
Automated Generation of Search Tree Algorithms

for Hard Graph Modification Problems∗

Jens Gramm† Jiong Guo‡ Falk Hüffner Rolf Niedermeier‡

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,

Sand 13, D-72076 Tübingen, Germany

{gramm,guo,hueffner,niedermr}@informatik.uni-tuebingen.de

Abstract

We present a framework for an automated generation of exact
search tree algorithms for NP-hard problems. The purpose of our
approach is two-fold—rapid development and improved upper bounds.
Many search tree algorithms for various problems in the literature are
based on complicated case distinctions. Our approach may lead to a
much simpler process of developing and analyzing these algorithms.
Moreover, using the sheer computing power of machines it may also
lead to improved upper bounds on search tree sizes (i.e., faster exact
solving algorithms) in comparison with previously developed “hand-
made” search trees. Among others, such an example is given with
the NP-complete Cluster Editing problem (also known as Cor-

relation Clustering on complete unweighted graphs), which asks
for the minimum number of edge additions and deletions to create a
graph which is a disjoint union of cliques. The hand-made search tree
for Cluster Editing had worst-case size O(2.27k), which now is im-
proved to O(1.92k) due to our new method. (Herein, k denotes the
number of edge modifications allowed.)
Keywords. NP-hard problems, graph modification, search tree al-
gorithms, exact algorithms, automated development and analysis of
algorithms, algorithm engineering.

∗An extended abstract of this paper was presented at the 11th Annual European Sym-
posium on Algorithms (ESA 2003), Springer-Verlag, LNCS 2832, pages 642–653, held in
Budapest, Hungary, September 15–19, 2003.

†Supported by the Deutsche Forschungsgemeinschaft (DFG), research project OPAL
(optimal solutions for hard problems in computational biology), NI 369/2.

‡Supported by the Deutsche Forschungsgemeinschaft (DFG), junior research group
PIAF (fixed-parameter algorithms), NI 369/4.

1

1 Introduction

In the field of exactly solving NP-hard problems [1, 15, 39], often the devel-
oped algorithms employ exhaustive search based on a clever search tree (also
called splitting) strategy. For instance, search tree based algorithms have
been developed for Satisfiability [20, 24], Maximum Satisfiability [3,
6, 19, 30], Exact Satisfiability [12, 23], Independent Set [9, 34, 35],
Vertex Cover [7, 32], Constraint Bipartite Vertex Cover [16], 3-

Hitting Set [31], and numerous other problems. Moreover, most of these
algorithms have undergone some kind of “evolution” towards better and bet-
ter exponential-time bounds. The improved upper bounds on the running
times, however, usually come at the cost of distinguishing between more and
more combinatorial cases which makes the development and the correctness
proofs a tedious and error-prone task. For example, in a series of papers
the upper bound on the search tree size for an algorithm solving Maximum

Satisfiability was improved from 1.62K [27] to 1.38K [30] to 1.34K [3]
to recently 1.32K [6], where K denotes the number of clauses in the given
formula in conjunctive normal form.

Surveying algorithms for the Satisfiability problem, Dantsin et al. [10]
stated that it would be interesting to design a computer program that out-
puts mechanically proven worst-case upper bounds based on simple com-
binatorial reduction rules that lead to nontrivial and useful search tree al-
gorithms. In this paper, seemingly for the first time, we present such an
automated approach for the development of efficient search tree algorithms,
focusing on NP-hard graph modification problems.1 Our work may be con-
sidered as a very special case of algorithm engineering. We present efficient
programs not to solve decision or optimization problems but to develop effi-
cient programs (i.e., search tree algorithms with “small” exponential running
time). As an oddity, our tool in fact employs search trees on a meta level in
order to obtain search tree algorithms as output.

Our approach is based on the separation of two tasks in the development
of search tree algorithms—namely, on the one hand, the investigation and
development of clever “problem-specific rules” (this is usually the creative,
thus, the “human part”) and, on the other hand, the analysis of numerous
cases using these problem-specific rules (this is the “machine part”). The
software environment we deliver can also be used in an interactive way in the
sense that it points the user to the worst case in the current case analysis.

1Almost simultaneously, two groups of researchers [14, 33] obtained similar, but some-
what more special results concerning Satisfiability and a special variant of Maximum

Satisfiability.

2

Then, the user may think of additional problem-specific rules to improve
this situation, obtain a better bound, and repeat this process.2

The automated generation of search tree algorithms in this paper is re-
stricted to the class of graph modification problems [4, 26, 29], although the
basic ideas appear to be generalizable to other graph and even non-graph
problems. In particular, we study the following NP-complete edge modifica-
tion problem Cluster Editing, which is motivated by, e.g., data cluster-
ing applications in computational biology [36, 37] and correlation analysis
in machine learning [2]:

Input: An undirected graph G = (V,E) and a nonnegative in-
teger k.
Question: Can we transform G, by deleting and adding at
most k edges, into a graph that consists of a disjoint union of
cliques?

Note that Bansal et al. [2] and various other researchers [5, 11, 13] re-
cently studied the approximability of the so-called Correlation Clus-

tering on complete unweighted graphs, which is equivalent to Cluster

Editing as we study here following the notation of Shamir et al. [36]3. The
currently best known polynomial-time approximation algorithm provides a
factor-4 approximation [5].

Recently, we gave a search tree based algorithm exactly solving Clus-

ter Editing in O(2.27k + |V |3) time [18]. This algorithm is based on
case distinctions developed by “human case analysis” and it took us about
three months of development and verification. Now, based on some sim-
ple problem-specific rules (whose correctness is easy to check), we obtain
an O(1.92k + |V |3) time algorithm for the same problem. It is achieved
by an automated case analysis that checks much more subcases than we
were able to do in [18]. Altogether (including computation time on a single
Linux PC and the development of the reduction rules), using our mechanized
framework this significantly improved running time for an exact solution of
Cluster Editing could be achieved in about one week.

The example application to Cluster Editing exhibits the power of our
approach, whose two main potential benefits we see as

1. rapid development and

2Clearly, not the whole process of algorithm development can be automated—human
creativity (fortunately) remains an integral part that cannot be omitted in the process of
development.

3Obviously, Bansal et al. and the others have been unaware of Shamir et al.’s work.

3

2. improved upper bounds

due to automation of tiresome and more or less schematic but extensive
case-by-case analysis. Thus, we hope that this paper contributes a new way
to relieve humans from awkward and error-prone work. Besides Cluster

Editing, we present applications of our approach to other NP-complete
graph modification (i.e., edge or vertex deletion) problems including the
generation of triangle-free graphs and cographs.

2 Preliminaries

We assume familiarity with basic notations of algorithms, computational
complexity, and graph theory. We only deal with undirected, simple graphs
G = (V,E) without self-loops. By N(v) := {u | {u, v} ∈ E } we de-
note the neighborhood of v ∈ V . We call a graph G′ = (V ′, E′) vertex-
induced subgraph of graph G = (V,E) iff V ′ ⊆ V and E′ = {{u, v} | u, v ∈
V ′ and {u, v} ∈ E}. A graph property is a mapping from the set of graphs
onto true and false.4 Then, we can define our core problem as follows.

Graph Modification

Input: Graph G, a graph property Π, and a nonnegative inte-
ger k.
Question: Is there a graph G′ such that Π(G′) holds and such
that we can transform G into G′ by altogether at most k edge
additions, edge deletions, and vertex deletions?

In this paper, we deal with special cases of Graph Modification named
Edge Modification (only edge additions and deletions are allowed), Edge

Deletion (only edge deletions allowed), and Vertex Deletion (only ver-
tex deletions allowed).5 Moreover, hereditary graph properties play an im-
portant role. A property Π is hereditary if for each graph G that has
property Π, every vertex-induced subgraph of G also has Π. Finally, the
concrete applications of our framework to be presented here refer to prop-
erties Π that have a forbidden subgraph characterization. For instance,
consider Cluster Editing. Here, the (hereditary) property Π is “to con-
sist of a disjoint union of cliques.” It holds that this Π is true for a graph G
iff G has no P3 (i.e., a path consisting of three vertices) as a vertex-induced

4Note that a graph property should map two isomorphic graphs onto the same value.
5We do not consider Edge Completion in this paper since for cluster graphs it is triv-

ial, for triangle-free graphs (Sect. 4.1.3) it is not meaningful, and for cographs (Sect. 4.2.2)
it is equivalent to Edge Deletion.

4

subgraph (also cf. [18, 36]). Here, the set of forbidden subgraphs consists of
one element, namely the P3. The corresponding Edge Deletion problem
is called Cluster Deletion.

In the following, whenever we mention vertex pair, we mean an unordered
pair of distinct vertices.

Search tree algorithms. Perhaps the most natural way to organize ex-
haustive search is to use a search tree. For instance, consider the NP-
complete Vertex Cover problem where, given a graph G = (V,E) and a
positive integer k, the question is whether there is a set of vertices C ⊆ V
with |C| ≤ k such that each edge in E has at least one of its two endpoints
in C. The following observation gives a simple size O(2k) search tree. Con-
sider an arbitrary edge {u, v}. Then at least one of the vertices u and v has
to be in C. Thus, we can branch the recursive search into two cases, namely
u ∈ C or v ∈ C. (Note that this does not exclude the possibility that both
u and v are in C!) Since we are looking for a set C of size at most k we
easily obtain a search tree of size O(2k): The root vertex is labeled with the
original graph G and k. Now one child node of the search tree is labeled
with the graph that one gets when deleting u from G and the other child
is labeled with the graph that one gets when deleting v from G. Moreover,
both children are labeled with k − 1. This is done recursively until either
the graph contains no more edges or we would have to spend more than
k vertices to cover all edges. Both these termination conditions can easily
be checked. Clearly, one can obtain better search tree sizes. For instance,
we can apply the following branching rule. As long as there is a vertex with
at least three neighbors in G, we branch into the following cases: Either
take v or all its neighbors into C. (This is the only way to cover the edges
adjacent to v!) If, however, all vertices only have one or two neighbors, then
the problem is easily linear-time solvable and no exhaustive search is neces-
sary. The search tree that derives from this branching strategy already has
size at most O(1.47k), as can be determined using the mathematical tools
described next.

Analysis of search tree sizes. If the algorithm solves a problem of
“size” s and calls itself recursively for problems of “sizes” s− d1, . . . , s− di,
then (d1, . . . , di) is called the branching vector of this recursion. It corre-
sponds to the recurrence ts = ts−d1

+ · · · + ts−di
, with tj = 1 for 0 ≤ j < d

and d = max{d1, . . . , di} (to simplify matters, without any harm, we only
count the number of leaves here). Its characteristic polynomial is zd =

5

zd−d1 + · · · + zd−di (see, e.g., Kullmann [24] for more details). We often
refer to the case distinction corresponding to a branching vector (d1, . . . , di)
also as (d1, . . . , di)-branching . The characteristic polynomial as given here
has a unique positive real root α with ts = O(αs). We call α the branching
number that corresponds to the branching vector (d1, . . . , di).

In our framework, where numerous subcases are checked automatically,
an often occurring task is to “concatenate” branching vectors. For ex-
ample, consider the two branching vector sets S1 = {(1, 2), (1, 3, 3)} and
S2 = {(1, 2, 5), (2, 2, 2)}. We have to determine the best branching vector
when concatenating every element of S1 with every element of S2. In the
concrete example, we obtain four possibilities. It is important to note that
we cannot simply take the best branching vector from S1 and concatenate
it with the best one from S2. In our example, in S1, branching vector (1, 2)
(branching number 1.62) is better than branching vector (1, 3, 3) (branching
number 1.70), and in S2, branching vector (1, 2, 5) (branching number 1.71)
is better than branching vector (2, 2, 2) (branching number 1.74); however,
the concatenation of the two best branching vectors (1, 2, 1, 2, 5) with a
branching number of 2.75 is not optimal; in fact, concatenating the two
worst branching vectors, leading to the branching vector (1, 3, 3, 2, 2, 2) with
a branching number of 2.52, is the best choice.

Since in our applications the sets S1 and S2 can generally get rather
large, it would save much time not having to check every pair of concate-
nations. We use the following simplification. Consider a branching vector
as a multi-set of its entries, i.e., identical elements may occur several times
but the order of the elements plays no role. Then, comparing two branching
vectors b1 and b2, we say that b2 is subsumed by b1 if there is an injective
mapping f of elements from b1 onto elements from b2 such that for every
element x ∈ b1 it holds that x ≥ f(x). Then, if one branching vector is sub-
sumed by another one from the same set, the subsumed one can be discarded
from further consideration because the other one always leads to a better
solution no matter what we concatenate to it. In the current setting, we only
used this criterion when pruning branching vectors. Since the concatenation
process is one of the most time-consuming parts of our framework, further
improvements to speed up this process are under current development.

3 The General Technique

Search tree algorithms basically consist of a set of branching rules. Branch-
ing rules are usually based on local substructures. For graph problems, these

6

can be induced subgraphs having up to s vertices for a constant integer s;
we refer to graphs having s vertices as size-s graphs. Then, each branching
rule specifies the branching for a particular local substructure. The idea
behind our automation approach is roughly described as follows:

(1) For constant s, enumerate all “relevant” subgraphs of size s such that
every input instance of the given graph problem has s vertices inducing
at least one of the enumerated subgraphs.

(2) For every local substructure enumerated in Step (1), check all possible
branching rules for this local substructure and select the one correspond-
ing to the best, i.e., smallest, branching number. The set of all these
best branching rules then defines our search tree algorithm.

(3) Determine the worst-case branching rule among the branching rules
stored in Step (2), because this branching rule yields a worst-case bound
on the search tree size of the generated search tree algorithm.

Note that both in Step (1) and Step (2), we usually make use of further
problem-specific rules: For example, in Step (1), problem-specific rules can
determine input instances which do not need to be considered in our enu-
meration, e.g., instances which can be solved in polynomial time, instances
which can be simplified due to reduction rules, or instances for which we can
use a manually developed branching rule; instances with one of these proper-
ties are referred to as “trivial” instances. In this section, we restrict ourselves
to describing a general framework, indicating where problem-specific rules
may apply. The problem-specific rules corresponding to particular graph
modification problems are, then, given in the following sections.

In the next two subsections, we discuss Steps (2) and (1), respectively,
in more detail. We will use Cluster Deletion as a running example.
Cluster Deletion is an Edge Deletion problem in which the forbidden
induced subgraph is a P3, i.e., a path consisting of three vertices.

3.1 Computing a Branching Rule for a Subgraph

We outline a general framework to generate, given a size-s graph Gs =
(Vs, Es)

6 for constant s, an “optimal” branching rule for Gs. To compute a
search tree branching rule, we, again, use a search tree to explore the space
of possible branching rules. This search tree is referred to as meta search
tree.

6We assume that the vertices of the graph are ordered and that we can write u < v or
v < u for u, v ∈ Vs with u 6= v.

7

We describe our framework for the example of Cluster Deletion.
However, this framework is suitable also for other graph modification prob-
lems and also for graph problems in general; at the end of this subsection,
we indicate where problem-specific changes have to be made in the frame-
work. Our central reference point in this subsection is the meta search tree
procedure compute br() given in Fig. 1. In the following paragraphs we
describe compute br() in a step-by-step manner.

(1) Branching rules and branching objects. A branching rule for Gs

specifies a set of “simplified” (to be made precise in the next paragraph)
graphs Gs,1, Gs,2, . . . , Gs,r. When invoking the branching rule, one would
replace, for every Gs,i, 1 ≤ i ≤ r, Gs by Gs,i and invoke the search tree
procedure recursively on the thereby generated instances. By definition,
the branching rule has to satisfy the following property: a “solution” is
an optimal solution for Gs iff it is “best” among the optimal solutions for
all Gs,i, 1 ≤ i ≤ r, produced by the branching rule. This is referred to
by saying that the branching rule is complete. The branching objects are
the objects on which the branching rule to be constructed branches; the
branching objects are determined depending on the particular problem. In
Cluster Deletion, the branching objects are the vertex pairs of Gs since
we obtain a solution graph by deleting edges.

(2) Annotations. A “simplified” graph Gs,i, 1 ≤ i ≤ r, is obtained
from Gs by assigning labels to a subset of branching objects in Gs. The
employed set of labels is problem-specific. Depending on the problem, cer-
tain branching objects may also initially carry “problem-inherent” labels
which cannot be modified by the meta search tree procedure. An annota-
tion is a partial mapping π from the branching objects to the set of labels;
if no label is assigned to a branching object then π maps to “undef.” Let π
and π′ both be annotations for Gs, then π′ refines π iff, for every branching
object b, it holds that

π(b) 6= undef =⇒ π′(b) = π(b).

As to Cluster Deletion, the labels for a vertex pair u, v ∈ Vs can be
chosen as permanent (i.e., the edge is in the solution graph to be constructed)
or forbidden (i.e., the edge is not in the solution graph to be constructed). In
Cluster Deletion, all vertex pairs sharing no edge are initially assigned
the label forbidden since edges cannot be added; these are the problem-
inherent labels. By Gs with annotation π, we, then, refer to the graph

8

Procedure compute br(π)
Global: Graph Gs = (Vs, Es).
Input: Annotation π for Gs (for a definition of annotations see para-

graph (2)).
Output: Set B of branching rules for Gs with annotation π.

Method:
B := ∅; /* set of branching rules, to be computed */

π:=br reduce(π); /* (4) */

for all {u, v} ∈ Es with u < v and π(u, v) = undef do

π1:=π;
π1(u, v):=permanent; /* annotate edge as permanent (5) */

B1:=compute br(π1);

π2:=π;
π2(u, v):=forbidden; /* annotate edge as forbidden (5) */

B2:=compute br(π2);

B:=B ∪ br concatenate(B1, B2); /* concatenating and

pruning branching rules (5) */

endfor;

if num edge mod(π) > 0 then B:=B ∪ {π}; endif; /* (5) */

return B;

Figure 1: Meta search tree procedure for Cluster Deletion in pseu-
docode. Numbers in comments refer to the explaining paragraphs in
Sect. 3.1

obtained from Gs by deleting {u, v} ∈ Es if π assigns the label forbidden to
(u, v). Thus, an annotation specifies, in particular, a set of edges to delete
from the input graph. In this way, an annotation can be used to specify one
branch of a branching rule.

(3) Representation of branching rules. A branching rule for Gs with
annotation π can be represented by a set A of annotations for Gs such that,
for every π′ ∈ A, π′ refines π. Then, every π′ ∈ A specifies one branch of
the branching rule. A set A of annotations has to satisfy the following three
conditions in order to specify a branching rule: (a) The branching rule is
complete. (b) Every annotation decreases the search tree measure, i.e., the
parameter with respect to which we intend to measure the search tree size.

9

(c) The subgraph consisting of the annotated branching objects has to fulfill
every property required for a solution of the considered graph problem.

In Cluster Deletion, the search tree measure is the number of edge
deletions. Therefore, condition (b) implies that every annotation deletes at
least one edge from the graph. Condition (c) means that the annotated
vertex pairs do not form a P3, i.e., there are no u, v, w ∈ Vs with π(u, v) =
π(v, w) = permanent and π(u,w) = forbidden.

(4) Problem-specific rules that refine annotations. To obtain non-
trivial bounds it is decisive to have a set of problem-specific reduction rules.
In our terminology, a reduction rule specifies how to refine a given annota-
tion π to π′ such that an optimal solution for the input graph with annota-
tion π′ is also an optimal solution for the input graph with annotation π.

For Cluster Deletion, we have the following reduction rule (for de-
tails see Sect. 4):

Reduction Rule: Given a graph G = (V,E) with annotation π, if there are
three pairwise distinct vertices u, v, w ∈ V with π(u, v) = π(v, w) =
permanent, then we can replace π by an annotation π′ which refines π
by setting π′(u,w) := permanent. Analogously, if π(u, v) = permanent
and π(v, w) = forbidden, then π′(u,w) := forbidden.

In Fig. 1, the reduction rule is implemented by procedure br reduce(π)
which receives as input an annotation π and returns a refined annotation π ′

which is obtained by applying the reduction rule to π.

(5) Meta search tree. Procedure compute br(), for graph Gs, has as
input an annotation π. It returns a set of possible branching rules for Gs

with annotation π, i.e., a set B = {A1, . . . , Ar} of annotation sets such that,
for every 1 ≤ i ≤ r and every π′ ∈ Ai, π′ refines π. Each π′ ∈ Ai represents
one branch of the branching rule given by Ai.

Given Gs with an annotation π, we choose, if there is one, a non-
annotated branching object and, for every possible label, recursively con-
sider the subcase in which the branching object is assigned the label. (If
all branching objects are annotated then the recursion stops.) In the ith
subcase, we receive a set Bi of branching rules. One way to obtain a valid
branching rule for Gs with annotation π is the concatenation of branching
rules from all subcases, taking one branching rule from every subcase; the
concatenation of branching rules is described in Sect. 2. Implicitly, we omit,
during the concatenation, branching rules which have a branching vector

10

(∗)

(∗) (∗) p

p p p p

p

1 1

1 2 2 1

Figure 2: Illustration of a meta search tree traversal for Cluster Dele-

tion. At the root we have a size-4 input graph having no labels. Arrows in-
dicate the branching steps of the meta search tree. We only display branches
of the meta search tree which contribute to the computed branching rule.
The vertex pair on which we branch is indicated by (∗). Permanent edges are
indicated by p, vertex pairs sharing no edge are implicitly forbidden (bold or
dotted lines indicate when a vertex pair is newly set to permanent or forbid-
den, respectively). Besides the vertex pair on which we branch, additional
vertex pairs are set to permanent or forbidden due to the problem-specific
reduction rule explained in Sect. 3.1(4). The numbers at the arrows indi-
cate the number of edges deleted in the respective branching step. Thus,
the resulting branching rule is determined by the leaves of this tree and the
corresponding branching vector is (2, 3, 3, 2)

being subsumed by the branching vector of another rule in the same set (see
Sect. 2). A second way to obtain a valid branching rule for Gs with annota-
tion π can be to take {π}, as a rule having only one branch; however, {π}
is only a valid branching rule if (see condition (b) stated in paragraph (3))
π already implies a decrease of the search tree measure.

The root of the meta search tree is, for a non-annotated input graph,
given by calling compute br(π0) with Gs and an annotation π0 which assigns
the problem-inherent labels to some branching objects (e.g., in Cluster

Deletion the forbidden labels to vertex pairs sharing no edge) and maps
all other branching objects to undef. The call compute br(π0) results in a
set B of possible branching rules. From B, we select the best branching rule
(with smallest branching number).7

7In the resulting search tree algorithm, we assume, in general, an input graph in which

11

In Cluster Deletion, a branching rule is computed for every non-
annotated vertex pair. Two subcases are considered, one in which the vertex
pair is set to permanent and one in which the vertex pair is set to forbidden.
If π already implies edge deletions for Gs (in Fig. 1, the number of edges to
be deleted is determined by num edge mod(π)) then π itself is a branching
rule for Gs with annotation π. In Fig. 2, we illustrate the meta search tree
generated for Cluster Deletion on a size-4 graph.

(6) Storing already computed branching rules. When branching as
described in (5), it is possible that the meta search tree procedure is invoked
for annotations π for which it was already invoked before. For example,
a situation in which two branching objects are annotated is reached by
annotating one object and then the other but also by annotating them in
reversed order. To avoid this, we store an annotation which has already
been processed together with its computed set of branching rules.

(7) Generalizing the framework. In this section, we concentrated on
the Cluster Deletion problem. We claim, however, that this framework
is usable for graph problems in general. Two main issues where changes
have to be made depending on the considered problem:

• In Cluster Deletion, the branching objects are vertex pairs and
the possible labels are “permanent” and “forbidden.” In general, the
branching objects and an appropriate set of labels for them are de-
termined by the considered graph problem. For example, in Vertex

Cover, the objects to branch on are vertices instead of edges and,
thus, the labels would be assigned to the vertices. The labels would
be, e.g., “is in the vertex cover” and “is not in the vertex cover.” De-
pending on the problem, additional auxiliary labels might be helpful,
e.g., reflecting the vertex degree.

• The reduction rules are problem-specific. To design an appropriate set
of reduction rules working on local substructures probably is the most
challenging part when applying our framework to a new problem and
for the development of practical search tree algorithms in general.

the branching objects do not carry labels. The labels assigned to branching objects by
a branching rule can and should, however, be kept after the application of a branching
rule. When applying a branching rule to a graph in which branching objects already carry
labels, an annotation is not allowed to “conflict” with these labels; branches in which the
annotation would change a label can simply be omitted.

12

In this subsection, we presented the meta search tree procedure for the
example of Cluster Deletion. As input it takes a local substructure
and a set of reduction rules. It explores the set of all possible branching
rules on this local substructure, taking into account the given reduction
rules. Therefore, this yields the following theorem where π0 denotes the
annotation assigning the problem-inherent labels of Cluster Deletion:

Theorem 1. Given a graph Gs with s vertices for constant s, the set
of branching rules returned by compute br(π0) (Fig. 1) contains, for this
fixed s, a best branching rule for Cluster Deletion among those that can
be obtained by branching only on vertex pairs from Gs and by only using the
reduction rules performed by br reduce().

3.2 A More Sophisticated Enumeration of Local Substruc-

tures

In the introduction of Sect. 3, we described how to compute branching rules
for a given graph problem: We enumerate, given a constant integer s, all non-
isomorphic size-s graphs; for each of these graphs, we compute a branching
rule as described in Sect. 3.1. Using problem-specific rules, we can restrict
the enumeration to a set of non-isomorphic size-s graphs such that every
non-trivial input instance contains at least one of the enumerated graphs
as a vertex-induced subgraph. This will lead to considerable improvements
concerning the worst-case branching rules and concerning the running time
of our automated generation.
Example. Considering the Cluster Deletion problem, we can use the fol-
lowing problem-specific rules improving the enumeration of graphs: Given a
constant integer s, we can, firstly, assume that every connected component
in a given instance has at least s vertices; every connected component of the
input graph having less than s vertices can be processed in constant time.
Therefore, we can restrict the enumeration to connected size-s graphs. Sec-
ondly, we know that a non-trivial Cluster Deletion instance contains a
P3 as a vertex-induced subgraph since, otherwise, the input graph is already
a solution. Therefore, we can restrict the enumeration to connected size-s
graphs having a P3 as a vertex-induced subgraph.

Graph expansion. In the following, we show how to refine the enumer-
ation strategy further, using problem-specific rules, in order to find a set
of branching rules leading to better worst-case bounds on the size of the
generated search tree. For this purpose, we introduce the concept of an ex-
pansion for a given size-i graph G with 1 ≤ i < s. Given a particular graph

13

(a)

(b)

Figure 3: Illustrating the expansion of a size-three graph to a size-four graph:
(a) P3 graph, (b) the graphs to which the P3 is expanded, i.e., all non-
isomorphic graphs obtained by adding a vertex to the P3 and by connecting
this vertex in an arbitrary way by at least one edge to the vertices of the
given P3. The dotted box indicates the graphs in an improved expansion due
to the problem-specific “common neighbor” rule for Cluster Deletion:
endpoints of the bold edge must have a common neighbor” (see Example)

(a)
(b) (c)

Figure 4: Two non-trivial expansions, shown in (b) and (c), for the graph
shown in (a), based on the “common neighbor” rule for Cluster Deletion.
By bold lines, we indicate the edge for which the rule was applied to obtain
the expansion.

14

problem, an expansion of a size-i graph G is a set SG of graphs of size > i
such that every input graph containing G as a vertex-induced subgraph also
contains one of the graphs in SG as a vertex-induced subgraph; we expand G
by computing an expansion for G. The trivial expansion of G is to add a
vertex to G and to consider all possible ways to connect the new vertex by
edges with the vertices in G.
Example (continued). Because of the outlined problem-specific rules for
Cluster Deletion, we can restrict our enumeration of vertex-induced
subgraphs of size 3 to P3 (shown in Fig. 3(a)). When expanding a P3 to a set
of graphs having four vertices, we obtain the graphs shown in Fig. 3(b).

Searching the “best” expansion. Instead of expanding G in the trivial
way to a set SG, problem-specific rules can give better ways to expand a
graph to only a subset of SG.
Example (continued). As will be formally proven in Sect. 4, for Cluster

Deletion, we can state the following “common neighbor rule”: For an
edge {u, v} in the input graph, we can assume that u and v have a common
neighbor; otherwise a “good” branching rule is known. This gives us the
possibility to expand a P3 (shown in Fig. 3(a)) only to the set of graphs
indicated by the dotted box in Fig. 3(b). Figure 4 illustrates that this rule
can lead (for the graph shown in (a)) to different non-trivial expansions
(shown in (b) and (c)).

The problem-specific rules might lead to several possible expansions of a
given size-i graph G. To give a branching rule for G, it is sufficient to take the
union of branching rules over all graphs in an expansion of G. The branching
number of an expansion is determined by the largest branching numbers
among these branching rules. From all possible expansions of G, however, we
can select the one leading to the “best” set of branching rules. Therefore, we
choose, over all known expansions, an expansion with a minimum branching
number.

In Fig. 5, we show in pseudocode how to implement this improved enu-
meration strategy in a recursive way, returning a branching rule based on
local subgraphs having at most s vertices. We represent a branching rule
for a graph problem by a set of triples (G,A, p) where G denotes a graph
of size at most s, A denotes the annotation set specifying a branching rule
for G, and p denotes the branching number for the branching rule in A.
In the line marked by (1) in Fig. 5, we iterate over all expansions of G.
In (2), we successively generate the union of branching rules over all graphs
in an expansion of G, by recursively calling the procedure for every graph

15

Procedure graph enumerate(G)

Global: Positive integer s denoting the size, i.e., number of vertices,
of the graphs to be enumerated.

Input: Graph G = (V,E) with |V | ≤ s.
Output: Branching rule C represented as a set of triples (G′, A, p),

where G′ is a graph having at most s vertices, A is a set of
annotations for G′ (representing the branching rule for G′),
and a real number p ≥ 1 denoting the branching number for
the branching rule in A for G′.

Method:
/* Compute the best branching rule for graph G */

A := compute a set of annotations specifying the best

branching rule for G as explained in Sect. 3.1(5);

p := branching number of branching rule given by A;

Cbest := {(G,A, p)}; pbest := p;
if |V | < s then

/* Graph G has size less than s -> expand G */

for every expansion SG of G do /* (1) */

CSG
:= ∅;

/* For every graph in the expansion,

determine the best branching rule */

for every G′ ∈ SG do

CSG
:= CSG

∪ graph enumerate(G′); /* (2) */

endfor;

/* Among all branching rules for the expansion,

determine the worst-case branching rule */

pSG
:= max{p | (G,A, p) ∈ CSG

}; /* (3) */

endfor;

/* Among all expansions of G, determine the expansion

with the best branching number */

(Cbest, pbest) := select (CSG
, pSG

) from all expansions SG

of G such that pSG
is minimized; /* (4) */

endif;

return Cbest;

Figure 5: Pseudocode for procedure graph enumerate(G). Numbers refer
to explanations in Sect. 3.2

16

in the expansion. In (3), we determine, for every considered expansion, its
branching number. In (4), we select, from all possible expansions of G, the
one leading to the “best” set of branching rules. The recursion stops if G al-
ready has reached size s. Implicitly, we assume that the processed graphs are
stored with the branching rules computed for them since we may encounter
isomorphic graphs several times in our search, e.g., since a size-(i+1) graph
can belong to several expansions of a size-i graph. Initially, the procedure
given in Fig. 5 is, for a constant integer s, invoked by graph enumerate(G0)

where G0 is a graph containing only one vertex.

Cutoff values. In the application, we can speed-up the search by user-
defined cutoff values for the branching number: If a size-i graph G already
yields a branching number better than the cutoff value, we omit to expand G.
The application of cutoff values makes sense when one is satisfied with a
certain search tree size or when we are mainly interested in the worst-case
bound on the search tree size and when there is little hope for improving
this worst-case bound below some “threshold value.”

4 Applications and Results

The developed software consists of about 1900 lines of Objective Caml [25]
code and 1500 lines of low-level C code for the graph representation, which
uses simple bit vectors. The generation of canonical representations of
graphs (for isomorphism tests and hash table operations) is done by the
nauty library [28]. Branching vector sets are represented as tries, which
allow for efficient implementation of the subsumption rules presented in
Sect. 2.

The tests were performed on a 2.26GHz Pentium 4 PC with 1GB main
memory running Linux. Memory requirements were up to 300MB.

We applied the general technique to several graph modification prob-
lems. For each of these problems, we describe the problem-specific rules
implemented within our framework, and present the results of our experi-
ments. Thereby, we measured a variety of values. These will be referred to
in the tables to follow.

size: Maximum number of vertices in the local subgraphs considered.

time: Total running time.

isom: Percentage of the running time spent for the isomorphism tests.

17

concat: Percentage of the running time spent for concatenating branching
vector sets.

graphs: Number of graphs for which a branching rule was calculated.

maxbn: Maximum branching number of the computed set of branching
rules (determining the worst-case bound on the size of the resulting
search tree).

avgbn: Average branching number of the computed set of branching rules;
assuming that every induced subgraph appears with the same likeli-
hood, (avgbn)k would then give the average size of the employed search
trees.

bvmax: Maximum length of a branching vector occurring in the computed
set of branching rules; this gives a measure for the intricacy of the
generated search tree algorithm.

bvmed: Median length of branching vectors occurring in the computed set
of branching rules.

maxlen: Length of longest branching vector generated in a node of the
meta search tree (including intermediary branching vectors).

bvset: Size of largest branching vector set computed in a node of the meta
search tree.

4.1 Edge Modification Problems

Edge modification problems recently have attracted considerable interest [29,
37]. We will consider three of these in our context.

4.1.1 Application to Cluster Editing

The problem. Cluster Editing is defined as follows:

Input: An undirected graph G = (V,E), and a nonnegative in-
teger k.
Question: Can we transform G, by deleting and adding at
most k edges, into a graph that consists of a vertex-disjoint union
of cliques?

18

As mentioned in Sect. 2, a graph consisting of a vertex-disjoint union of
cliques contains no P3 (path of three vertices) as a vertex-induced subgraph.
Cluster Editing is NP-complete [22, 36, 2] and it has been used for the
clustering of gene expression data [38]. As already mentioned in Sect. 1, we
gave in [18] an exact algorithm for this problem based on a bounded search
tree of size O(2.27k), where k denotes the allowed number of edge additions
and edge deletions.

A basic search tree approach is described as follows for a given input
graph G = (V,E). For each P3, i.e., u, v, w ∈ V with {u, v} ∈ E, {u,w} ∈ E,
but {v, w} /∈ E, the algorithm either deletes {u, v}, or deletes {u,w}, or
adds {v, w} and processes each of these cases recursively. If an algorithm
can destroy all vertex-induced P3’s after at most k edge modifications then
the given instance has a solution. It is easy to see that the size of the resulting
search tree is upperbounded by O(3k). With more refined case distinctions
the size of the search tree can be reduced to O(2.27k) as described in [18].
However, a better bound can be achieved by our automated approach.

Problem-specific rules. Following the general scenario from Sect. 3, we
make use of problem-specific rules in our framework for an input graph
G = (V,E). We use the same labels “forbidden” and “permanent” as for
Cluster Deletion.

Rule 1: While enumerating subgraphs, we consider only con-
nected instances containing a P3 as a vertex-induced subgraph.

The correctness of Rule 1 is obvious.
As introduced in Sect. 3.1 for Cluster Deletion, the algorithm as-

signs labels “permanent” and “forbidden” to vertex pairs. Here, a vertex
pair (u, v) annotated as “permanent” means that in the solution graph there
is an edge between u and v and this edge may not be deleted; annotation
“forbidden” means that in the solution graph there is no edge between the
two vertices.

Rule 2: For vertices u, v, w ∈ V such that both (u, v) and (v, w)
are annotated as permanent, we annotate also vertex pair (u,w)
as permanent; if (u, v) is annotated as permanent and (v, w) as
forbidden, then we annotate (u,w) as forbidden.

The correctness of Rule 2 follows from the requirement that a solution graph
does not contain a P3 as a vertex-induced subgraph.

The third rule allows non-trivial graph expansions (see Sect. 3.2).

19

Rule 3: In a non-trivial input graph, for every edge {u, v} ∈ E,
u and v have a common neighbor.

Rule 3 is based on the following proposition which allows us to apply a
“good” branching rule if there is an edge whose endpoints have no common
neighbor:

Proposition 1. Given an input graph G = (V,E) for Cluster Editing.
If there is an edge {u, v} ∈ E where u and v have no common neighbor
and |(N(u)∪N(v)) \ {u, v}| ≥ 1, then we can apply a branching rule giving
a branching vector (1, 2).

Proof. We firstly consider the most simple case, |(N(u)∪N(v))\{u, v}| = 1,
and assume that N(u)\{v} = {x}. It is easy to observe that deleting {u, x}
is always an optimal choice to destroy the P3 formed by u, v, x regardless of
the rest graph.
In the case |(N(u) ∪ N(v)) \ {u, v}| = 2, we firstly assume that u has two
“private” neighbors x 6= y, x 6= v, y 6= v, {v, x} /∈ E, and {v, y} /∈ E.
Then, we have two induced P3’s, v, u, x and v, u, y. There are two cases to
distinguish. The first case is that u and v are not in the same clique of
the final cluster graph, for which we have to delete {u, v}. The second case
is that u and v are in the same clique. Furthermore, x or y can also be
in this clique. However, we have to make at least two edge modifications,
namely, to insert {v, x} and {v, y} in order to include x and y in this clique,
or to insert {v, x} and to delete {u, y} or vice versa in order to include
only one of x and y in this clique, or to delete both {u, x} and {u, y} in
order to exclude x and y from this clique. Therefore, we can conclude that
deleting {u, x} and {u, y} is always an optimal choice regardless of the rest
graph. Summarizing the two cases, we can achieve a (1, 2)-branching.

If each of u and v has a private neighbor, i.e., u has a neighbor x 6= v
and v has a neighbor y 6= u, we can make a similar case distinction as above
such that a (1, 2)-branching can be achieved.

It is easy to prove that we can achieve an even better branching if u
and v have more than two private neighbors.

Given a Cluster Editing instance (G = (V,E), k), we can apply the
branching rule described in Proposition 1 as long as we find an edge satisfy-
ing the conditions of Proposition 1; the resulting graphs are called reduced
with respect to Rule 3. If we already needed more than k edge modifications
before the graph is reduced with respect to Rule 3 then we reject it.

20

Table 1: Results for Cluster Editing: (1) Enumerating all size-s graphs
containing a P3; (2) Expansion scheme additionally utilizing Rule 3

size time isom concat graphs maxbn avgbn bvmax bvmed maxlen bvset

(1) 4 <1 sec 3% 16% 5 2.42 2.33 5 5 8 7
(1) 5 2 sec 2% 50% 20 2.27 2.04 16 9 23 114
(1) 6 9 days 0% 100% 111 2.16 1.86 37 17 81 209179

(2) 4 <1 sec 1% 20% 6 2.27 2.27 5 5 8 7
(2) 5 3 sec 0% 52% 26 2.03 1.97 16 12 23 114
(2) 6 9 days 0% 100% 137 1.92 1.80 37 24 81 209179

Based on Proposition 1, Rule 3 can reduce the size of an expansion SG

for a given size-i graph G. Moreover, if G contains more than one edge
whose endpoints have no common neighbor then we can have more than one
different non-trivial expansion for G. However, as stated in Sect. 3.2, we
have, then, the choice to select the expansion leading to the “best” set of
branching rules, i.e., an expansion with a minimum branching number. If G
contains no such edge, then we expand G in the trivial way, i.e., we consider
all possible ways to connect the new vertex by edges with the vertices in G.

Results. See Table 1. The measured values are defined in the beginning
of Sect. 4.

Only using Rules 1 and 2, we obtain the worst-case branching num-
ber 2.16 when considering induced subgraphs containing six vertices. We
observe a decrease in the computed worst-case branching number maxbn
with every increase in the sizes of the considered subgraphs. These results
support the conjecture that the program could compute better branching
rules when considering subgraphs with more vertices. However, the run-
ning time of our program increases as the graph size increases. The typical
number of case distinctions for a subgraph (bvmed) seems high compared
to human-made case distinctions, but should pose no problem for an imple-
mentation (which might also be done by an automated framework).

When additionally using Rule 3, we use the expansion approach pre-
sented in Sect. 3.2. In this way, we can decrease maxbn to 1.92. This shows
the usefulness of the expansion approach. It underlines the importance of
devising a set of good problem-specific rules for the automated approach.
Notably, the average branching number avgbn 1.80 for the computed set of
branching rules is significantly lower than the worst-case one.

The main reason for the high running times is that the case distinction

21

in the meta search tree becomes more and more complicated as the sizes
of considered graphs increase. As one consequence of the more complicated
case distinction, the program has to do much more branching vector con-
catenations (refer to the drastic increase of value bvset in Table 1). As
we have stated in Sect. 2, besides the subsumption mechanism, we have
not applied methods to efficiently determine the best concatenation of two
sets of branching vectors other than basically trying all possibilities. It
can be observed from Table 1 that, for graphs with six vertices, the pro-
gram spends almost all its running time on the concatenations of branching
vectors; branching vector sets can contain huge amounts of incomparable
branching vectors (bvset), and a single branching vector can get compara-
tively long (maxlen). An obvious strategy to apply here might be the use of
heuristic concatenation rules. The high cost of branching vector concatena-
tion is also the reason that graph isomorphism testing, perhaps surprisingly,
contributes a decreasing proportion (isom) to the running time when in-
creasing the graph size.

In Appendix A, we provide the expansion steps and the generated search
tree for one example graph which is expanded. Summarizing the results
together with previous work [18] (where a search tree size of O(2.27k) instead
of O(1.92k) is given), we have the following theorem:

Theorem 2. Cluster Editing can be solved in O(1.92k+|V |3) time.

Observe that Cluster Editing is equivalent to unweighted Correla-

tion Clustering on complete graphs as studied in [2]. The best known
polynomial-time approximation algorithm for minimizing the number of of
edge modifications yields an approximation factor of only 4 [5], giving par-
ticular importance to exact fixed-parameter algorithms for this problem.

4.1.2 Application to Cluster Deletion

The problem. This is the special case of Cluster Editing where only
edge deletions are allowed and is defined as follows:

Input: An undirected graph G = (V,E), and a nonnegative
integer k.
Question: Can we transform G, by deleting at most k edges,
into a graph that consists of a vertex-disjoint union of cliques?

Cluster Deletion is NP-complete [36]. In [18], we gave an algorithm for
Cluster Deletion with search tree size O(1.77k).

22

Problem-specific rules. Since this problem is a special case of Cluster

Editing, where only edge deletions are allowed, all problem-specific rules
devised for Cluster Editing can also be used for this problem without any
modification. However, the first implementation with all rules for Cluster

Editing showed that (as shown in the first half of Table 2) the resulting
worst-case branching number 1.62 is determined by the (1, 2)-branching of
Proposition 1 which is used in Rule 3. In order to achieve a better branching
rule for Cluster Deletion, we improved the branching in Proposition 1
as follows:

Proposition 2. Given an input graph G = (V,E) for Cluster Deletion.
If there is an edge {u, v} ∈ E, where u and v have no common neighbor
and |(N(u)∪N(v)) \ {u, v}| ≥ 1, then we can apply a branching rule giving
a branching vector (1, 3).

Proof. As shown in the proof of Proposition 1, there is no need for branching
if |(N(u)∪N(v)) \ {u, v}| = 1. If |(N(u)∪N(v)) \ {u, v}| > 2, then we have
at least a (1, 3)-branching because we have to delete either {u, v} or all other
edges adjacent to u and v. For the case that |(N(u) ∪ N(v)) \ {u, v}| = 2,
we distinguish two cases:

(1) Vertex u has two private neighbors, x, y ∈ N(u) and x 6= y, x 6= v,
y 6= v:

(1.1) If {x, y} /∈ E, then we can delete {u, x} and {u, y}, since at least
two of the edges {u, v}, {u, x}, and {u, y} have to be deleted and
deletion of {u, x} and {u, y} does not affect any solution of the
problem instance. Hence, no branching occurs.

(1.2) If {x, y} ∈ E, then we assume that there is at least one ver-
tex z ∈ V and z 6= u which is a neighbor of x or y; other-
wise, u, v, x, y form an isolated component and we can destroy
all vertex-induced P3’s in this component by deleting {u, v}. It
is easy to observe that deleting only one of the edges {u, x}
and {u, y} can never be better than deleting both of them or keep-
ing them both and deleting {u, v} and the edges adjacent to x
and y but different from {x, y}, {u, x}, and {u, y}. Since there is
at least one edge between y and z or x and z, we get a branching
of at least (2, 2), which is better than a (1, 3)-branching.

(2) Each of the vertices u and v has a private neighbor, i.e., x ∈ N(u) and
y ∈ N(v), x 6= y:

23

(2.1) If one of x and y has no neighbor besides u and v, then we
delete {u, v}. Assume that y has no neighbor besides v. For
the case that x and u are in the same clique of the final cluster
graph, we have to delete {u, v}; for the case that they are not, we
have to delete either {u, v} or {v, y}. Therefore, deleting {u, v}
is always a correct solution for the subgraph consisting of u, v,
and y.

(2.2) If vertex x has more than one neighbor different from u, then
we consider the edge {u, x}. Since u and x have no common
neighbor and |(N(u) ∪ N(x)) \ {u, x}| > 2, we can achieve at
least (1, 3)-branching based on {u, x}.

(2.3) If both x and y have exactly one neighbor both different from u
and v, then we make a branching into two cases. The first case
is that v and y are in the same clique of the final cluster graph.
For this case, we have to delete the edges adjacent to v and y
different from {v, y}. For the second case that v and y are not in
the same clique, we have to delete {v, y}. The resulting subgraph,
which consists of u, v, x and the other neighbor of x, satisfies
the assumption of Case (2.1) for the edge {u, x}. Therefore, we
can delete {u, x}. Summarizing the two cases, we have a (2, 2)-
branching.

In summary, we have a (1,3)-branching in the worst case.

Results. See Table 2. The measured values are defined in the beginning
of Sect. 4. Incorporating Proposition 2 into Rule 3, we obtained the results
shown in the second half of Table 2. Here, the (1, 3)-branching in Proposi-
tion 2, which corresponds to a branching number of 1.47, is not the worst
case any more. These results demonstrate the benefit of interaction between
manual design of problem-specific rules and mechanized case analysis.

Summarizing these results together with previous work [18] (where a
search tree size of O(1.77k) instead of O(1.53k) is shown), we have the
following theorem:

Theorem 3. Cluster Deletion can be solved in O(1.53k + |V |3) time.

24

Table 2: Results for Cluster Deletion: (1) Enumerating all size-s graphs
containing a P3; (2) Expansion scheme utilizing Proposition 2

size time isom concat graphs maxbn avgbn bvmax bvmed maxlen bvset

(1) 4 < 1 sec 12% 12% 5 1.77 1.65 4 2 5 4
(1) 5 < 1 sec 37% 22% 20 1.63 1.52 8 2 13 83
(1) 6 6 min 4% 92% 111 1.62 1.43 16 2 35 7561

(2) 4 < 1 sec 7% 15% 6 1.77 1.70 4 2 5 4
(2) 5 < 1 sec 11% 33% 26 1.63 1.54 8 2 13 83
(2) 6 6 min 0% 97% 137 1.53 1.43 16 2 35 7561

4.1.3 Application to Triangle Edge Deletion

The problem. Triangle Edge Deletion is defined as follows:

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Can we transform G, by deleting at most k edges,
into a graph that contains no triangle as a vertex-induced sub-
graph?

Triangle Edge Deletion can be reduced to 3-Hitting Set. The NP-
complete d-Hitting Set problem (cf. [17]) is defined as follows:

Input: A collection C of subsets of size at most d of a finite
set S and a positive integer k.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k such that S′

contains at least one element from each subset in C?

We translate edges of the given graph to elements of the base set in the
3-Hitting Set instance. Furthermore, each triangle in the given graph
translates into a three-element subset of the base set, thereby forming, to-
gether with the unchanged parameter k, an instance of 3-Hitting Set.

Problem-specific rules. Analogous rules to Rules 1 and 2 for Cluster

Editing can also be found for this problem. In addition, regarding the
expansions, we only sketch the respective rule used here: We assume that
every edge being part of a triangle is part of at least two triangles. If there is
an edge {u, v} ∈ E being part of only one triangle {u, v}, {v, w}, {u,w} ∈ E,
then this yields a (1, 1)-branching, in one branch deleting {v, w} and in the
other branch deleting {u,w}. It is straightforward to show that it is never
better to delete {u, v}. Details are omitted.

25

Table 3: Results for Triangle Edge Deletion: (1) Expansion scheme
utilizing the specific expansion rule given in Sect. 4.1.3

size time isom concat graphs maxbn avgbn bvmax bvmed maxlen bvset

(1) 4 < 1 sec 2% 19% 4 2.57 2.47 6 5 10 8
(1) 5 6 sec 0% 83% 19 2.47 2.34 14 5 45 530

Results. See Table 3. This problem is an example where the mechanized
analysis so far could not improve an existing search tree algorithm. Since
Triangle Edge Deletion can be reduced to 3-Hitting Set, we can
solve it using an elaborated, hand-made search tree algorithm for 3-Hitting

Set having a worst-case branching number of 2.27 [31], whereas the worst-
case branching number determined by our analysis is 2.47 when considering
graphs of size five. We are confident, however, that, by additional reduction
rules or the use of heuristics for branching vector concatenation, beating the
2.27 bound is feasible.

4.2 Vertex Deletion Problems

We have also applied our automated approach to three Vertex Deletion

problems that have a forbidden subgraph characterization. The problems
studied in this subsection belong to the class of so-called vertex deletion
problems for hereditary properties. As shown by Lewis and Yannakakis [26],
basically all these problems are NP-complete.

Vertex Deletion problems where the graph property is given by a
forbidden vertex-induced subgraph of size d > 1 can be reduced to the NP-
complete d-Hitting Set problem.

Lemma 1. Given a Vertex Deletion problem where the graph property
is given by a forbidden vertex-induced subgraph of size d, then there is an
O(nd) time many-one reduction to d-Hitting Set. Herein, n denotes the
number of graph vertices.

Proof. For a given instance of a Vertex Deletion problem consisting of
a graph G = (V,E) and an integer k, we construct a finite set S such
that each element in S corresponds to a vertex in V , i.e., n := |S| = |V |.
For a forbidden subgraph with d vertices, we can trivially enumerate all
occurrences of the forbidden subgraph as vertex-induced subgraph and, for
each of the occurrences construct a set consisting of d elements; each of
the elements corresponds to a vertex in the occurrence. These d-element

26

sets form the collection C. Then, we have an instance of d-Hitting Set

problem. It is easy to observe that the Vertex Deletion instance can
be solved with at most k vertex deletions iff the constructed instance of
d-Hitting Set has a solution S ′ with |S′| ≤ k. The main part of the
reduction is to enumerate all occurrences of the forbidden size-d subgraph
and, hence, can be done in O(nd) time.

4.2.1 Application to Cluster Vertex Deletion and Triangle Vertex
Deletion

The problems.

Input: A graph G = (V,E) and a nonnegative integer k.
Question in the case of Cluster Vertex Deletion: Can
we transform G, by deleting at most k vertices, into a set of
disjoint cliques?
Question in the case of Triangle Vertex Deletion: Can
we transform G, by deleting at most k vertices, into a graph that
contains no triangle as vertex-induced subgraph?

Each of these two graph problems specifies a forbidden vertex-induced sub-
graph of three vertices, i.e., an induced P3 or an induced K3, respectively. As
outlined above, the problems, therefore, can be reduced to the NP-complete
3-Hitting Set. For 3-Hitting Set, an elaborate search tree algorithm
has been given with O(2.27k + |C|) running time [31]. A consequence of
this reduction is that the described Vertex Deletion problems can also
be solved by the search tree algorithm for 3-Hitting Set.

Problem-specific rules. The problem-specific rules applied here are anal-
ogous to Rules 1 and 2 given for Cluster Editing. Additionally, we use
a special expansion rule in the case of Triangle Vertex Deletion: We
assume that every vertex being part of a triangle is part of at least two
triangles. If there is a vertex u ∈ V being part of only one triangle {u, v},
{v, w}, {u,w} ∈ E, then this yields a (1, 1)-branching, in one branch delet-
ing vertex v and in the other branch deleting vertex w. It is straightforward
to show that it is never better to delete u. Details are omitted.

27

Table 4: Results for Cluster Vertex Deletion: (1) Enumerating all size-
s graphs containing a P3; (2) Expansion scheme with cutoff (see Sect. 3.2)

size time isom concat graphs maxbn avgbn bvmax bvmed maxlen bvset

(1) 4 < 1 sec 3% 16% 5 2.42 2.37 4 3 6 3
(1) 5 < 1 sec 6% 14% 20 2.31 2.16 4 4 10 7
(1) 6 1 sec 8% 12% 111 2.31 1.98 6 4 14 24
(1) 7 26 sec 19% 14% 852 2.27 1.86 6 4 21 65
(1) 8 39 min 34% 12% 11116 2.27 1.76 10 5 32 289

(2) 4 < 1 sec 12% 3% 6 2.42 2.37 4 3 6 3
(2) 5 < 1 sec 3% 15% 26 2.31 2.16 4 4 10 7
(2) 6 < 1 sec 0% 22% 74 2.31 2.06 6 4 13 12
(2) 7 < 1 sec 0% 27% 119 2.27 2.02 6 4 19 49
(2) 8 5 sec 0% 38% 205 2.27 2.00 8 4 25 146
(2) 9 46 sec 0% 53% 367 2.26 1.92 9 4 37 534
(2) 10 7 min 0% 69% 681 2.26 1.90 11 4 48 2422

Table 5: Results for Triangle Vertex Deletion: (1) Expansion scheme
utilizing problem-specific expansion rule; (2) additionally using cutoff values

size time isom concat graphs maxbn avgbn bvmax bvmed maxlen bvset

(1) 5 < 1 sec 2% 17% 9 2.57 2.24 5 4 11 10
(1) 6 < 1 sec 2% 25% 44 2.57 2.24 7 4 19 37
(1) 7 7 sec 0% 32% 447 2.47 2.10 10 4 30 121
(1) 8 9 min 0% 46% 7225 2.47 1.97 13 5 42 384

(2) 8 23 sec 0% 43% 433 2.47 2.10 13 4 34 355
(2) 9 10 hours 0% 56% 132370 2.42 1.97 17 5 66 1842

28

Results. See Table 4 for Cluster Vertex Deletion and Table 5 for
Triangle Vertex Deletion. Using the enumeration without non-trivial
expansion for Cluster Vertex Deletion, we could only process graphs
with up to eight vertices since the number of graphs to be inspected is huge.
This yields the same worst-case branching number 2.27 as we have from the
3-Hitting Set algorithm [31]. Using a cutoff value reduces the number of
graphs to be inspected drastically and, thus, allows us to inspect graphs with
up to ten vertices. In this way, we can improve the worst-case branching
number to 2.26.

When comparing the two approaches, we observe that, when using cut-
off values, the average branching number (avgbn) of the computed set of
branching rules becomes larger compared to the case where cutoff values
were not used. The explanation is that the branching is not further im-
proved as soon as it yields a branching number better than the cutoff value.
When implementing the computed search tree algorithm and applying it
in practice, however, a better average branching number might be more
desirable than a better worst-case branching number.

4.2.2 Application to Cograph Vertex Deletion

The problem.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Can we transform G, by deleting at most k vertices,
into a cograph, i.e., into a graph that contains no path consisting
of four vertices as a vertex-induced subgraph?

Cograph Modification is a particularly interesting problem because,
when restricted to cographs, many NP-hard problems are solvable in poly-
nomial time [8].

Results. We based our algorithm on the characterization of cographs as
graphs containing no induced path of four vertices (P4). We use an expan-
sion rule analogous to the one used for Triangle Vertex Deletion: we
assume every vertex being part of a P4 is part of at least two P4’s. We get
a worst-case branching number of 3.30 when examining graphs up to seven
vertices. This matches the bound given for 4-Hitting Set in [31].

29

Table 6: Summary of search tree sizes for the problems considered

Problem Trivial Best known result Our method

Cluster Editing 3 2.27 [18] 1.92
Cluster Deletion 2 1.77 [18] 1.53
Cluster Vertex Deletion 3 2.27 [31] 2.26
Triangle Edge Deletion 3 2.27 [31] 2.47
Triangle Vertex Deletion 3 2.27 [31] 2.42
Cograph Vertex Deletion 4 3.30 [31] 3.30

3 4 5 6 7 8 9 10

Graph Size

1.0

2.0

3.0

4.0

B
ra

nc
hi

ng
 N

um
be

r

Cluster Editing
Cluster Deletion
Cluster Vertex Deletion
Triangle Edge Deletion
Triangle Vertex Deletion
Cograph Vertex Deletion

Figure 6: Worst-case branching number depending on size of considered
subgraphs

4.3 Summary

Focusing on the worst-case branching numbers computed for various graph
modification problems, we give an overview on our results in Table 6: We
compare the worst-case branching numbers corresponding to a trivial branch-
ing, the best so far known result, and the search tree algorithm size bound
computed by our method.

In Fig. 6, we compare, for different graph modification problems, the
decrease of the worst-case branching numbers when increasing the size of
the considered subgraphs. In most cases, inspecting larger subgraphs yields
an improved worst-case branching number.

We summarize some further observations as follows:

• In many cases, the average branching number of the computed branch-

30

ing rules is significantly smaller than the worst-case one.

• For smaller graphs, a larger part of the running time is spent on the
isomorphism tests. With growing graph sizes, the part of the running
time spent on the administration of branching vectors in the search
tree becomes larger and often takes close to 100 percent of the running
time.

• The resulting branching rules branch, even for large graphs, only into
a moderate number of branching cases, e.g., into at most 11 branch-
ing cases in Cluster Vertex Deletion when inspecting graphs of
size 10.

5 Conclusion

We presented a software tool to automatically generate search tree algo-
rithms for graph modification problems. Further details on the whole sce-
nario and the implementation can be found in [21].

Discussion of results. We concentrated on the worst-case running time
analysis for NP-hard graph modification problems. In several cases our au-
tomation framework in conjunction with relatively simple problem-specific
rules yielded the so far best known upper bounds on search tree sizes for
the corresponding problems. Even if our setting did not always lead to the
best known worst-case bounds, however, it might be still considered scien-
tific progress since it usually significantly reduced the “proof complexity”
of the corresponding search trees when compared to the hand-made, often
highly complicated case distinctions. In this sense, our framework helps to
reveal the usually few real “core rules” that lie at the very heart of success-
fully attacking combinatorially hard problems. This may lead to a better
understanding of the considered problems and may smoothen the way for
new approaches in deriving smaller and smaller search tree sizes. Finally, it
seems feasible to apply the basic framework not only to graph modification
problems (see [21] for more considerations in this direction).

Open problems and challenges. Many things remain to be done. Ob-
viously, trying to develop new problem-specific rules may lead to improved
search tree size bounds. Further graph modification problems could be con-
sidered. It remains future work to extend our framework in order to directly

31

translate the computed case distinctions into “executable search tree algo-
rithm code” and to test the thus implemented algorithms empirically. Our
approach has two main computational bottlenecks: the enumeration of all
non-isomorphic graphs up to a certain size and the concatenation of (large
sets of) branching vectors in our meta search tree. It is a subject of ongoing
work to design improved (maybe also heuristic) strategies for these tasks. In
this way, the obtained upper bounds on search tree sizes might also be fur-
ther improved. In addition, it is open to adapt our approach to other graph
problems besides the considered ones or, more generally, to other combina-
torial problems. The approach seems to have the potential to establish new
ways for proving upper bounds on the running time of NP-hard combina-
torial problems; for instance, we recently succeeded in finding a non-trivial
bound for the NP-hard Dominating Set problem with a maximum vertex
degree of 3 [21]. Here, we so far obtained the search tree size O(3.71k), where
k denotes the number of vertices in the dominating set. The trivial bound
is O(4k). Finally, a challenge could also be to use the automated framework
in order to derive analytical proofs for search tree sizes, i.e., proofs and case
distinctions that can again be verified by hand.

Related work. Independently from this work, Frank Kammer and Tor-
ben Hagerup (Augsburg) informed us about ongoing related work concerning
computer-generated proofs for upper bounds on hard combinatorial prob-
lems, such as Independent Set and Maximum Satisfiability. In an-
other independent piece of work, Nikolenko and Sirotkin [33] describe how to
automate proofs for worst-case upper bounds based on search trees for the
Satisfiability problem. Their approach, however, seems more problem-
specific and more ad hoc than ours and does not provide a general automa-
tion framework. Similar studies have also been undertaken by Fedin and
Kulikov [14] in studying a special variant of the Maximum Satisfiability

problem. Eventually, we note that Robson [35] also used the computer in
order to improve the search tree of his algorithm for Independent Set [34].
However, his approach seems very problem-specific and deals with special
cases in his elaborate and extensive case distinction. It does not result in a
general automation framework such as ours.

A Sample Program Output

In the following, we will present the output of our program which describes
the algorithm from Theorem 2, which solves Cluster Editing in O(1.92k+

32

|V |3) time.
In the program output, graphs are given with GraphIDs. A GraphID is

an integer which compactly encodes undirected graphs (where vertices are
numbered by 0, 1, 2, . . .) with a binary representation: bit 0 is set if the edge
{0, 1} is present, bit 1 for {0, 2}, bit 3 for {1, 2}, and so on; generally, the edge
{u, v}, u < v is encoded in bit

∑v−1

i=0
i+u. Of all possible vertex numberings

for a graph, we choose the one which yields the smallest GraphID. For
example, the P3 contains the edges {0, 1} and {0, 2}, encoded in bits 0
and 1, yielding the GraphID 20 + 21 = 3.

As elaborated in Sect. 4.1.1, the algorithm first locates an induced P3 in
the input and successively adds neighboring vertices until a size-6 subgraph
is generated by this expansion process. It then branches into several cases
depending on the expanded subgraph.

The first part of the output describes the expansion phase. Each line
(wrapped here for reading convenience) describes how to specifically expand
certain subgraphs:

3 1.920 edge-expand {0, 1} 15 31

15 1.920 edge-expand {0, 3} 235 239 255

31 1.873 add-vertex 95 119 223 239 254 255 507 511

95 1.840 edge-expand {0, 4} 3307 3311 3451 3455 3579 3583

119 1.863 edge-expand {0, 4} 3879 3887 3903 3949 3959 3967

223 1.859 add-vertex 1247 1463 3295 3311 3327 3577 3579 3583

7673 7675 7679

235 1.920 add-vertex 1259 1269 3307 3443 3451 3879 3947 3949

3951 7902 7903

239 1.873 add-vertex 1263 1271 1469 3311 3447 3451 3453 3455

3579 3887 3951 3958 3959 3967 7915 7917

7919 7934 7935

254 1.804 edge-expand {0, 4} 3949 7902 7917 7934 8185 8187

255 1.827 add-vertex 1279 1471 1975 3327 3455 3583 3903 3951

3966 3967 4095 7903 7919 7935 8185 8187

8191

507 1.824 add-vertex 1531 1533 3579 3582 3959 7675 7919 7934

8187 16350 16351

511 1.794 add-vertex 1535 1983 3583 3967 4094 7679 7935 8187

8191 16351 16383

The first column denotes the GraphID of the subgraph. The second col-
umn is the worst-case branching number we will obtain when encountering
this subgraph. The third column tells what to do with this subgraph: if

33

0
15

24
3

Figure 7: Branching for graph 1471. Bold lines denote permanent edges,
dotted lines denote forbidden edges

it is edge-expand {x, y}, then one has to find the common neighbor of x
and y and add it to the subgraph. If it is add-vertex, then one has to add
any vertex adjacent to a vertex of the subgraph. The remaining part of each
line lists the graphs which can result from the expansion.

The expansion of a P3 leads to one of 57 different size-6 graphs. For
each of them, a branching rule is calculated. We give only one example
because of space constraints, namely for graph 1471, which is generated
from the P3 via graphs 15 and 255. The branching contains 15 cases and
has the branching vector (6, 5, 7, 7, 9, 6, 8, 6, 9, 6, 8, 6, 5, 3, 1), corresponding
to the branching number 1.826. This branching rule is also sketched in
Fig. 7. The program output for this graph, wrapped and indented, looks
like this:

({0, 5}:

({0, 1}:

({0, 2}:

({0, 3}:

({0, 4}: *, *),

({0, 4}: *, *)),

({0, 3}:

({0, 4}: *, *),

({0, 4}: *, *))),

({0, 2}:

({0, 3}:

({0, 4}: *, *),

34

({0, 4}: *, *)),

({0, 3}: *, *))),

*)

Each node of the tree is described by a term ({x, y}: p, f), where
{x, y} denotes the vertex pair to branch on, p is the branching case where
the vertex pair is marked permanent, and f is the case where the vertex pair
is marked forbidden. Leaves are marked with *. As one can see in Fig. 7,
frequently edges are additionally marked permanent or forbidden because
of the application of the reduction rules; this is not represented explicitly in
the textual form.

The output with the complete list of branching rules can be downloaded
from http://www-fs.informatik.uni-tuebingen.de/piaf/software/ce-1.92.

References

[1] J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for
hard problems: a parameterized point of view. Discrete Mathematics,
229:3–27, 2001.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In
Proc. 43rd FOCS, pages 238–247. IEEE Computer Society, 2002.

[3] N. Bansal and V. Raman. Upper bounds for MaxSat: further improved.
In Proc. 10th ISAAC, volume 1741 of LNCS, pages 247–258. Springer,
1999.

[4] Leizhen Cai. Fixed-parameter tractability of graph modification prob-
lems for hereditary properties. Information Processing Letters, 58:171–
176, 1996.

[5] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative
information. In Proc. 44rd FOCS, pages 524–533. IEEE Computer
Society, 2003.

[6] J. Chen and I. A. Kanj. Improved exact algorithms for MAX-SAT.
In Proc. 5th LATIN, volume 2286 of LNCS, pages 341–355. Springer,
2002.

[7] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations
and further improvements. Journal of Algorithms, 41:280–301, 2001.

35

[8] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algo-
rithm for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[9] V. Dahlhöf and P. Jonsson. An algorithm for counting maximum
weighted independent sets and its applications. In Proc. 13th ACM-
SIAM SODA, pages 292–298, 2002.

[10] E. Dantsin, E. A. Hirsch, S. Ivanov, and M. Vsemirnov. Algorithms for
SAT and upper bounds on their complexity. Technical Report TR01-
012, Electronic Colloquium on Computational Complexity, 2001.

[11] E. D. Demaine and N. Immorlica. Correlation clustering with partial
information. In Proc. 6th APPROX, volume 2764 of LNCS. Springer,
2003.

[12] L. Drori and D. Peleg. Faster exact solutions for some NP-hard prob-
lems. Theoretical Computer Science, 287(2):473–499, 2002.

[13] D. Emanuel and A. Fiat. Correlation clustering — minimizing disagree-
ments on arbitrary weighted graphs. In Proc. 11th ESA, volume 2832
of LNCS, pages 208–220. Springer, 2003.

[14] S. S. Fedin and A. S. Kulikov. Automated proofs of upper bounds on
the running time of splitting algorithms. Manuscript, Steklov Institute
of Mathematics, St. Petersburg, September 2003.

[15] M. R. Fellows. Parameterized complexity: The main ideas and con-
nections to practical computing. In Experimental Algorithmics, volume
2547 of LNCS, pages 51–77. Springer, 2002.

[16] H. Fernau and R. Niedermeier. An efficient exact algorithm for Con-
straint Bipartite Vertex Cover. Journal of Algorithms, 38(2):374–410,
2001.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[18] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled
data clustering: fixed-parameter algorithms for clique generation. In
Proc. 5th CIAC, volume 2653 of LNCS, pages 108–119. Springer, 2003.
Long version to appear in Theory of Computing Systems.

[19] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. New
worst-case upper bounds for MAX-2-SAT with application to MAX-
CUT. Discrete Applied Mathematics, 130(2):139–155, 2003.

36

[20] E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Auto-
mated Reasoning, 24(4):397–420, 2000.

[21] F. Hüffner. Graph Modification Problems and Automated Search Tree
Generation. Diploma thesis, Universität Tübingen, WSI für Informatik,
October 2003.

[22] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree
clustering. Acta Informatica, 23(3):311–323, 1986.

[23] A. S. Kulikov. An upper bound O(20.16254n) for Exact 3-Satisfiability: A
simpler proof. Zapiski nauchnyh seminarov POMI, 293:118–128, 2002.
English translation is to appear in Journal of Mathematical Sciences.

[24] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, 223(1-2):1–72, 1999.

[25] X. Leroy, J. Vouillon, D. Doligez, et al. The Objective Caml
system. Software and documentation available on the web,
http://caml.inria.fr/, 1996.

[26] J. M. Lewis and M. Yannakakis. The node-deletion problem for hered-
itary properties is NP-complete. Journal of Computer and System Sci-
ences, 20(2):219–230, 1980.

[27] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Journal of Algorithms, 31:335–354, 1999.

[28] B. D. McKay. nauty user’s guide (version 1.5). Technical report TR-
CS-90-02, Australian National University, Department of Computer
Science, 1990.

[29] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification
of some edge modification problems. Discrete Applied Mathematics,
113:109–128, 2001.

[30] R. Niedermeier and P. Rossmanith. New upper bounds for Maximum
Satisfiability. Journal of Algorithms, 36:63–88, 2000.

[31] R. Niedermeier and P. Rossmanith. An efficient fixed parameter al-
gorithm for 3-Hitting Set. Journal of Discrete Algorithms, 1:89–102,
2003.

37

[32] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algo-
rithms for Weighted Vertex Cover. Journal of Algorithms, 47(2):63–77,
2003.

[33] S. I. Nikolenko and A. V. Sirotkin. Worst-case upper bounds for SAT:
automated proof. Presented at 15th European Summer School in Logic
Language and Information (ESSLLI 2003), 2003.

[34] J. M. Robson. Algorithms for maximum independent sets. Journal of
Algorithms, 7:425–440, 1986.

[35] J. M. Robson. Finding a maximum independent set in time O(2n/4)?
Technical report, Université Bordeaux 1, Département d’Informatique,
2001.

[36] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification
problems. In Proc. 28th WG, volume 2573 of LNCS, pages 379–390.
Springer, 2002.

[37] R. Sharan. Graph Modification Problems and their Applications to Ge-
nomic Research. PhD thesis, School of Computer Science, Tel-Aviv
University, 2002.

[38] R. Sharan and R. Shamir. CLICK: A clustering algorithm with appli-
cations to gene expression analysis. In Proc. 8th ISMB, pages 307–316.
AAAI Press, 2000.

[39] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey.
In Proc. 5th International Workshop on Combinatorial Optimization,
volume 2570 of LNCS, pages 185–208. Springer, 2003.

38

