exhaustively
applied in polynomial time. From the modeling perspective, it is interesting to
consider a relaxation of the colorfulness constraint: In preliminary experiments
with network alignment data, we found that allowing only one protein of each
species to be matched was, while a natural model, too strict. Generalizing Color
Components to allow a constant number of occurrences of each color for the
connected components could result in improved network alignments.
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