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1 PROBLEM DEFINITION

This problem is concerned with the automated development and analysis of search tree algorithms.
Search tree algorithms are a popular way to find optimal solutions to NP-complete problems.1

The idea is to recursively solve several smaller instances in such a way that at least one branch
is a yes-instance iff the original instance is. Typically, this is done by trying all possibilities to
contribute to a solution certificate for a small part of the input, yielding a small local modification
of the instance in each branch.

For example, consider the NP-complete Cluster Editing problem: can a graph be trans-
formed by adding or deleting up to k edges into a cluster graph, that is, a disjoint union of cliques?
To give a search tree algorithm for Cluster Editing, one can use the fact that cluster graphs are
exactly the graphs that do not contain a P3 (a path of 3 vertices) as induced subgraph. One can
thus solve Cluster Editing by finding a P3 and splitting into 3 branches: delete the first edge,
delete the second edge, or add the missing edge. By the characterization, whenever no P3 is found,
one already has a cluster graph. The original instance has a solution with k modifications iff at
least one of the branches has a solution with k − 1 modifications.

Analysis For NP-complete problems, the running time of a search tree algorithm depends up to
a polynomial factor only on the size of the search tree, which depends on the number of branches
and the reduction in size in each branch. If the algorithm solves a problem of size s and calls itself
recursively for problems of sizes s − d1, . . . , s − di, then (d1, . . . , di) is called the branching vector

of this recursion. It is known that the size of the search tree is then O(αs), where the branching

number α is the only positive real root of the characteristic polynomial

zd − zd−d1 − · · · − zd−di , (1)

where d = max{d1, . . . , di}. For the simple Cluster Editing search tree algorithm and the size
measure k, the branching vector is (1, 1, 1) and the branching number is 3, meaning that the running
time is up to a polynomial factor O(3k).

∗Partially supported by the Deutsche Forschungsge meinschaft, Emmy Noether research group PIAF (fixed-
parameter algorithms), NI 369/4.

1For ease of presentation, only decision problems are considered; adaption to optimization problems is straight-
forward.

1



Case Distinction Often, one can obtain better running times by distinguishing a number of
cases of instances, and giving a specialized branching for each case. The overall running time is
then determined by the branching number of the worst case. Several publications obtain such
algorithms by hand (e. g., a search tree of size O(2.27k) for Cluster Editing [4]); the topic of
this work is how to automate this. That is, the problem is the following:

Problem 1 (Fast Search Tree Algorithm).
Input: An NP-hard problem P and a size measure s(I) of an instance I of P where instances I

with s(I) = 0 can be solved in polynomial time.

Output: A partition of the instance set of P into cases, and for each case a branching such that

the maximum branching number over all branchings is as small as possible.

Note that this problem definition is somewhat vague; in particular, to be useful, the case an
instance belongs to must be recognizable quickly. It is also not clear whether an optimal search tree
algorithm exists; conceivably, the branching number can be continuously reduced by increasingly
complicated case distinctions.

2 KEY RESULTS

Gramm et al. [3] describe a method to obtain fast search tree algorithms for Cluster Editing

and related problems, where the size measure is the number of editing operations k. To get a
case distinction, simply a number of subgraphs is enumerated such that each instance is known
to contain at least one of these subgraphs. It is next described how to obtain a branching for a
particular case.

A standard way of systematically obtaining specialized branchings for instance cases is to use
a combination of a basic branching and data reduction rules. A basic branching is a typically
very simple branching; data reduction rules replace in polynomial time an instance with a smaller,
solution-equivalent instance. Applying this to Cluster Editing first requires a small modification
of the problem: one considers an annotated version, where an edge can be marked as permanent

and a non-edge can be marked as forbidden. Any such annotated vertex pair cannot be edited
anymore. For a pair of vertices, the basic branching then branches into two cases: permanent or
forbidden (one of these options will require an editing operation). The reduction rules are: if two
permanent edges are adjacent, the third edge of the triangle they induce must also be permanent;
and if a permanent and a forbidden edge are adjacent, the third edge of the triangle they induce
must be forbidden.

Figure 1 shows an example branching derived in this way.
Using a refined method of searching the space of all possible cases to distinguish and all branch-

ings for a case, Gramm et al. [3] derive a number of search tree algorithms for graph modification
problems.

3 APPLICATIONS

Gramm et al. [3] apply automated generation of search tree algorithms to several graph modification
problems (see also Table 1). Further, Hüffner [5] demonstrates an application to Dominating Set

on graphs with maximum degree 4, where the size measure is the size of the dominating set.
Fedin and Kulikov [2] examine variants of SAT; however, their framework is limited in that it

only proves upper bounds for a fixed algorithm instead of generating algorithms.
Skjernaa [6] also presents results on variants of SAT. His framework does not require user-

provided data reduction rules, but determines reductions automatically.
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Figure 1: Branching for a Cluster Editing case using only basic branching on vertex pairs
(double circles), and applications of the reduction rules (asterisks). Permanent edges are marked
bold, forbidden edges dashed. The numbers next to the subgraphs state the change of the problem
size k. The branching vector is (1, 2, 3, 3, 2), corresponding to a search tree size of O(2.27k).

Problem Trivial Known New

Cluster Editing 3 2.27 1.92 [3]
Cluster Deletion 2 1.77 1.53 [3]
Cluster Vertex Deletion 3 2.27 2.26 [3]
Bounded Degree Dominating Set 4 3.71 [5]
X3SAT, size measure m 3 1.1939 1.1586 [6]
(n, 3)-MaxSAT, size measure m 2 1.341 1.2366 [2]
(n, 3)-MaxSAT, size measure l 2 1.1058 1.0983 [2]

Table 1: Summary of search tree sizes where automation gave improvements. “Known” is the size
of the best previously published “hand-made” search tree. For the satisfiability problems, m is the
number of clauses and l is the length of the formula.

4 OPEN PROBLEMS

The analysis of search tree algorithms can be much improved by describing the “size” of an instance
by more than one variable, resulting in multivariate recurrences [1]. It is open to introduce this
technique into an automation framework.

It has frequently been reported that better running time bounds through a large number of
cases to distinguish do not necessarily lead to a speedup, but in fact can slow a program down.
A careful investigation of the tradeoffs involved and a corresponding adaption of the automation
frameworks is an open task.

5 EXPERIMENTAL RESULTS

Gramm et al. [3] and Hüffner [5] report search tree sizes for several NP-complete problems. Further,
Fedin and Kulikov [2] and Skjernaa [6] report on variants of satisfiability. Table 1 summarizes the
results.
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