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Abstract. A vertex coloring of a tree is called convex if each color in-
duces a connected component. The NP-hard Convex Recoloring prob-
lem on vertex-colored trees asks for a minimum-weight change of colors to
achieve a convex coloring. For the non-uniformly weighted model, where
the cost of changing a vertex v to color c depends on both v and c, we
improve the running time on trees from O(∆κ ·κn) to O(3κ ·κn), where ∆

is the maximum vertex degree of the input tree T , κ is the number of
colors, and n is the number of vertices in T . In the uniformly weighted
case, where costs depend only on the vertex to be recolored, one can
instead parameterize on the number of bad colors β ≤ κ, which is the
number of colors that do not already induce a connected component.
Here, we improve the running time from O(∆β · βn) to O(3β · βn). For
the case where the weights are integers bounded by M , using fast subset
convolution, we further improve the running time with respect to the ex-
ponential part to O(2κ ·κ4n2M log2(nM)) and O(2β ·β4n2M log2(nM)),
respectively. Finally, we use fast subset convolution to improve the expo-
nential part of the running time of the related 1-Connected Coloring

Completion problem.

1 Introduction

The issue of recoloring vertex-colored graphs by a minimum-cost set of color
changes in order to achieve a desired property of the color classes such as being
connected has recently received considerable attention; approximation as well
as fixed-parameter algorithms have been developed for the corresponding NP-
hard problems [2, 7, 8, 15, 16, 20]. Here, we focus on exact fixed-parameter
algorithms [9, 11, 18] for two prominent types of these problems, significantly
improving on the associated exponential running time factors. The two types
of problems we investigate are as follows. First, we study vertex-colored trees
and the task is to recolor some of its vertices such that each color class forms
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a connected component. The problem was introduced by Moran and Snir [15],
and it concerns the major part of this work. The second type of problem is not
only concerned with trees, but with general graphs. However, here we cannot
recolor freely, but a subset of vertices is uncolored and the task is to complete
the coloring such that each color class forms a connected component [8].

Convex Recoloring. Most of this work deals with convex recoloring problems on
trees. The most general version, that is, non-uniformly weighted, is defined as
follows.

Convex Recoloring

Instance: A tree T = (V, E) with a vertex coloring C : V → C and a
weight function w : V × C → Q+, where w(v, C(v)) = 0 for all v ∈ V .
Task: Find a convex coloring C′ : V → C with minimum weight
w(C′) :=

∑

v∈V w(v, C′(v)).

We defined Convex Recoloring only for trees. There are some positive
results for the special case of paths [15, 16], but there do not seem to be positive
results for general graphs (Moran et al. [17] considered the slightly more general
class of galled networks).

Let κ be the number of colors |C| and n the number of vertices |V |. Let β ≤ κ
be the number of bad colors, that is, colors that do not already induce a connected
component.

Convex Recoloring was introduced by Moran and Snir [15], who showed
that the decision version is NP-complete, even for unweighted paths. They also
gave an algorithm for non-uniformly weighted Convex Recoloring running
in O(∆κκn) time, where ∆ is the maximum degree of the input graph. They
further gave an algorithm running in O((κ/ log κ)κ · κn4) time, thus showing
that the problem is fixed-parameter tractable with respect to the parameter κ.
For the uniformly weighted case, they showed that κ can be replaced by the
potentially smaller parameter β in these running times.

For the unweighted case, Razgon [20] gave an 256k · nO(1) time algorithm,
where k is the number of vertices recolored. This can be related to other results
by noting that k ≥ β/2 (every color change can make at most two bad colors
good). Bodlaender and Weyer [5] considered a different parameter, namely the
separation of colors ℓ, which is the maximum number of colors separated by a
vertex, where we say that a vertex v separates a color c if there is a path between
two vertices of color c that passes through v. They presented a running time
of O(3ℓ ·ℓ3n). Since they showed that ℓ ≤ k+1, this also improves Razgon’s result
to O(3k ·kn). Bar-Yehuda et al. [2] further improved the bound to O(2k ·kn+n2)
by doing a better analysis of a variant of the dynamic programming algorithm
of Moran and Snir [15]. Bodlaender et al. [6] showed a problem kernel with
O(k6) vertices, which was later improved to O(k2) vertices [7]. Finally, Moran
and Snir [16] gave a factor-3 approximation for the uniformly weighted case
running in O(κn2) time. This was improved to a (2 + ǫ)-approximation running
in O(n2 + n(1/ǫ)241/ǫ) time [2].
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Bachoore and Bodlaender [1] gave an O(4kn) time algorithm for the variant
where only the leaves are precolored.

Connected Coloring Completion. The second type of problem we study has only
recently been introduced by Chor et al. [8]; accordingly, so far less results are
known for this problem. As Convex Recoloring, it is motivated by applica-
tions in bioinformatics.

1-Connected Coloring Completion

Instance: A graph G = (V, E) with k uncolored vertices U ⊆ V and a
vertex coloring C : V \ U → C.
Task: Find a convex coloring C′ : V → C that extends C, that is, for
all v ∈ V \ U : C′(v) = C(v).

Chor et al. [8] also considered the more general r-Connected Coloring

Completion, where the goal is to find a coloring where each color induces
at most r connected components. They showed that 1-Connected Coloring

Completion is NP-hard, even for only two colors, but can be solved in O(8k ·k+
2k · kn) time on an n-vertex graph. They further showed that for the parameter
treewidth, r-Connected Coloring Completion is fixed-parameter tractable
for r = 1 but W[1]-hard for r ≥ 2.

Our contributions. The main purpose of this paper can be seen in “engineer-
ing” dynamic programs for weighted Convex Recoloring problems and for
(unweighted) 1-Connected Coloring Completion with respect to their ex-
ponential running time factors. To this end, we make use of two main techni-
cal tricks investigated in greater depth in the following two sections. First, we
observe how a method for tree problems originally going back to Maffioli [14]
(which meanwhile has found several applications, see, e.g., [4, 5]) also helps to
significantly speed up and somewhat simplify dynamic programming algorithms
for weighted convex recoloring problems. Second, we show how a recent general
breakthrough result of Björklund et al. [3] concerning a more efficient compu-
tation of subset convolutions can be tailored towards applying it to recoloring
problems.3 More specifically, for non-uniformly weighted Convex Recoloring

we improve a previous exponential factor of ∆κ to 3κ and further on to 2κ, and
for uniformly weighted Convex Recoloring we improve a previous exponen-
tial factor of ∆β to 3β and further on to 2β; herein, ∆ denotes the maximum
vertex degree in the tree. Note that the improvements from exponential base 3
to 2 come along with increased polynomial factors in the running time. Finally,
we also adapt the subset convolution trick to 1-Connected Coloring Com-

pletion in order to improve the previous exponential factor of 8k to 4k.

3 Lingas and Wahlen [13] recently presented an application in the context of subgraph
homeomorphism problems.
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2 Fine-Grained Dynamic Programming

The major part of this work is concerned with improvements for non-uniformly
and uniformly weighted Convex Recoloring based on a more efficient dy-
namic programming strategy. The essence of the underlying trick can be traced
back to work of Maffioli [14]. We start with the somewhat less technical case con-
cerning a dynamic program for non-uniformly weighted Convex Recoloring

with respect to the parameter “number of colors” and then extend our findings
to uniformly weighted Convex Recoloring with respect to the parameter
“number of bad colors”.

2.1 Non-Uniformly Weighted Convex Recoloring

In this section, we show how to improve the running time of the dynamic pro-
gramming by Moran and Snir [15] from O(∆κ · κn) to O(3κ · κn), where κ is
the number of colors and n is the number of vertices in the input graph. The
dynamic programming works bottom-up from the leaves of the tree. The im-
provement comes from not considering all children of an inner vertex at once,
but rather taking them into account one-by-one. This is a classical trick for dy-
namic programming on trees (see e. g., [14, 5, 4]). A more detailed presentation
of our result is given in the thesis of Ponta [19].

We designate an arbitrary vertex r of T as the root. For each vertex v ∈ V ,
we denote by Tv the subtree induced by v and all descendants of v. For a vertex v
with children w1, . . . , wp in an arbitrary but fixed order, we denote by Tv,i the
subtree induced by v, the first i children w1, . . . , wi of v, and all descendants of
w1, . . . , wi. Note that Tv,0 contains only the vertex v and that Tv,p equals Tv.

The basic structure of Moran and Snir’s original algorithm is preserved. The
algorithm visits the vertices in postorder. We start by determining the trivial
convex recolorings for the leaves of the tree and proceed with the computation of
weights of convex recolorings of subtrees Tv for internal vertices v in a bottom-up
fashion. A solution for Tv is constructed using the previously computed solutions
for the subtrees induced by the children of v. The way a solution for the extended
problem is computed differs from Moran and Snir’s algorithm and is the key to
the running time improvement.

For the description of the algorithm, we need two dynamic programming
tables denoted by opt and optr. Let C′[Tv] be the set of colors appearing in the
subtree Tv.

Definition 1. Let v ∈ V and D ⊆ C be a set of colors. A recoloring C′ is a

(Tv,D)-coloring if it is a convex recoloring of Tv such that C′[Tv] = D. The cost

of an optimal (Tv,D)-coloring of Tv is denoted by opt(Tv,D).

If Tv has less than |D| vertices or D = ∅, then no (Tv,D)-coloring exists, and
we set opt(Tv,D) = ∞. A (Tv,D)-coloring is a convex recoloring of Tv that uses
exactly the colors from D. Thus, the cost of an optimal convex recoloring of T
can be calculated as minD⊆C opt(Tr,D). To retrieve the recoloring that realizes
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this cost, we can use standard dynamic programming backtracing methods. It
remains to describe how to fill in the dynamic programming table opt. For this,
we need a second table optr.

Definition 2. Let v ∈ V , D ⊆ C and c ∈ C. A recoloring C′ is a (Tv,D, c)-
coloring if it is a (Tv,D)-coloring such that C′(v) = c. The cost of an optimal

(Tv,D, c)-coloring is denoted by optr(Tv,D, c).

We set optr(Tv,D, c) = ∞ if c /∈ D. It is easy to calculate opt from optr:

opt(Tv,D) = min
c∈D

optr(Tv,D, c). (1)

For a subtree Tv consisting of only the vertex v, we set optr(Tv, {c}, c) = w(v, c)
and optr(Tv,D, c) = ∞ for D 6= {c}. For an interior vertex v with children
w1, . . . , wp, we inductively assume that the values optr(Twi

, ·, ·) for 1 ≤ i ≤ p
are already calculated. We then iteratively calculate optr(Tv,i+1, ·, ·) for i =
0, . . . , p, obtaining optr(Tv, ·, ·) = optr(Tv,p, ·, ·). Thus, each iteration has to take
into account the subtree Twi+1

in addition to the subtree Tv,i considered in the
previous iteration. In contrast, Moran and Snir [15] take into account all child
subtrees at once. The childwise iterative approach to dynamic programming on
trees has also been used e. g. to find minimum-weight subtrees of a tree [14, 4]
or for unweighted Convex Recoloring with a different parameter [5]. In our
context, the technique allows to avoid the maximum vertex degree ∆ in the base
of the exponential part of the running time of Moran and Snir’s algorithm.

For a simpler notation of the recurrence for optr(Tv,i+1, ·, ·), we define the
function optc(Twi+1

,D, c) for the (i + 1)th child wi+1 of v and D ⊆ C, v ∈ C as

optc(Twi+1
,D, c) = min{opt(Twi+1

,D \ {c}), optr(Twi+1
,D ∪ {c}, c)}. (2)

Thus, the value optc(Twi+1
,D, c) is the minimum cost of a convex recoloring C′

of Twi+1
that uses every color in D \ {c}, no color from C \ (D ∪ {c}), and uses

color c in Twi+1
only if C′(wi+1) = c.

The following lemma describes the central recurrence for optr.

Lemma 1. Let v be an interior vertex with children w1, . . . , wp. For any color

set D and any color c ∈ D it holds that

optr(Tv,i+1,D, c) = min
D1∪D2=D\{c}

D1∩D2=∅

(optr(Tv,i,D1 ∪ {c}, c) + optc(Twi+1
,D2, c)).

(3)

Proof. “≥”: Let C′ be an optimal (Tv,i+1,D, c)-coloring. The weight of the re-
coloring C′ is then w(C′) = optr(Tv,i+1,D, c). Let D′

1 = C′[Tv,i] \ {c} be the
set of colors different from c that C′ uses in the recoloring of Tv,i, and let
D′

2 = C′[Twi+1
]\{c} be the set of colors different from c that C′ uses in the recol-

oring of Twi+1
. Given the fact that C′(v) = c and the convexity of (C′, Tv,i+1), it

follows that D′
1 ∩ D′

2 = ∅. By the definitions of the sets D′
1, D

′
2, and D, it holds

that D′
1 ∪D′

2 = D \ {c}.
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For a subtree T ′ of a tree T and a coloring C of T , let C|T ′ be the restric-
tion of C to the vertices of T ′. Since C′|Tv,i

is a (Tv,i,D′
1, c)-coloring of Tv,i

and C′|Twi+1
is a (Twi+1

,D′
2)- or (Twi+1

,D′
2, c)-coloring of Twi+1

, it holds that

w(C′|Tv,i
) ≥ optr(Tv,i,D′

1 ∪ {c}, c) and w(C′|Twi+1
) ≥ optc(Twi+1

,D′
2, c). Conse-

quently, w(C′) is at least the right-hand side of (3).

“≤”: Consider D′
1 and D′

2 with D′
1 ∪ D′

2 = D \ {c} and D′
1 ∩ D′

2 = ∅ such
that the sum optr(Tv,i,D′

1 ∪ {c}, c) + optc(Twi+1
,D′

2, c) is minimized. Denote
with C′

v,i the recoloring of Tv,i witnessing the cost optr(Tv,i,D′
1 ∪ {c}, c) and

with C′
wi+1

the recoloring of Twi+1
witnessing the cost optc(Twi+1

,D′
2, c). We

can then combine C′
v,i and C′

wi+1
to obtain a coloring C′ for Tv,i+1. The weight

of C′ equals the right-hand side of (3). By construction, C′ is a convex recoloring
of Tv,i+1 that uses exactly the colors in D and has C′(v) = c. Thus, w(C′) is at
least optr(Tv,i+1,D, c). ⊓⊔

Theorem 1. Non-uniformly weighted Convex Recoloring can be solved in

O(3κ · κn) time for a tree with n vertices and κ colors.

Proof. We have shown how to solve non-uniformly weighted Convex Recol-

oring by dynamic programming using the recurrences (1), (2), and (3). By
visiting each vertex in postorder, it is possible to fill in opt, optc, and optr while
only accessing already calculated entries. It remains to bound the running time.
The bottleneck is clearly the calculation of (3). Since there are O(n) edges in a
tree, we have O(n) values for the first component Tv,i+1. For fixed c and Tv,i+1,
the computation of optr(Tv,i+1,D, c) effectively needs to examine all 3-ordered
partitions of C \ {c} of the form (C \ D,D1,D2); there are 3κ−1 such partitions.
In total, we arrive at the claimed running time. ⊓⊔

2.2 Uniformly Weighted Convex Recoloring

In this section, we show that for the uniformly weighted case, the parameter κ
(number of colors) can be replaced by β (number of bad colors) in the running
time of Theorem 1. This is particularly attractive for scenarios where the input is
already almost convex. Moran and Snir [15] have shown how to get an O(∆β ·βn)
time algorithm from their O(∆κ · κn) time dynamic programming algorithm for
the non-uniformly weighted case. We show that analogously, our O(3κ · κn)
time algorithm (Theorem 1) can be improved to O(3β · βn) time for the non-
uniformly weighted case. The approach is similar to that of Moran and Snir, but
we considerably simplify some concepts and proofs.

When recoloring, typically good colors are overwritten by bad colors, in order
to connect different regions of a bad color. It is tempting to just restrict the
search of alternative colors to bad colors, which would reduce the size of the
dynamic programming tables defined in Sect. 2.1 and give the desired speedup
of replacing κ by β in the base of the exponential factor. However, this is not
correct: sometimes a bad color has to be overwritten with a good color in order
to wipe out a region of this bad color. The central observation of Moran and Snir
[15] is that when overwriting a color with a good color, we do not have to decide

6



Proc. 5th TAMC, 2008

immediately which good color to use—the goal is after all only to get rid of the
bad color of the vertex that is being recolored. We capture this in the notion of
a restricted recoloring, which is a coloring V → C ∪ {∗}, where ∗ /∈ C serves to
mark vertices that are uncolored.4 It is easy to see that a standard recoloring
is convex iff all vertices on a path between two vertices with the same color c
also have color c. In analogy, we say that a restricted recoloring is convex iff all
vertices on a path between two vertices with the same color c 6= ∗ have color c.

In the uniform cost model, we can assign a cost to a restricted recoloring by
simply giving cost w(v) to the recoloring of v ∈ V with ∗ (this is not possible
in the non-uniform model, where cost also depends on the actual color used in
recoloring a vertex). The following lemma shows that to find an optimal convex
recoloring, it suffices to look for optimal restricted recolorings.

Lemma 2. In the uniformly weighted model, any convex restricted recoloring

can be converted in linear time into a convex recoloring of the same weight and

vice versa.

Proof. Given a convex restricted recoloring, we can fill in the colors of the un-
colored vertices by a depth-first search starting from some not uncolored vertex,
where we recolor an uncolored vertex with the color of its predecessor in the
search. This clearly produces a convex recoloring with the same weight.

The only way a convex recoloring Ĉ of a coloring C might not already be
a restricted recoloring is that some vertex color was overwritten with a good
color. We construct C′ from Ĉ by recoloring these vertices by ∗ instead. Clearly,
C′ has the same weight as Ĉ, and we claim that C′ is also convex. For this,
consider two vertices v1, v2 with C′(v1) = C′(v2) = c 6= ∗. By construction
of C′, then also Ĉ(v1) = Ĉ(v2) = c. Thus, every vertex on the path between v1

and v2 is colored c by Ĉ. If c is a bad color, then also every vertex on the path
between v1 and v2 is colored c by C′, since only good colors are used differently
between Ĉ and C′; if c is a good color, then Ĉ has left v1 and v2 unchanged
from C, and because c is a good color, any vertex between v1 and v2 must also
be colored c by C, and thus also by Ĉ and C′. In summary, every vertex on the
path between v1 and v2 is colored c by C′, and thus C′ is convex. ⊓⊔

By Lemma 2, it suffices to find the weight of an optimal restricted recoloring
to solve the uniformly weighted Convex Recoloring problem. The dynamic
programming from Sect. 2.1, based on the three tables opt, optr, and optc cal-
culated by the recurrences (1), (2), and (3) in tree postorder remains almost
unchanged. Therefore, we only point out the differences here.

Let B be the set of bad colors. The table opt now only covers restricted
colorings, that is, opt(Tv,D) is the weight of an optimal restricted coloring C′

such that for each c ∈ B there is a vertex x in Tv with C′(x) 6= C(x) and
C′(x) = c iff c ∈ D. Table optr is adapted analogously, and we additionally
allow ∗ as third argument. In the initialization, we also set optr(Tv, ∅, ∗) = w(v)

4 Moran and Snir [15] use the more complicated notion of a conservative recoloring.
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and optr(Tv,D, ∗) = ∞ for all D 6= ∅. For the case that c = ∗ in recurrence (3),
we use

optr(Tv,i+1,D, ∗) = min
D1∪D2=D
D1∩D2=∅

(optr(Tv,i,D1, ∗) + opt(Twi+1
,D2)). (4)

We omit the proof, which is analogous to that in Sect. 2.1.

Theorem 2. Uniformly weighted Convex Recoloring can be solved in O(3β ·
βn) time for a tree with n vertices and β bad colors.

3 Fast Subset Convolution

When we restrict the weights to be integers bounded by M , we can further
improve the exponential part of the running time for Convex Recoloring by
using fast subset convolution. This novel technique was developed by Björklund
et al. [3], who used it to speed up several dynamic programming algorithms such
as the classical Dreyfus–Wagner algorithm [10] for Steiner Tree in graphs. It
was also used to improve the speed of subgraph homeomorphism algorithms [13].

Let f and g be functions defined on the power set of a finite set N with
|N | = p, that is, f, g : P(N) → I. For any ring over I that defines addition and
multiplication on elements of I, the subset convolution of f and g, denoted by
f ∗ g, is defined for each S ⊆ N as

f ∗ g : P(N) → I, (f ∗ g)(S) =
∑

T⊆S

f(T )g(S \ T ). (5)

To calculate the subset convolution means to determine the value of f ∗ g
for all 2p possible inputs, assuming that f and g can be evaluated in constant
time (typically by being stored in a table). A naive algorithm that calculates
each value independently needs O(

∑p
i=0

(

p
i

)

2i) = O(3p) ring operations. The
following result shows a substantial improvement.

Theorem 3 (Björklund et al. [3]). The subset convolution over an arbitrary

ring can be computed with O(2p · p2) ring operations.

Björklund et al. [3] showed how to apply Theorem 3 to also calculate the
subset convolution for the integer min-sum semiring

f ∗ g : P(N) → Z, (f ∗ g)(S) = min
T⊆S

f(T ) + g(S \ T ) (6)

by embedding it into the standard integer sum-product ring. Here, it is not
appropriate to assume that addition and multiplication can be done in constant
time, since the numbers involved can have up to n bits.5 Björklund et al. [3]
did not give a precise estimation, but it is not too hard to derive the following
bound from their Theorem 3 [3].

Proposition 1. The subset convolution over the integer min-sum ring with M :=
maxi∈(f(P(N))∪g(P(N))) |i| can be computed in O(2p · p3M log2(Mp)) time.

5 To avoid complicated terms, we assume a bound of O(n log2 n) on the running time
of integer multiplication of two n-bit numbers. Better bounds are known [12].
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3.1 Convex Recoloring

We now use fast subset convolution over the integer min-sum to speed up the
dynamic programming for Convex Recoloring. Recall that the bottleneck in
deriving the running time of O(3κ ·κn) (Theorem 1) comes from recurrence (3),
which we recall here:

optr(Tv,i+1,D, c) = min
D1∪D2=D\{c}

D1∩D2=∅

(optr(Tv,i,D1 ∪ {c}, c) + optc(Twi+1
,D2, c)).

Consider fixed Tv,i+1 and c. Then (3) can be seen as a subset convolution over the
integer min-sum semiring (like in (6)) by setting f c

v,i(D) = optr(Tv,i,D ∪ {c}, c)
and gc

wi+1(D) = optc(Twi+1
,D, c):

optr(Tv,i+1,D, c) = (f c
v,i ∗ gc

wi+1
)(D \ {c}). (7)

Theorem 4. The non-uniformly weighted Convex Recoloring problem with

integer weights bounded by M can be solved in O(2κ ·κ4n2M log2(nM)) time for

a tree with n vertices and κ colors.

Proof. We solve non-uniformly weighted Convex Recoloring by dynamic pro-
gramming using the recurrences (1), (2), and (3), where (3) is calculated by fast
subset convolution as in (7). Using Proposition 1, for fixed Tv,i+1 and c, we can
calculate (7) in O(2κ ·κ3nM log2(nM)) time, because the values of f c

v,i and gc
wi+1

are bounded by nM , since they are weights of recolorings, and κ ≤ n. The rest
of the analysis is as in Theorem 1. ⊓⊔

In the same way as for Theorem 2, we obtain a running time of O(2β ·
β4n2M log2(nM)) for the uniformly weighted case.

Theorem 5. The uniformly weighted Convex Recoloring problem with in-

teger weights bounded by M can be solved in O(2β · β4n2M log2(nM)) time for

a tree with n vertices and β bad colors.

3.2 1-Connected Coloring Completion

Chor et al. [8] gave simple linear-time preprocessing rules that allow without
loss of generality to assume κ ≤ k, that is, there are at most as many colors as
uncolored vertices. The data reduction also collapses each maximal connected
monochromatic subgraph into a single vertex. Thus, the problem can be restated
as finding a coloring of the set U of uncolored vertices such that each color
induces a connected subgraph in U and each vertex in V \ U with color c is
adjacent to a vertex with color c in U .

Chor et al. [8] solved 1-Connected Coloring Completion by using a
binary-valued dynamic programming table T (C′, U ′) for C′ ⊆ C and U ′ ⊆ U
with the following semantics: T (C′, U ′) = 1 iff if it is possible to color U ′ with C′

such that each color c ∈ C′ induces a connected subgraph Gc in U that dominates

the vertices colored c in V \ U , meaning that each such vertex is adjacent to at
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least one vertex in Gc. Thus, if T (C′, U ′) = 0, then it is not possible to solve
the instance by assigning (exclusively) the colors from C′ to the vertices in U ′;
but if T (C′, U ′) = 1, then solving the instance is still possible by finding a
suitable allocation of the remaining colors C \ C′ to the remaining uncolored
vertices U \U ′. Clearly, if T (C, U) = 1, then the instance is solvable, and we can
find the corresponding solution by backtracing.

Chor et al. [8] used the following recurrence to fill in T :

T (C′, U ′) = 1 ⇐⇒ ∃c ∈ C′, U ′′ ⊂ U ′ : T (C′ \ {c}, U ′′) = 1

and U ′ \ U ′′ induces a connected subgraph that
dominates the vertices of color c,

(8)

which can be simplified to

T (C′, U ′) =
∨

U ′′⊆U ′

(

T (C′ \ {c}, U ′′) ∧ T ({c}, U ′ \ U ′′)
)

(9)

for some c ∈ C′. To be able to calculate recurrence (9), we need all values of
T ({c}, U ′) for c ∈ C and U ′ ⊆ U . The calculation can clearly be done in O(2k ·kn)
time, since there are 2k ·k such entries, and each can be calculated in linear time.
A straightforward calculation of (9) for an entry then takes O(2k) time, and there
are 4k table entries, thus giving a total running time of O(8k + 2k · kn).

To speed up the exponential part of the calculation of (9), we use fast subset
convolution over the or-and semiring.

Proposition 2. The subset convolution over the or-and semiring

f ◦ g : P(N) → {0, 1}, (f ◦ g)(S) =
∨

T⊆S

f(T ) ∧ g(S \ T ) (10)

with |N | = p can be calculated in O(2p · p3 log2 p) time.

Proof. It holds that

(f ◦ g)(S) =
∨

T⊆S

f(T ) ∧ g(S \ T ) (11)

=

{

1 if maxT⊆S(f(T ) + g(S \ T )) = 2

0 otherwise
(12)

=

{

1 if (f ∗ g)(S) = 2

0 otherwise,
(13)

and the subset convolution “∗” in the integer min-sum semiring can be calculated
using Proposition 1 with M = 1. ⊓⊔

Next, we define

fC′(U ′) = T (C′ \ {c}, U ′) (14)

gC′(U ′) = T ({c}, U ′), (15)

10
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for some c ∈ C′, which gives us

T (C′, U ′) = (fC′ ◦ gC′)(U ′). (16)

Theorem 6. 1-Connected Coloring Completion can be solved in O(4k ·
k3 log2 k + 2k · kn) time.

Proof. By Proposition 2, for fixed C′, we can calculate (16) in O(2k · k3 log2 k)
time. There are 2k subsets C′ ⊆ C. Thus, together with the O(2k · kn) time for
the table initialization, we arrive at the claimed running time. ⊓⊔

4 Outlook

We improved known fixed-parameter tractability results based on dynamic pro-
gramming for several NP-hard recoloring problems in trees and graphs. These
problems are mainly motivated by applications in bioinformatics (particularly,
phylogenetics). The running times now seeming practically feasible, so it would
be desirable to experimentally test the algorithms on real-world data. In partic-
ular, it would be interesting to see how the improvements concerning the expo-
nential factors that have been achieved due to fast subset convolution pay off in
practice. Moreover, also the space consumption of our algorithms is exponential
and so memory space could become the real bottleneck in applications—this
invites further research on improvement strategies.
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