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Abstract. Given a task that requires some skills and a social network
of individuals with different skills, the Team Formation problem asks
to find a team of individuals that together can perform the task, while
minimizing communication costs. Since the problem is NP-hard, we iden-
tify the source of intractability by analyzing its parameterized complexity
with respect to parameters such as the total number of skills k, the
team size l, the communication cost budget b, and the maximum vertex
degree ∆. We show that the computational complexity strongly depends
on the communication cost measure: when using the weight of a minimum
spanning tree of the subgraph formed by the selected team, we obtain
fixed-parameter tractability for example with respect to the parame-
ter k. In contrast, when using the diameter as measure, the problem is
intractable with respect to any single parameter; however, combining ∆
with either b or l yields fixed-parameter tractability.

1 Introduction

Assembling teams based on required skills is a classic management task. Recently,
it has been suggested to take into account not only the covering of the required
skills, but also the expected communication costs (see Lappas et al. [11] for
a survey). This cost can be estimated based on a given edge-weighted social
network, where a low weight value on an edge between two individuals indicates
a low communication cost. For example, edge weights can reflect distance in an
organizational chart or the number of joint projects completed.

Lappas et al. [10] formalized the setting as the optimization problem of
minimizing the communication cost and studied two cost measures: the diameter
(Diam) and the weight of a minimum spanning tree (Mst). For our complexity
analysis, we formulate it as a decision problem by fixing the maximum team size.

Diam-Team Formation
Input: An undirected graph G = (V,E) with edge-weight function w : E →
N, a set T of k skills, a skill function S : V → 2T , a team size l ∈ N, and
a budget b ∈ N.
Question: Is there a subset V ′ ⊆ V with |V | ≤ l such that

⋃
v∈V ′ S(v) = T

and the w-weighted diameter of the induced subgraph G[V ′] is at most b?
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Fig. 1. A Team Formation example: a social network of five potential team mem-
bers and five skills, “algorithms” (A), “data bases” (D), “software engineering” (E),
“programming” (P ), and “web programming” (W ). When minimizing the weight of
a minimum spanning tree of the subgraph induced by a team (Mst), the team with
members v1, v2, v3, v5 has the lowest cost, 3, (one can build a path with weight one at
each edge). However, when minimizing the diameter of the subgraph induced by a team
(Diam), it is worthwhile to add the individual v4—who has no specific skill—to reduce
the diameter of 3 in G[{v1, v2, v3, v5}] to the diameter of 2 in G[{v1, v2, v3, v4, v5}].

Here, the diameter of an edge-weighted graph G, denoted as Diam(G), is the
maximum distance between any two vertices in the input graph and the distance
between two vertices is the minimum sum of the weights of the edges along any
path between these two vertices. Our formulation of the team formation problem
allows to choose individuals (vertices) that do not contribute any skills, but serve
as intermediate vertices to lower overall communication costs. We further assume
w.l.o.g. that no individual has a skill that is not in the request set T .

The weight of a minimum spanning tree of graph G, Mst(G), is the smallest
sum of the weights of the edges in a spanning tree of G. We define the correspond-
ing Mst-Team Formation problem by replacing “diameter” in the definition
of Diam-Team Formation with “weight of a minimum spanning tree”.

Figure 1 illustrates an example for the Diam-Team Formation and Mst-
Team Formation problems. Lappas et al. [10] showed that both problems are
NP-complete. Experiments on Diam-Team Formation, Mst-Team Forma-
tion and similar team formation problems so far use heuristic algorithms [1,
4, 8, 10, 12]. However, it might be that instances encountered in practice are
actually easier than a one-dimensional complexity analysis suggests, and can be
solved optimally. For example, it might be reasonable to assume that only a small
number of skills is required. Thus, we try to identify the sources of intractability
by a parameterized complexity analysis.

Optimization variant. There are two natural ways to define approximate solutions
for our team formation problem. First, one allows to find solutions with larger
communication costs. This leads to the MinCost-ζ-Team Formation problem,
ζ being either Diam or Mst, which asks for a vertex subset V ′ ⊆ V with |V ′| ≤ l
such that

⋃
v∈V ′ S(v) = T and the communication cost ζ(G[V ′]) is minimized.

Second, one allows to find solutions with larger teams. This leads to the Min-
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Teamsize-ζ-Team Formation problem, which asks for a minimum vertex
subset V ′ ⊆ V such that

⋃
v∈V ′ S(v) = T and ζ(G[V ′]) ≤ b.

Cost measure “diameter”. Arkin and Hassin [2] studied MinCost-Diam-Team
Formation with unlimited team size l under the name Multiple-Choice
Cover. They showed that even when no skill is allowed to be covered by more
than three team members the problem cannot be approximated with a constant-
factor error guarantee, unless P = NP. However, when the weights satisfy the
triangle inequality, a 2-approximation is possible; this bound is sharp [2].

Cost measure “minimum spanning tree”. As already mentioned by Lappas
et al. [10], the MinCost-Mst-Team Formation problem with an unlimited
team size l is equivalent to the Group Steiner Tree problem: given an
undirected edge-weighted graph G = (V,E) and vertex subsets (groups) gi ⊆ V ,
1 ≤ i ≤ k, find a subtree T = (VT , ET ) of G such that VT ∩ gi 6= ∅ for all
1 ≤ i ≤ k and the cost

∑
e∈ET

w(e) is minimized. Clearly, each group of Group
Steiner Tree corresponds to a subset of vertices in Mst-Team Formation
that have a particular skill. From this relation to Group Steiner Tree and
an inapproximability result of Halperin and Krauthgamer [9], we obtain that it
is unlikely that MinCost-Mst-Team Formation can be approximated to a
factor of O(log2−ε k) for any ε > 0, where k is the number of skills to be covered.

Despite the polylogarithmic inapproximability result, we can obtain fixed-
parameter tractability for the parameter “number k of skills to be covered”.
First, we reduce the Mst-Team Formation problem with limited team size l
to the Mst-Team Formation problem with an unlimited team size by adding
a large weight W (for example the sum over all edge weights) to each edge weight
and adding l · W to the budget. Then, by the relation between Mst-Team
Formation and Group Steiner Tree, we can think of the resulting instance
as a Group Steiner Tree instance, which can be solved by reducing it to
Steiner Tree: introduce a new vertex for each group and connect it to each
vertex contained in this group by an edge with very high weight. The resulting
Steiner Tree instance can be solved using inclusion–exclusion in O∗(2k) time
and polynomial space when the edge weights are integers [13] (the O∗ notation
omits factors polynomial in the input size); for arbitrary weights, it can be solved
in O∗(3k) time and exponential space by dynamic programming [6].

Further related work. Our team formation problem can be generalized in different
ways. First, we can require each skill to be covered by a given number of team
members instead of once. Li and Shan [12] proposed three heuristics for this
problem; Gajewar and Sarma [8] studied it with the objective of maximizing
the collaborative compatibility, an alternative to Diam and Mst. Here, the
collaborative compatibility is the sum of the weights of all edges in the subgraph
induced by the team divided by the team size (the number of vertices in the
subgraph). They showed that this version is also NP-hard and provided a 1/3-
approximation algorithm. Second, we can additionally require the workload to
be balanced within the team [1, 4].
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A number of experimental studies examine the validity of these models,
using data for example from bibliography databases [1, 8, 10, 12] or the GitHub
programming collaboration platform [4].

Diam-Team Formation and Mst-Team Formation have also applications
in keyword search in relational databases [15]: the vertices in the graph correspond
to tables, edges represent foreign key relationships, and skills model keywords that
match the table. A subgraph covering all keywords with small communication
costs helps to create efficient SQL queries.

Parameterized complexity. Parameterized algorithmics analyzes problem difficulty
not only in terms of the input size, but also for an additional parameter, typically
an integer p. Thus, formally, an instance of a parameterized problem is a tuple of
the unparameterized instance I and the parameter p. A parameterized problem
with parameter p is fixed-parameter tractable (FPT) if there is an algorithm that
decides each instance (I, p) in f(p) · |I|O(1) time, where f is a computable function
depending only on p; we call this algorithm a fixed-parameter algorithm. In such
case, we say that our problem can be solved in FPT-time for the parameter p.
Clearly, if the problem is NP-hard, we must expect f to grow superpolynomially.

There are parameterized problems for which there is good evidence that no
fixed-parameter algorithms exist. Analogously to the concept of NP-hardness,
the concept of W[1]-hardness was developed. It is widely assumed that a W[1]-
hard problem cannot have a fixed-parameter algorithm (hardness for the classes
W[t], t ≥ 2 has the same implication). To show that a problem is W[t]-hard,
a parameterized reduction from a known W[t]-hard problem can be used. This
is a reduction that runs in FPT-time and maps the parameter p to a new
parameter p′ that is upper-bounded by some function g(p). We refer to recent
text books [3, 5, 7, 14] for details on parameterized complexity theory and
W[t]-complete problems.

Contributions. We focus on the parameterized complexity of Diam-Team For-
mation, which has to the best of our knowledge not been considered before. We
consider parameters that are related to the communication cost and to the input
graph: the number k of skills to be covered, the cost budget b, the maximum
vertex degree ∆, and the team size l.

For the parameter l, Diam-Team Formation is W[2]-hard even with ei-
ther constant budget b or constant maximum degree ∆ (Proposition 1). For
the parameter k, while Mst-Team Formation is fixed-parameter tractable,
Diam-Team Formation is W[1]-hard even on graphs of maximum vertex degree
three and with unrestricted team size l (Theorem 1). For the combined param-
eter l + k, Diam-Team Formation is W[1]-hard even if the cost budget b is
two (Theorem 2). Concerning the parameter maximum degree ∆, we find that the
problem is NP-hard even if the graph is a caterpillar with maximum degree ∆ = 3
(Proposition 1), where a caterpillar is a tree in which all the vertices are within
distance one of a central path. Our results rule out fixed-parameter tractability
for all considered single parameters and several parameter combinations.
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By our parameterized hardness reductions, we can obtain that MinCost-Di-
am-Team Formation is inapproximable even when we allow for a superpoly-
nomial running time factor in the team size l, even on complete graphs or on
stars (Corollary 1). MinTeamsize-Diam-Team Formation is inapproximable
even when we allow for a superpolynomial running time factor in the number k
of skills, even on graphs with maximum degree ∆ = 3 (Corollary 2).

Geared towards robustness, we also consider the situation where the subgraph
induced by the team is two-connected (that is, between each two team members,
there are at least two edge-disjoint paths). We find that unless FPT = W[1], it is
unlikely that there is an algorithm that forms a team of size at most l, covering
all k skills and inducing a two-connected subgraph, in f(k + l) · |I|O(1) time,
where |I| denotes the size of our input instance (Theorem 3).

On the positive side, we provide some tractability results: Diam-Team

Formation can be solved in O∗(∆∆b · dcheck) time and in O∗(∆l · dcheck)
time (Theorem 4), where dcheck denotes the running time of checking whether
a subgraph has diameter most b, which can for example be solved in O(∆ ·
n2 · log(n)) time by Dijkstra’s algorithm. Finally, if the input graph is a tree,
then we obtain that Diam-Team Formation is fixed-parameter tractable for
parameter k (Theorem 5).

2 Hardness results

Throughout this section, we assume each edge in the input graph to have weight
one; thus, we omit the introduction of the edge weight function w. We will
see that our Diam-Team Formation problem is already hard in this setting.
First, to get a feeling for the computational hardness of our Team Formation
model we start with a simple observation which basically says that Diam-Team
Formation with an unbounded number k of skills is basically at least as hard
as the Set Cover problem, even on simple graph classes.

Set Cover
Input: A set family F = {F1, . . . , Fα} over a universe U = {u1, . . . , uβ}
and a non-negative integer h.
Question: Is there a set cover of size at most h, that is, a subfamily F ′ ⊆ F
with |F ′| ≤ h such that

⋃
F∈F ′ F = U?

Observation 1 For edge weight one, Diam-Team Formation parameterized by
the team size l generalizes Set Cover parameterized by the set cover size h, even
on simple graph classes such as (1) complete graphs, (2) stars, and (3) caterpillars
with maximum vertex degree three.

Proof. Given a Set Cover instance (F , U, h), we construct a Diam-Team
Formation instance (G = (V,E), T, S, l, b) for each of the settings as follows.

(1) Define the skill set T := U , and for each set Fi ∈ F , create one vertex vi and
define S(vi) := Fi. Add an edge between each pair of vertices to obtain a
complete graph. Finally, define the team size l := h and let the cost budget b
be an arbitrary integer at least one.
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(2) Define the skill set T := U , and for each set Fi ∈ F , create one vertex vi and
define S(vi) := Fi. Add a special skill 0 to T , add a center vertex vr to V ,
and define S(vr) := {0}. Construct a star graph with center vr by adding
an edge between each vertex vi and vr, 1 ≤ i ≤ α. Finally, define the team
size l := h, and let the cost budget b be an arbitrary integer at least two.

(3) Define the skill set T := U ] {0, 1, 2}, and for each set Fi ∈ F , create two
vertices ui and vi. Define S(vi) := Fi for all 1 ≤ i ≤ α, S(u1) := {0} and
S(uα) := {2}, and S(ui) := {1} for all 1 < i < α. Add an edge between
ui and ui+1 for all 1 ≤ i < α and and edge between ui and vi for all
1 ≤ i ≤ α. Finally, define the team size l to be at least h+ α, and the cost
budget b := α+ 2.

It is easy to verify that the constructed instances are yes-instances if and only if
(F , U, h) is a yes-instance. ut

In terms of parameterized and classical complexity analysis, Observation 1
yields the following hardness results.

Proposition 1. Even when each edge has weight one, the following holds. (1) Di-
am-Team Formation parameterized by the team size l is W[2]-hard even if
the budget b is one and the graph is complete. (2) Diam-Team Formation
parameterized by the team size l is W[2]-hard even if the budget b is two and the
graph is a star. (3) Diam-Team Formation is NP-hard even on caterpillar
graphs with maximum degree three.

We note that the budget in the proof of Statements (1)–(2) in Observation 1
as well as the team size in the proof of Statements (3) may have extremely large
values that effectively do not upper-bound the communication costs or the team
size. Since Set Cover is NP-complete and W[2]-complete when parameterized
by h, in terms of minimizing the communication cost or team size, we have the
following inapproximability result.

Corollary 1. Unless all problems in W[2] are fixed-parameter tractable, Min-
Cost-Diam-Team Formation is inapproximable even in FPT-time for the
parameter team size l, even on complete graphs or on stars. Unless P = NP,
MinTeamsize-Diam-Team Formation is inapproximable even in polynomial
time, even on caterpillar graphs with maximum degree three.

Consequently, to identify tractable cases one should start with cases where
Set Cover is tractable. A very well-motivated restriction for Diam-Team
Formation is to assume that there are not too many skills to cover, that is, the
number k of skill is (part of) the parameter. Our next result, however, shows that
this assumption (alone) does not make the problem fixed-parameter tractable.

Theorem 1. Diam-Team Formation parameterized by the number k of skills
is W[1]-hard, even on graphs with maximum degree three and with each edge
weight one, and when the team size is unrestricted.
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Proof. We give a parameterized reduction from the W[1]-complete problem
Multicolored Clique parameterized by the clique size h to Team Forma-
tion parameterized by k on graphs of maximum degree three.

Multicolored Clique
Input: An undirected graph G = (V,E), a non-negative integer h ∈ N,
and a vertex coloring φ : V → {1, 2, . . . , h}.
Question: Does G admit a colorful h-clique, that is, a size-h vertex
subset Q ⊆ V such that the vertices in Q are pairwise adjacent and have
pairwise distinct colors?

Let (G,φ, h) be a Multicolored Clique instance. We construct in FPT-time
an equivalent Diam-Team Formation instance (G′ = (V ′, E′), T, S, l, b). With-
out loss of generality, we assume that in G all edges are between vertices of
different colors (according to φ) since they could be deleted without changing
presence of a colorful h-clique. Let n := |V |, let V = {v1, . . . , vn} be an arbitrary
ordering of the vertices, and let y be the smallest integer with n ≤ 2y.

Construction. We construct the graph G′ by adding to V ′ all vertices in V (as
an independent set). We connect the vertices in V by the following three steps:

1. Attach to each vi a path of length s (to be determined later) whose other
endpoint is denoted wi; i.e., the distance between vi and wi shall be s. We
call this path, including vi and wi the path of vi.

2. Make each wi the root of a newly added complete binary tree of height y, i.e.,
with 2y leaves. Arbitrarily pick any n of its leaves and assign them names
xi,1, . . . , xi,n. Thus, xi,j will be the jth leaf in the binary tree attached by a
path of length s (via wi) to vertex vi. We call the binary tree with root wi
and leaves xi,1, . . . , xi,n the binary tree of vi.

3. Finally, we encode the adjacency from G as follows: If vi and vj are vertices
that are adjacent in G, which implies by our assumption that they have
different colors, i.e., φ(vi) 6= φ(vj), then add an edge between xi,j and xj,i.
Thus, a leaf in the binary tree of vi (namely xi,j) is now adjacent to a leaf
in the binary tree of vj (namely xj,i). Note that the naming convention of
leaves prevents using each leaf for more than one adjacency.

This completes the construction of the graph G′. The graph can be constructed in
FPT-time; indeed, it can be computed in polynomial time. Its maximum degree
is three. Observe that if vi and vj are adjacent in G, then they have distance at
most 2s+ 2y + 1 in G′. We set s := 4n (with the intention of having vertices in
two binary trees with adjacent leaves be at distance at most 4n).

To complete the construction define the skill set T := {1, 2, . . . , h} and the
skill function S : V → 2T such that S(v) := {φ(v)} for all vertex v ∈ V ⊆ V ′, i.e.,
for all vertices of the input graph G the skill equals the color according to φ, and
S(v) = ∅ for all further vertices of V ′ \ V . The budget b (the diameter) is set
to b := 2s + 2y + 1. Finally, the team size l is set to |V ′|, i.e., the team size is
effectively unbounded. We return instance (G′ = (V ′, E′), T, S, l, b).

The equivalence of (G,φ, h) and (G′, T, S, l, b) is omitted due to space. ut
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We know from Proposition 1 that Diam-Team Formation is W[2]-hard for
the parameter team size l and from Theorem 1 that Diam-Team Formation
is W[1]-hard for the parameter number k of skills (in both cases even if the
maximum degree ∆ is a small constant). This invokes the question whether our
problem becomes tractable for the combined parameter l + k, that is, for cases
where both the team size and the number of skills are small. In the following,
we obtain W[1]-hardness for l + k even for a constant cost budget b. We will see
later (Theorem 4 in Section 3) that our problem becomes tractable when both
values, the maximum vertex degree ∆ and the cost budget b, are small.

Theorem 2. Diam-Team Formation parameterized by the combined parame-
ter l + k is W[1]-hard, even if the cost budget is two.

Proof. We provide a parameterized reduction from Multicolored Clique
parameterized by the clique size h. Let (G,φ, h) be an instance of Multicolored
Clique; w.l.o.g. there are no edges {u, v} with φ(u) = φ(v). For i ∈ {1, . . . , h}
define Vi := φ−1(i), i.e., the set of all vertices of color i in G.

We create a graph G′ from G as follows. First, subdivide all edges of G
using new vertices. We use Vi,j with 1 ≤ i < j ≤ k for the set of all newly
introduced vertices that subdivide an edge between Vi and Vj . Now, we turn
all subdividing vertices into a single large clique by adding edges. We define
the skill set T := {1, 2, . . . , h}. We assign each vertex v in a set Vi the skill set:
S(v) := {i}, and each vertex v in a set Vi,j an empty skill set: S(v) := ∅. We set

the team size l to be h+
(
h
2

)
and set the budget b (the diameter) to be two. This

completes the construction which can clearly be done in FPT-time; indeed it can
be computed in polynomial time. The correctness proof is omitted due to space.

ut

Observe that in the proofs of Theorem 1 and Theorem 2 we have made no
use of the upper bound on the team size. Any team with all k skills and diameter
at most b was proved to lead directly to a k-clique. Thus, the minimum team
size is strongly inapproximable in the sense that even finding any feasible team
respecting the cost budget is W[1]-hard with respect to k.

Corollary 2. Unless all problems in W[1] are fixed-parameter tractable, Min-
Teamsize-Diam-Team Formation is inapproximable even in FPT-time for the
parameter number k of skills, even either on graphs with maximum degree three
or with cost budget two.

Finally, we show that the W[1]-hardness for the combined parameter l + k
still holds if we require that the graph induced by the team is only two-vertex-
connected (resp. two-edge-connected) instead of requiring a small diameter, that
is, requiring robustness instead of low communication costs.

Theorem 3. Finding a team of size at most l, covering all k skills, such that
the subgraph induced by the team is two-connected is W[1]-hard with respect to
the combined parameter parameters l + k.
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Proof. We provide a parameterized reduction from Multicolored Clique
parameterized by the clique size h to our problem parameterized by l + k where
l denotes the team size and k the number of skills. Given a Multicolored
Clique instance (G,φ, h) construct a graph G′ by again subdividing all edges.
Just as in the proof of Theorem 2, use vertex sets V1, . . . , Vh and let V(i,j) contain
the subdividing vertices of (former) edges between Vi and Vj , i < j. Define the
skill set T := {1, . . . , h} ∪ {(i, j) | 1 ≤ i < j ≤ h}. Assign the skills according
to membership in sets Vi and V(i,j), i.e., a vertex v has skill x ∈ T if and only

if it is contained in set Vx. Finally, set the team size l to h +
(
h
2

)
. Note that

the parameter value l + k is upper-bounded by O(h2), which is sufficient. This
completes the construction which can clearly be done in FPT-time; indeed it can
also be computed in polynomial time. Equivalence of (G,φ, h) and the constructed
instance is omitted due to space. ut

3 Tractability results

In contrast to our hardness results, which all hold even for unit weights, we
identify tractable cases with arbitrary positive integer weights. The first case
models the situation where each potential team member is connected only to few
others in the social network (that is, the maximum vertex degree ∆) and either
the budget (that is, the diameter b) or the desired team size l are small.

Theorem 4. Diam-Team Formation can be solved in O∗(∆l · dcheck) time

and in O∗(∆∆b · dcheck) time where ∆ is the maximum vertex degree of the input
graph, b is the communication cost budget (the diameter), l is the team size, and
checking whether the diameter of a subgraph is at most b takes dcheck time.

Proof. Let (G = (V,E), w, T, S, l, b) be our Diam-Team Formation instance.
Without loss of generality, we assume that the team V ′ ⊆ V which we search for
induces a connected subgraph. Given that each vertex has at most ∆ neighbors,
we build a search tree algorithm that branches into selecting one of the ∆
neighbors of a potential team member (vertex) adding it to our partial solution
(team). Since the team can have at most l members, the depth of our search tree
is upper-bounded by l. In each node of the search tree we need to check whether
the subgraph induced by the partial solution has diameter at most b (regarding
the edge weight function w); this check runs in polynomial time. We omit the
details due to space. ut

Our second tractable case models situations where the team members are orga-
nized in a hierarchical tree structure.

Theorem 5. If the input social network is a tree, then Diam-Team Formation
can be solved in O(2k · n · b2 ·Bk) time, where k denotes the number of skills, n
denotes the number of individuals in the network, b denotes the target diameter,
and Bk denotes the kth Bell number.

9



Proof. We describe a dynamic programming algorithm to solve Diam-Team
Formation on trees. Let I = (G = (V,E), w, T, S, l, b) be an instance of Diam-
Team Formation with the input graph G being a tree. The basic idea is to
store for each vertex v ∈ V of the tree and each subset T ′ ⊆ T of skills whether
T ′ can be covered within the subtree rooted at v. To this end, we assume that
G = (V,E) is an arbitrarily rooted tree and denote the subtree rooted at v ∈ V
by subtree(v). We denote the set of children of each vertex v ∈ V by children(v).

We define the dynamic programming tableA as follows. For each subset T ′ ⊆ T
of skills, each vertex v ∈ V , each cost budget b′, b′ ∈ {0, 1, . . . , b}, and each depth
bound z, z ∈ {0, 1, . . . , b}, the entry A(T ′, v, b′, z) stores the size of a smallest
team V ′ ⊆ V which fulfills the following requirements:

(a) V ′ covers T ′.
(b) V ′ consists of vertex v and vertices only from subtree(v).
(c) The subgraph induced by V ′ is a tree with diameter at most b′ and depth at

most z. (That is, the largest weight of a shortest path between two arbitrary
vertices of the tree G[V ′] is at most b′ and the largest weight of a shortest
path between v and an arbitrary vertex v ∈ V ′ is at most z.)

It is easy to see that there is a yes-instance if and only if minv∈V A(T, v, b, b) ≤ l.
We fill the table entries following the tree from the leaves to the root. We

initialize the entries concerning the set VL ⊆ V of leaves of the tree as follows.

∀T ′ ⊆ T ; v ∈ VL; b′ ∈ {0, . . . , b}; z ∈ {0, . . . , b} :

A(T ′, v, b′, z) =

{
1 if T ′ ⊆ Sv
∞ otherwise

Now, we consider some non-leaf v of the tree. The key question is which subtree
rooted at some child of v contributes to the team. Clearly, in a smallest team,,
each of such subtrees must cover at least some skill uniquely. Observe that there
are at most Bk partitions of T ′ where Bk is the kth Bell number. That is, there
are at most Bk possibilities of having at most k subtrees, each of which is rooted
at some child of v and contributes to some smallest team covering T ′. The idea is
to consider for each part of the partition only the “cheapest” subtree covering it
while fulfilling the diameter and depth requirements. Another crucial observation
is that the diameter of the subtree rooted at v ∈ V is the maximum of

(1) the largest diameter of all subtree(v′), v′ ∈ children(v), and
(2) the length of a longest path in subtree(v) containing v.

To calculate the value in (2), we need to know the length z1 of a longest path
from v to a leaf of the subtree(v′) rooted at a child v′ of v, and the length z2 of
a longest path from v to a leaf of the subtree(v′′) rooted at a child v′′ of v with
v′′ 6= v′.

Using these ideas, updating the entries bottom up works as follows. To handle
the diameter costs that come from two different subtrees in subtree(v), we fix a
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partition of T ′ and the part of skills to be covered by the child v′ of v such that
subtree(v′) has the largest depth.

∀T ′ ⊆ T ; v ∈ V ; b′, z ∈ {0, . . . , b} : A(T ′, v, b′, z) =

min
1≤i′≤k′≤k

T ′=Sv]T ′
1]T

′
2]···]T

′
k′

cheapestCover(T ′1, . . . , T
′
k′ , i
′, v, b′, z),

where “cheapestCover()” denotes the size of a smallest team covering T ′ in the
following way.

(i) Each disjoint subset T ′i of skills is covered by the vertices of the subtree
rooted at one child of v.

(ii) The team that covers T ′i′ induces a subtree with the largest depth.
(iii) The overall team (including v and covering T ′) has diameter at most b′,

and depth at most z.

It can be computed as follows.

cheapestCover(T ′1, . . . , T
′
k′ , i
′, v, b′, z) =

1 + min
z2≤z1≤z
z1+z2≤b′

{
min

v′∈children(v)
z1≥w({v,v′})

A(T ′i′ , v
′, b′, z1 − w({v, v′}))+

∑
1≤i≤k′
i6=i′

min
v′′∈children(v)
z2≥w({v,v′′})

A(T ′i , v
′′, b′, z2 − w(v, v′′))

}

For the correctness of our algorithm, if minv∈V A(T, v, b, b) ≤ l, then there
is indeed a set V ′ ⊆ V with at most l vertices such that

⋃
v∈V ′ S(v) = T and

Diam(G[V ′]) ≤ b, which can be constructed by standard backtracking of our
dynamic programming algorithm. However, it is not obvious that our algorithm
considers all possible solutions, since it assumes that each part T ′i , 1 ≤ i ≤ k′

of the partition T ′ = Sv ] T ′1 ] T ′2 ] · · · ] T ′k′ is covered by a distinct cheapest
subtree. To see that this is no real restriction, consider some fixed partition with
T ′ = Sv ] T ′1 ] T ′2 ] · · · ] T ′i1 ] T

′
i2
] · · · ] T ′k′ . Of course, it may happen that

the cheapest subtrees for T ′i1 and T ′i2 are identical. In this case, the value of
“cheapestCover()” might be higher than the size of the corresponding team and
one might think that a smaller team may not be identified. However, as this also
means that T ′i′′ := T ′i1 ]T

′
i2

can also be covered within the same subtree, the team
will be found using some partition with T ′ = Sv ] T ′1 ] T ′2 ] · · · ] T ′i′′ ] · · · ] T ′k′ ,
that is, replacing the two parts T ′i1 and T ′i2 with T ′i′′ . Summarizing, for every
team there is always a partition of T ′ such that no two parts are covered within
the same cheapest subtree.

Finally, the size of the two tables is upper-bounded by some function in
O(2k · n · b2). The initialization phase takes O(2k · n · b2) time. The update phase
takes O(2k · n · b2 ·Bk) time. ut

Finally we conjecture that the fixed-parameter tractability result from The-
orem 5 can be extended to hold even for the combined parameter “number k
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of skill” and “treewidth t”. However, showing this certainly requires extensive
technical details going beyond the scope of this work.
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Improving on Steiner tree and related problems. In Proc. 36th International
Colloquium on Automata, Languages and Programming (ICALP ’09), volume
5555 of LNCS, pages 713–725. Springer, 2009.

[14] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[15] J. Park and S. Lee. Keyword search in relational databases. Knowledge and
Information Systems, 26(2):175–193, 2010.

12


	Parameterized Complexity of Team Formation in Social Networks

