
Complexity and Exact Algorithms for Vertex

Multicut in Interval and Bounded Treewidth

Graphs 1

Jiong Guo a,∗ Falk Hüffner a Erhan Kenar b Rolf Niedermeier a

Johannes Uhlmann a

aInstitut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, D-07743 Jena, Germany

bWilhelm-Schickard-Institut für Informatik, Universität Tübingen,

Sand 13, D-72076 Tübingen, Germany

Abstract

Multicut is a fundamental network communication and connectivity problem.
It is defined as: given an undirected graph and a collection of pairs of terminal
vertices, find a minimum set of edges or vertices whose removal disconnects each
pair. We mainly focus on the case of removing vertices, where we distinguish between
allowing or disallowing the removal of terminal vertices. Complementing and refining
previous results from the literature, we provide several NP-completeness and (fixed-
parameter) tractability results for restricted classes of graphs such as trees, interval
graphs, and graphs of bounded treewidth.

Key words: Combinatorial optimization, Complexity theory, NP-completeness,
Dynamic programming, Graph theory, Parameterized complexity

1 Introduction

Motivation and previous results. Multicut in graphs is a fundamental
network design problem. It models questions concerning the reliability and

∗ Corresponding author. Tel.: +49 3641 9 46325; fax: +49 3641 9 46002
E-mail address: guo@minet.uni-jena.de.
1 An extended abstract of this work appears in the proceedings of the 32nd Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2006) [19]. Now, in particular the proof of Theorem 5 has been much
simplified.

Preprint submitted to Elsevier Science 2 February 2007

robustness of computer and communication networks. Informally speaking,
the problem is, given a graph, to determine a minimum size set of either edges
or vertices such that the deletion of this set disconnects a prespecified set of
pairs of terminal vertices in the graph. In most cases, the problem is NP-
complete. There are many results and variants for Multicut and we refer to
Costa, Létocart, and Roupin [8] for a recent survey.

The major part of the literature deals with the “edge deletion variant” of
Multicut (Edge Multicut) [8,10,16,21,20]. Given a graph and m pairs of
terminal vertices, this problem is solvable in polynomial time for m = 1 [11]
and m = 2 [22,23]. For m ≥ 3, the problem is NP-complete [10]. The problem
remains NP-hard and MaxSNP-hard even when the input graph is a star [16].

Our main focus here lies on the “vertex deletion variant” (Vertex Multi-
cut). Relatively little seems to be known for Vertex Multicut problems;
we are only aware of two recent investigations [9,26]. Călinescu, Fernandes,
and Reed [9] introduced two variants of Vertex Multicut:

Unrestricted Vertex Multicut (UVMC)
Input: An undirected graph G = (V, E), a collection H of pairs of vertices
H ⊆ V × V , and an integer k ≥ 0.
Task: Find a subset V ′ of V with |V ′| ≤ k whose removal separates each
pair of vertices in H .

The vertices appearing in the vertex pairs in H are called terminals and,
throughout this paper, we use S to denote the set of terminals, i.e., S :=
⋃

(u,v)∈H{u, v}. By way of contrast, in the case of Restricted Vertex Mul-
ticut the removal of terminal vertices is not allowed.

Restricted Vertex Multicut (RVMC)
Input: An undirected graph G = (V, E), a collection H of pairs of vertices
H ⊆ V × V , and an integer k ≥ 0.
Task: Find a subset V ′ of V with |V ′| ≤ k that contains no terminal and
whose removal separates each pair of vertices in H .

Since RVMC forbids the removal of terminals, there are instances that have
no solution, namely when there is a path between a terminal pair in H con-
sisting only of terminal vertices. As it is easy to determine whether or not
an instance has a solution for RVMC by checking whether all terminal pairs
are disconnected after removing all nonterminal vertices, we assume that all
instances under consideration allow for feasible solutions for RVMC.

RVMC is at least as hard as UVMC in general graphs and many special graph
classes: From an instance of UVMC we can obtain an “equivalent” RVMC
instance by adding for each terminal s a new degree-1 vertex s′ adjacent only
to s. Each terminal pair (s, t) is substituted by (s′, t′). Then, solving RVMC

2

in this new instance is equivalent to solving UVMC in the original instance.

Călinescu et al. [9] showed that RVMC is NP-complete in bounded-degree
trees and the “easier” UVMC is polynomially solvable in trees but becomes
NP-complete in bounded-degree graphs of treewidth two. Moreover, they gave
a polynomial-time approximation scheme (PTAS) for UVMC in graphs of
bounded treewidth. Marx [26] extends the results for UVMC (which he calls
Minimum Node Multicut) by providing an O(2k` · 4k3

· |G|O(1)) time algo-
rithm for UVMC in general graphs, where k is an upper bound on the vertices
to be removed and ` is the number of terminal pairs. In other words, UVMC
is fixed-parameter tractable (FPT) with respect to the combined parame-
ter (k, `). Because of the huge combinatorial explosion in k (and `), however,
this result is of mainly theoretical interest and improvements are highly desir-
able. Finally, we mention in passing that Garg, Vazirani, and Yannakakis [17]
studied the vertex deletion variant for the closely related Multiway Cut
problem.

Our results—overview. We continue and complement the work of Călinescu
et al. [9] and Marx [26] as follows: We show that the NP-complete RVMC in
trees is fixed-parameter tractable with respect to the parameter k (number of
vertex deletions) with the modest running time O(|S|2 · |E|+ 2k · `) (again, `
is the number of terminal pairs). Whereas in trees UVMC is polynomial-time
solvable but RVMC is NP-complete [9], we have the surprising result that
UVMC is NP-complete in interval graphs but RVMC is polynomial-time solv-
able here; interval graphs are graphs where the vertices correspond to intervals
on the real line and there is an edge corresponding to each pair of intersect-
ing intervals [27]. More specifically, the NP-completeness result for UVMC
even holds in interval graphs of pathwidth four. We also strengthen the NP-
completeness result for RVMC in trees of Călinescu et al. by showing that NP-
completeness already holds for maximum-vertex-degree-three trees whereas
their result only holds for maximum vertex degree four. Note that RVMC is
clearly polynomial-time solvable in paths, that is, trees with maximum vertex
degree two. Moreover, we show that RVMC in general graphs is NP-complete
even in case of only three terminal pairs, hence excluding fixed-parameter
tractability with respect to the parameter “number of terminal pairs”. By
way of contrast, we show that RVMC can be solved in O(|S||S|+ω+1 · ω2 · |V |)
time on graphs of treewidth ω; thus, RVMC is fixed-parameter tractable with
respect to the combined parameter “treewidth” and “terminal set size”. Ob-
serve that there is no hope for fixed-parameter tractability exclusively with
respect to either the parameter |S| or the parameter ω. This fixed-parameter
tractability result directly transfers to UVMC as well; indeed, it also works
for the Edge Multicut (EMC) variant (note that Bentz [1] independently
obtained the EMC fixed-parameter tractability result). On the way to show
the NP-completeness of UVMC in interval graphs, we prove that Edge Mul-

3

Table 1
Computational complexity of Multicut problems for several graph classes. For the
parameters, |S| is the number of terminals, k is the number of deletions, and ω is the
treewidth of the input graph. In a row with a parameter, “NP-c” implies hardness
even for some constant parameter value.

Graph class Parameter EMC UVMC RVMC

Interval graphs NP-c [16] NP-c (Thm. 4) P (Thm. 5)

Trees NP-c [16] P [9] NP-c [9]

k FPT [20] — FPT (Thm. 2)

General graphs NP-c [10] NP-c [9] NP-c [9]

k open open open

|S| NP-c [10] FPT [26] NP-c (Thm. 6)

ω NP-c [16] NP-c [9] NP-c [9]

|S| & ω FPT (Thm. 9, [1]) FPT (Cor. 2) FPT (Thm. 8)

ticut is NP-complete in caterpillar graphs with maximum vertex degree five.

Table 1 summarizes most of the presented results.

Preliminaries. We introduce some additional terminology. By default, we
consider only undirected graphs G = (V, E) without self-loops. A tree is called
caterpillar if removing its leaves gives a path. For any graph G = (V, E), we
can construct its line graph as (E, {{e1, e2} ∈ E | e1 ∩ e2 6= ∅}), that is,
the vertices in the line graph one-to-one correspond to the edges in G and
two vertices in the line graph are adjacent iff their corresponding edges in G
have a common endpoint. For an overview on graph classes, we refer to [6].
We use G[V ′] to denote the subgraph of G induced by the vertices V ′ ⊆ V ,
and V (G) to refer to the vertex set V . A set of vertices V ′ ⊆ V is called
vertex separator if G[V \ V ′] has more connected components than G. For
a minimization problem, a feasible solution is called minimal if it does not
contain another feasible solution as proper subset, and minimum if there is
no other feasible solution with better measure.

Many NP-complete graph problems become easy when the input instance
is a tree. The notion treewidth, introduced by Robertson and Seymour [31],
tries to capture the “tree-likeness” of a graph: “tree-like” graphs have small
treewidth, and in particular, trees have treewidth one. Many in general NP-
hard graph problems can then be solved in polynomial or even linear time
when the underlying graph has a treewidth bounded by a constant [2,3,30,32].

Definition 1 A tree decomposition of G is a pair 〈{Xi | i ∈ I}, T 〉, where
each Xi is a subset of V , called bag, and T = (I, F) is a tree with node set I
and edge set F . The following must hold:

4

(1)
⋃

i∈I Xi = V ;
(2) for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;
(3) for all i, j, l ∈ I, if j lies on the path between i and l in T , then Xi∩Xl ⊆

Xj.

The width of 〈{Xi | i ∈ I}, T 〉 is max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum width over all tree decompositions of G.

A path decomposition is a tree decomposition where T is a path; pathwidth
is defined analogous to treewidth. For a more detailed introduction to tree
decompositions we refer to [2,3,4,25,29,30].

A tree decomposition 〈{Xi | i ∈ I}, T 〉 can be transformed in linear time
and without affecting its width such that it becomes nice [25, Lemma 13.1.3].
Then the following conditions are satisfied:

(1) T is rooted;
(2) every node of the tree T has at most two children;
(3) if a node i has two children j and k, then Xi = Xj = Xk (in this case i

is called a join node);
(4) if a node i has one child j, then either

(a) |Xi| = |Xj| + 1 and Xj ⊂ Xi (in this case i is called an introduce
node), or

(b) |Xi| = |Xj| − 1 and Xi ⊂ Xj (in this case i is called a forget node).

We investigate Multicut problems in the context of parameterized complex-
ity [12,14,29].

A problem is fixed-parameter tractable (FPT) with parameter k if an instance
of size n can be solved in f(k) · nO(1) time, where f is a computable function
solely depending on the parameter k. The idea is to restrict the seemingly
unavoidable combinatorial explosion that occurs in exact solutions to NP-hard
problems to certain, hopefully small problem parameters.

2 Trees

Unrestricted Vertex Multicut in trees is trivially solvable in O(|V |·|H|)
time [9]: Root the tree at an arbitrary vertex. Then, compute the least common
ancestors for all terminal pairs and sort these ancestors in a list L (possibly
with multiple occurrences of one ancestor) by decreasing order of their depth. 2

Finally, while L 6= ∅, remove the first element of L and its corresponding vertex

2 The depth of a vertex in a rooted tree is the length of the path from the root to
this vertex.

5

1

2

3

4

5 r1 r2 r3 r4 r5

a1 a2 a3 a4 a5

l1 l2 l3 l4 l5

p q

Fig. 1. An example for the reduction from Vertex Cover to RVMC. The left figure
is a Vertex Cover instance and the right is the corresponding RVMC instance
with H = {(l1, l2), (l2, l3), (l3, l4), (l4, l1), (l3, l5), (l4, l5)} ∪ {(ri, q) | 1 ≤ i ≤ 5}. Only
the rectangular vertices can be deleted (all others are terminals). It is easy to see
that the graph has a size-3 vertex cover (for example, {2, 3, 4}), and the RVMC
instance has a size-4 solution (for example, {p, a2, a3, a4}).

from T and delete all separated terminal pairs from H and their least common
ancestors from L. The solution is then the set of the removed vertices.

Călinescu et al. [9] showed that RVMC is NP-complete in trees with maximum
vertex degree four by giving two reductions, one from 3SAT to EMC in binary
trees and one from EMC in binary trees to RVMC. It is easy to observe that
RVMC on trees with maximum vertex degree two, that is, paths, can be solved
in O(|V | · |H|) time. The complexity of RVMC in trees with maximum vertex
degree three remained open. Here we close this gap by giving a direct reduction
from Vertex Cover to RVMC.

Theorem 1 Restricted Vertex Multicut in trees with maximum vertex
degree three and pathwidth two is NP-complete.

PROOF. The reduction is from the NP-complete Vertex Cover prob-
lem [15], which for a graph G = (V = {v1, v2, . . . , vn}, E) and k ≥ 0 asks
whether there is a set of vertices V ′ ⊆ V with |V ′| ≤ k such that for every
edge {v, w} ∈ E at least one of v and w is in V ′. Construct the (3n+2)-vertices
tree T = (W, F) with

W := {li, ai, ri | 1 ≤ i ≤ n} ∪ {p, q}

and

F := {{li, ai}, {ai, ri} | 1 ≤ i ≤ n}∪{{ri, ri+1} | 1 ≤ i < n}∪{{rn, p}, {p, q}}.

As the set of terminal pairs H we take for each vertex vi ∈ V the pair (ri, q)
and, moreover, for each edge {vi, vj} ∈ E, we add (li, lj). See Fig. 1 for an
example of the construction.

It is easy to show that the Vertex Cover instance has a solution with
no more than k vertices iff the constructed RVMC instance can be solved

6

by removing at most k + 1 vertices. The constructed tree clearly has maxi-
mum vertex degree three and a path decomposition with pathwidth equal to
two. 2

In the following, we show that RVMC in trees is fixed-parameter tractable
with respect to the number of allowed vertex removals k. The basic idea is
to modify the polynomial-time algorithm for UVMC in trees [9] into a depth-
bounded search tree algorithm. This search tree algorithm is also similar to
one for Edge Multicut in trees [20].

Theorem 2 Restricted Vertex Multicut in trees can be solved in O(|S|2·
|E|+ 2k · |H|) time, where k is the number of allowed vertex removals.

PROOF. Let T = (V, E) be the input instance and S :=
⋃

(u,v)∈H{u, v} the
set of terminals. The first step is to “contract” edges with both endpoints being
terminals: For an edge {u, v} with u, v ∈ S, we have (u, v) /∈ H , since otherwise
the instance is not solvable. Delete both u and v and the edge between them
from T ; insert a new vertex w into T and set N(w) := N(u) ∪N(v) \ {u, v}.
Furthermore, replace each u and v in H by w. It is easy to see that this step
does not change the solution, because neither u nor v could have been taken
into a solution.

Then, the search tree algorithm proceeds as the polynomial-time algorithm
for UVMC in trees: root T in an arbitrary vertex, compute the least common
ancestors of all terminal pairs and sort them by decreasing depth in a list L
(possibly with multiple occurrences of one ancestor). While L 6= ∅, consider
the first element u of L, which is the least common ancestor of a terminal
pair (v, w). If u is a nonterminal, then remove it and update L and T ; oth-
erwise, there are two cases: If u = v or u = w, then we delete the neighbor
of u that lies on the path from u to w or v. This neighbor has to be a non-
terminal due to the first step. Otherwise, we have u 6= v and u 6= w. Then u
has two nonterminals as neighbors lying on the path between v and w and we
branch into two cases, in each case removing one of the two neighbors. This
case distinction is sufficient, since choosing any other vertex cannot separate
more pairs.

Finally, if there is a node in the search tree where L = ∅ and at most k
vertices have been removed, then we have a solution. It is easy to observe that
the depth of the search tree is bounded by k and its size is O(2k). At each
node of the search tree, we update the list L, that is, delete all terminal pairs
from H which are no longer connected. Using a prepared list of pairs to mark
“dead”, this can be done in O(|H|) time. The initial setup takes O(|S|2 · |E|
time. 2

7

3 Interval Graphs

As described in Section 1, RVMC can be easily reduced to RVMC, proving
that RVMC is at least as hard as UVMC in general graphs and many special
graph classes. However, the class of interval graphs is an exception: UVMC is
NP-complete in interval graphs, while RVMC is solvable in polynomial time.
This is possible because the described reduction from UVMC to RVMC does
not preserve the property of being an interval graph.

3.1 Unrestricted Vertex Multicut in Interval Graphs.

To show the NP-completeness of UVMC in interval graphs, we first show that
Edge Multicut is NP-complete in degree-bounded caterpillars and then
reduce EMC in caterpillars to UVMC in interval graphs.

Theorem 3 Edge Multicut in caterpillars with maximum vertex degree
five is NP-complete.

PROOF. We use a reduction from 3-SAT, which is similar to the reduction
used to show the NP-completeness of EMC in binary trees [9, Theorem 11].

Let F (x1, x2, . . . , xn) =
∧m

j=1(lj,1 ∨ lj,2 ∨ lj,3) with lj,k ∈
⋃

1≤i≤n{xi, x̄i} for 1 ≤
j ≤ m and 1 ≤ k ≤ 3. We construct a caterpillar tree as follows. First, for
every variable xi, we construct a path consisting of three vertices with the two
degree-1 vertices labeled by xi and x̄i and add the terminal pair (xi, x̄i) to H .
We call the path a variable gadget.

For each clause (lj,1 ∨ lj,2 ∨ lj,3), we construct a star with four vertices where
the three degree-1 vertices are labeled by lj,1, lj,2, and lj,3, respectively. This
star is called clause star . The terminal pairs (lj,1, lj,2), (lj,1, lj,3), and (lj,2, lj,3)
are added to H .

Then, we add to H the terminal pairs consisting of a degree-1 vertex in the
clause stars and the corresponding degree-1 vertex in the variable gadget, that
is, if lj,k = xi (or lj,k = x̄i), then we add the pair (lj,k, xi) (or (lj,k, x̄i)) to H .

Finally, edges are inserted between the only unlabeled vertices of the clause
stars and the variable gadgets in such a way that the resulting graph is a
caterpillar. See Fig. 2 for an example.

We claim that the Boolean formula F (x1, x2, . . . , xn) is satisfiable iff the con-
structed caterpillar has a solution for EMC of size exactly n + 2m, where m

8

x1 x2 x3x̄1 x̄2 x̄3 l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

Fig. 2. Example for the transformation of a 3-CNF formula
F (x1, x2, x3) = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) into a caterpillar as described
in the proof of Theorem 3. The terminal pairs for the EMC instance are
H := {(x1, x̄1), (x2, x̄2), (x3, x̄3), (l1,1, l1,2), (l1,1, l1,3), (l1,2, l1,3), (l2,1, l2,2),
(l2,1, l2,3), (l2,2, l2,3), (l1,1, x̄1), (l1,2, x2), (l1,3, x3), (l2,1, x1), (l2,2, x2), (l2,3, x̄3)}.

1

2

3 4

5

6

7 8

9

e1

e2 e3

e4

e5

e6 e7

e8

e1

e2 e3

e4

e5

e6 e7

e8

Fig. 3. The figure on the left shows an instance of EMC, where
H = {(3, 8), (3, 9), (6, 9)}. The figure on the right shows the corresponding instance
(line graph) for UVMC with H ′ = {(e2, e7), (e2, e8), (e5, e8), (e6, e8), (e7, e8)}. In
both instances, removing the set {e1, e8} yields a minimum solution.

denotes the number of clauses in F . Assuming that every clause consists of
exactly three literals, n + 2m is the lower bound for the solution size of EMC
on this caterpillar, since, in any case, we have to remove at least one edge from
every variable gadget and at least two edges from every clause star. The claim
can be proven in a similar way as Lemma 12 in [9]: assigning “true” to xi

corresponds to removing the edge adjacent to xi, and satisfying a clause by a
literal corresponds to not deleting the corresponding edge in the clause star.
The size bound effects that an EMC solution corresponds to a valid 3-SAT
solution. 2

In the second step of our NP-completeness proof, we reduce EMC in caterpil-
lars with maximum vertex degree five to UVMC in interval graphs with path-
width four. As a rule of thumb, the natural way to reduce an edge-deletion
problem to a vertex-deletion problem is to consider line graphs. Analogously
to Călinescu et al. [9], we construct the line graph of the caterpillar.

Theorem 4 Unrestricted Vertex Multicut in interval graphs with
pathwidth at least four is NP-complete.

PROOF. Let T = (V, E) be the input caterpillar and let H be the set of
terminal pairs of the EMC instance. We construct the line graph G = (E, E ′)

9

of T and add for each terminal pair (u, v) ∈ H all terminal pairs (e, e′) to the
set of terminal pairs H ′ of the UVMC instance where the edges e and e′ are
incident to u and v, respectively. See Fig. 3 for an example. Călinescu et al.
showed that then both instances have the same solution [9, Thm. 4], which
implies correctness of the above reduction.

It remains to be shown that the pathwidth of the line graph G is four. The
line graph of a caterpillar is an interval graph, since the maximal cliques of
this line graph can be linearly ordered such that for each vertex v the maximal
cliques containing v occur consecutively; this is a well-known characterization
of interval graphs [6]. The pathwidth of an interval graph is equal to the
maximum clique size minus one, and the maximum clique size in the line
graph is equal to the maximum vertex degree of the caterpillar. Thus, the
interval graph has pathwidth four. 2

3.2 Restricted Vertex Multicut in Interval Graphs

By Theorem 4, UVMC is NP-complete for interval graphs even with bounded
pathwidth. This also holds for EMC: EMC is NP-complete even in stars [16],
which are interval graphs with pathwidth one. In contrast to this, we now
give a polynomial-time algorithm solving RVMC in interval graphs. For an
interval graph G = (V, E), it is well-known that an interval representation
of G can be computed in O(|V |+ |E|) time [5], where the vertices in V one-to-
one correspond to the closed intervals of the real line such that two vertices u
and v are adjacent if and only if their corresponding intervals have a nonempty
intersection. We assume that all intervals have distinct integral endpoints [18],
that is, the endpoints are labeled by 1, 2, . . . , 2|V | from left to right. In the
following, we use the terms “vertex” and “interval” interchangeably.

Our algorithm works on the interval representation. Assume that for each
pair (s, t) ∈ H , interval s = [a, b] is to the left of interval t = [c, d], that is,
b < c. To simplify the presentation, we introduce a point 0 to the left of all
points 1, 2, . . . , 2|V |. For 0 ≤ i ≤ 2|V | − 1, we use Gi to denote the subgraph
of G induced by the intervals whose left endpoints are greater than i, Si to
denote the set of terminal intervals contained in Gi, and Hi to denote the
set of terminal pairs in H that only contain terminal intervals from Si. By
decreasing order of i, the algorithm computes the optimal solution Ci of the
RVMC instance which consists of the graph Gi, the set Hi of terminal pairs,
and the terminal set Si.

3 The computation of Ci, 0 ≤ i < 2|V | − 1, is based
on the values of Cj with i < j ≤ 2|V | − 1. When reaching G0 = G, we have
the overall optimal solution C0 for G. The following pseudo-code shows the

3 Note that Si may contain some terminal intervals that do not occur in Hi.

10

algorithm.

1 C2|V |−1 ← ∅
2 for i = 2|V | − 2 downto 0:
3 (s, t)← ([a, b], [c, d]) ∈ Hi such that c is minimum
4 X ← {x | b < x < c and no terminal interval in Si contains x}
5 for each x ∈ X:

6 Y ← the set of intervals containing x
7 Cx

i ← Cx ∪ Y
8 Ci ← Cx

i with |Cx
i | minimum among all x ∈ X

9 return C0

Observe that for s and t as chosen in line 3 to be separated, there must be some
point x with b < x < c that contains no interval. Thus, to separate s and t, we
must find some x with b < x < c that is not contained in any terminal interval
and then delete all intervals containing x. We collect the candidates for x in
line 4. When deleting the intervals in Y for some x, graph Gi splits into two
subgraphs: one is induced by the intervals to the left of x, and the other is Gx

(recall that Gx contains only intervals with endpoints greater than x). Due to
the minimality of the left endpoint c of t, there is no terminal pair contained
in the first subgraph, and we can ignore this subgraph. Thus, for a choice
of x, the optimal solution for Gi is of size |Y | + |Cx|, and we obtain Ci by
minimizing over all possible values of x (line 8).

Theorem 5 Restricted Vertex Multicut in interval graphs can be solved
in O(|V |2 + |V | · |H|) time.

PROOF. The correctness of the algorithm directly follows from its descrip-
tion. Concerning the running time of the algorithm, the computation of the
interval representation takes O(|V |+ |E|) time [5]. For each of the graphs Gi

with 0 ≤ i ≤ 2n − 1, the algorithm computes the optimal solution Ci by
first finding the terminal pair (s, t) where the left endpoint of t is the small-
est among all terminal pairs contained in Hi, and, then, considering every
point x between the right endpoint of s and the left endpoint of t. Clearly,
the computation of Ci needs O(|V |+ |H|) time. Therefore, the algorithm runs
in O(|V |2 + |V | · |H|) time. 2

The algorithm can be easily extended to handle weighted vertices within the
same time bounds.

In the conference version of this paper [19], the proof of Theorem 5 was done
in a more complicated way using dynamic programming on path decomposi-
tions. The formulation of RVMC in interval graphs as a covering problem we
used in [19] is equivalent to the Red-Blue Set Cover problem (introduced

11

by Carr et al. [7]) restricted to inputs with the so-called consecutive ones prop-
erty [6,28]. This means that the method described in [19] is also capable of
solving this more general problem.

4 General Graphs and Bounded Treewidth

In this section, our main result is a fixed-parameter algorithm for RVMC in
general graphs with treewidth and the number of terminals as parameters. All
our results here refer to graphs with given tree decompositions. Finding such
a tree decomposition, however, is generally an NP-hard problem [4].

As shown in Theorem 1, RVMC is NP-complete for tree networks with bounded
vertex degree and bounded pathwidth. Therefore, we cannot hope for a fixed-
parameter algorithm with only treewidth or pathwidth as parameter. More-
over, in the following theorem we show that RVMC is not fixed-parameter
tractable with respect to the number of terminals.

Theorem 6 Restricted Vertex Multicut is NP-complete if there are
at least three terminals.

PROOF. We give a reduction from EMC to RVMC that preserves the num-
ber of terminals and the number of terminal pairs. The theorem follows then
from the fact that EMC is NP-complete for at least three terminals [10].

Given an EMC instance with graph G = (V, E), we construct an RVMC
instance with graph G′ = (V ′, E ′). The idea is to keep the terminals, make the
nonterminals undeletable by replicating them (|E|+ 1)-fold, and introduce a
vertex we as gadget for each edge e. More precisely, with the terminal set S
we set

V ′ = S ∪ {ui | 1 ≤ i ≤ |E|+ 1, u ∈ V \ S} ∪ {we | e ∈ E}.

For each edge e = {u, v} ∈ E with {u, v} ⊆ V \ S, we add two edges {ui, we}
and {vi, we} for 1 ≤ i ≤ |E| + 1 to E ′. For an edge e = {u, v} ∈ E with
exactly one of the endpoints being a terminal, say u, add the edge {u, we} and
the edges {vi, we} for 1 ≤ i ≤ |E| + 1. For an edge e = {u, v} ∈ E with two
terminals as endpoints, add two edges {u, we} and {v, we}. The set of terminal
pairs of the RVMC instance is set equal to the set of terminal pairs of the EMC
instance. Then, both instances have the same number of terminals.

From a solution of the EMC instance, one can easily construct a solution of the
same size for the RVMC instance by choosing we for each edge e in the EMC

12

solution. The mapping can also be reversed, since for any optimal solution C
of the constructed RVMC instance with |C| ≤ |E|, we have C ⊆ {we | e ∈
E}. Therefore, the EMC instance can be solved by l edge removals iff the
constructed RVMC instance can be solved by l vertex removals, concluding
the proof. 2

Because of Theorem 6, we know that there is no hope for a fixed-parameter
algorithm for RVMC with respect to the single parameter “treewidth” or the
single parameter “number of terminals”. In the following, we present a fixed-
parameter algorithm for RVMC with treewidth and the number of the termi-
nals as parameters. To ease the presentation, we assume that no two terminals
are adjacent (two adjacent terminals u, v can be replaced by a new terminal
whose neighborhood is N(u) ∪N(v) \ {u, v}).

The basic idea of the fixed-parameter algorithm comes from the fact that
any solution of RVMC divides the input graph into at least two connected
components such that any two terminals of an input terminal pair are not in
the same connected component. Based on this fact, the algorithm consists of
two phases. The first phase enumerates all possible partitions of the terminal
set that separate all input terminal pairs. It is easy to observe that there are at
most O(|S||S|) partitions of the terminal set S. 4 To check whether a partition
separates the given terminal pairs in H can be done in O(|H|) time. Then,
the running time of the first phase is O(|S||S| · |H|).

The second phase of the algorithm, for each partition, uses dynamic program-
ming on the tree decomposition to compute the minimum number of vertex
removals dividing the input graph into connected components such that each
set in this partition is contained in a connected component and no two sets
are contained in the same connected component. To simplify the presentation,
we give an equivalent formulation of the task of the second phase: 5

Coloring Extension
Input: An undirected graph G = (V, E), a set of terminals S ⊆ V , and a
coloring LS : S → C with the colors from a set C where |C| ≤ |S|.
Task: Find an extension LG : V → C ∪ {r} of Ls where r /∈ C such that
(1) for every s ∈ S, LG(s) = LS(s),
(2) for every edge {u, v} ∈ E, either LG(u) = LG(v) or LG(u) = r or LG(v) =

r, and
(3) the cost |{v ∈ V | LG(v) = r}| is minimized.

Consider a fixed partition of the terminal set such that for each terminal

4 More precisely, this is actually the Bell number B(|S|).
5 A similar coloring problem is defined by Erdős and Székely [13]. Note that here
we have a different cost function.

13

pair its two elements are in different sets of the partition. If we assign to all
terminals in one set of this partition the same unique color from C, then a so-
lution of the Coloring Extension problem ensures that every path between
two terminals with different colors has to pass through at least one vertex v
with LG(v) = r. This implies that the removal of the vertices with color r
separates the sets of the partition, which is a solution for the RVMC prob-
lem. Minimizing the number of r-colored vertices ensures an optimal RVMC
solution.

Theorem 7 Given an undirected graph G = (V, E) with a tree decomposition
of width ω, Coloring Extension with the terminal set S ⊆ V colored by
the color set C can be solved in O((|C|+ 1)ω+1 · ω2 · |V |)) time.

PROOF. The algorithm works—without loss of generality—on a nice tree
decomposition 〈X := {Xi | i ∈ I}, T = (I, F)〉. Let Ti denote the subtree of T
rooted at node i and let Gi = (Vi, Ei) := G[

⋃

j∈Ti
Xj]. Let α := |C| and let r

denote the special color. The coloring of S is given by the function LS. We
seek for an extension of the coloring LS such that the number of the vertices
with color r is minimized.

For each bag Xi := {xi1 , . . . , xini
} in X, we use a vector f ∈ {c1, c2, . . . , cα, r}ni

to denote a coloring of bag Xi, and the color assigned to vertex xij by the
coloring f is denoted by f(xij) for 1 ≤ j ≤ ni. Moreover, we define a mapping

Ai : {c1, c2, . . . , cα, r}ni →
�
∪ {∞}.

For a coloring f ∈ {c1, c2, . . . , cα, r}ni, the mapping Ai(f) denotes the mini-
mum cost (that is, number of vertices with color r) over all extensions of the
coloring LS on the subgraph Gi where Xi is colored according to f .

To store the mappings, for each bag i, we allocate a table Ai with (α + 1)ni

rows. We calculate the mappings bottom-up from the leaves of T to the
root. First the mappings of the leaves are computed as follows: For all f =
(f1, f2, . . . , fni

) ∈ {c1, c2, . . . , cα, r}ni, we set

Ai(f) :=

∞ if ∃u ∈ (S ∩Xi) : f(u) 6= LS(u),

∞ if ∃ {u, v} ∈ Ei :

f(u) 6= f(v) ∧ f(u) 6= r ∧ f(v) 6= r,

|{v ∈ Vi | f(v) = r}| otherwise.

Since for a leaf i we have V (Gi) = Xi, this accounts for all r-colored vertices
in Gi, while excluding invalid colorings. The mappings of internal nodes of T

14

are completely determined by the mappings of their children and the edges in
the bag. We distinguish three cases.

Case 1: Forget nodes.

Let i be a forget node with child j. More precisely, Xi = {xi1 , . . . , xini
}

and Xj = {xi1 , . . . , xini
, x}. For all f ∈ {c1, c2, . . . , cα, r}ni, we set

Ai(f) := min{Aj(f × c) | c ∈ {c1, c2, . . . , cα, r}}.

Note that f×c ∈ {c1, c2, . . . , cα, r}ni+1. Since Gi = Gj , the correctness trivially
follows.

Case 2: Introduce nodes.

Let i be an introduce node with child j. More precisely, Xj = {xi1 , . . . , xinj
}

and Xi = {xi1 , . . . , xinj
, x}. For all f ∈ {c1, c2, . . . , cα, r}ni and all c ∈ {c1, c2, . . . , cα, r},

we set

Ai(f × c) :=

∞ if x ∈ S ∧ LS(x) 6= c,

∞ if ∃{x, v} ∈ Ei : f(x) 6= f(v) ∧ c 6= r ∧ f(v) 6= r,

Aj(f) + 1 if c = r,

Aj(f) otherwise.

Here Gi is Gj extended by the vertex x, that is Gi = (Vi, Ei) with Vi = Vj∪{x}
and Ei = Ej ∪ {{x, v} ∈ E : v ∈ Vi}. A coloring candidate f × c is infeasible
when it violates the terminal coloring or colors the two endpoints of a newly
introduced edge differently without coloring one endpoint by r. Otherwise, the
cost increases when the added vertex is an r-vertex, or stays the same when
it gets a color from C.

Case 3: Join nodes.

Let i be a join node with children j1 and j2. More precisely, Xi = Xj1 = Xj2 =
{xi1 , . . . , xini

}. For all f ∈ {c1, c2, . . . , cα, r}ni, we set

Ai(f) := Aj1(f) + Aj2(f)− |{v ∈ Xi | f(v) = r}|.

Here Gi is simply the union of Gj1 and Gj2. The cost is then the sum of the costs
of Gj1 and Gj2, except this counts those r-colored vertices twice that occur in
both subgraphs. By property (3) of tree decompositions (Definition 1), these
are exactly the r-colored vertices in Xi, so we can subtract their costs.

By property (1) of tree decompositions, for the root t of T it holds that Gt =
G. Therefore, when reaching t, the minimum cost to color G corresponds
to min{At(f) | f ∈ {c1, c2, . . . , cα, r}nt}. By property (2) of tree decomposi-
tions, this is in fact a valid coloring extension of LS, since every edge where

15

the property of a coloring extension might be violated has been examined in
some bag.

The computation of Ai for introduce and join nodes i ∈ I needs O((α + 1)ni ·
(|Xi|+ |Ei|)) time, while, for forget nodes, it needs O((α+1)ni+1 ·(|Xi|+ |Ei|))
time. Since |ni| ≤ ω + 1 for introduce and join nodes i and |ni| ≤ ω for forget
nodes i and α ≤ |S|, we have the claimed running time. 2

In Vertex (Weighted) Multiway Cut, we seek for a vertex subset whose
removal leaves a graph where each connected component contains at most one
terminal. Then, we have only one possible partition of S, namely, |S| sets
each containing exactly one terminal. Thus, the algorithm given in the proof
of Theorem 7 solves Vertex (Weighted) Multiway Cut in the same time
bound with |C| = |S|.

Corollary 1 Vertex Multiway Cut on a graph G = (V, E) with terminal
set S and given tree decomposition of width ω can be solved in O((|S|+1)ω+1 ·
ω2 · |V |) time.

Coming back to our algorithm for RVMC, the first phase of the algorithm
enumerates all possible partitions of the terminal set S that separate all input
terminal pairs. In the second phase, for each partition, the algorithm colors the
terminal set according to the partition by using at most |S| colors and, then,
calls the dynamic programming algorithm for the Coloring Extension
problem. The minimum of the outputs of the dynamic programming algorithm
for all partitions is then the optimal solution for RVMC. By a simple traceback
phase, one can easily construct the set of the vertices to be removed. The
theorem then follows directly from the correctness and running times of the
two phases. Directly multiplying the running times of both phases gives a
running time of O((|S|+1)|S|+ω+1 ·ω2 · |V |). However, we can save the “+1” for
the following reason. We only need |S| colors for the partition that has exactly
one terminal in every set. For all other partitions, the dynamic programming
uses at most |S| − 1 colors. Hence, the overall running time of the algorithm
amounts to O((|S| + 1)ω+1 · ω2 · |V |) + (|S||S| − 1) · O(|S|ω+1 · ω2 · |V |) =
O(|S||S|+ω+1 · ω2 · |V |). In summary we arrive at the following main theorem.

Theorem 8 Given an undirected graph G = (V, E) with a tree decomposition
of width ω, Restricted Vertex Multicut can be solved in O(|S||S|+ω+1 ·
ω2 · |V |) time, where S is the terminal set.

Note that the algorithms for Corollary 1 and Theorem 8 can be easily extended
to handle weighted vertices within the same time bounds.

UVMC can be reduced to RVMC with the same number of terminals and the
same treewidth (Section 1). Hence, the above algorithm also works for UVMC.

16

Corollary 2 Given an undirected graph G = (V, E) with a tree decomposition
of width ω, Unrestricted Vertex Multicut can be solved in O(|S||S|+ω+1·
ω2 · |V |) time, where S is the terminal set.

In fact, the same approach can also be applied to EMC. Here, the optimization
goal is to minimize the number of the “color-changing” edges, whose endpoints
have different colors, while extending a coloring of the terminal set. The dy-
namic programming on the tree decomposition is almost the same. We omit
the basically straightforward details.

Theorem 9 Given an undirected graph G = (V, E) with a tree decomposition
of width ω, Edge Multicut can be solved in O(|S||S|+ω+1 · ω2 · |V |) time,
where S is the terminal set.

Note that the fixed-parameter tractability of EMC (Theorem 9) was indepen-
dently shown by Bentz [1].

5 Conclusions

We investigated the complexity of several Multicut problems and provided
both hardness and tractability results. In further work relations between undi-
rected and directed variants of Multicut were shown [24]: In particular,
UVMC and RVMC can be reduced to any of directed UVMC, directed RVMC,
and directed EMC by a reduction that preserves the parameter “number of
edge/vertex deletions”.

Many open questions remain. It is open for EMC, UVMC, and RVMC in gen-
eral graphs whether they are fixed-parameter tractable with respect to the
number of deletions k (see Table 1). Also, it would be interesting to exam-
ine complexity and algorithmic approaches for the vertex-deletion Multicut
variants on other restricted graph classes such as bipartite graphs and planar
graphs, as they were examined by Costa et al. [8] for EMC.

Acknowledgements

We thank three anonymous referees for valuable remarks that helped to sig-
nificantly improve the presentation. In particular, we are grateful to a referee
who pointed out a great simplification of the proof of Theorem 5.

Jiong Guo and Falk Hüffner were supported by the Deutsche Forschungs-
gemeinschaft, Emmy Noether research group PIAF (fixed-parameter algo-

17

rithms), NI 369/4.

References

[1] C. Bentz. Edge disjoint paths and multicut problems in graphs generalizing the
trees. Technical Report 948, CNAM-Laboratoire Cédric, Paris, 2005. 3, 4, 17

[2] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proc. 22nd

MFCS, volume 1295 of Lecture Notes in Computer Science, pages 19–36.
Springer, 1997. 4, 5

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209:1–45, 1998. 4, 5

[4] H. L. Bodlaender. Treewidth: Characterizations, applications, and
computations. In Proc. 32nd WG, volume 4271 of Lecture Notes in Computer

Science, pages 1–14. Springer, 2006. 5, 12

[5] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer

and System Sciences, 13(3):335–379, 1976. 10, 11

[6] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. SIAM
Monographs on Discrete Mathematics and Applications, 1999. 4, 10, 12

[7] R. D. Carr, S. Doddi, G. Konjevod, and M. V. Marathe. On the red-blue set
cover problem. In Proc. 11th SODA, pages 345–353. ACM/SIAM, 2000. 12

[8] M. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer
multiflow: a survey. European Journal of Operational Research, 162(1):55–69,
2005. 2, 17

[9] G. Călinescu, C. G. Fernandes, and B. Reed. Multicuts in unweighted graphs
and digraphs with bounded degree and bounded tree-width. Journal of

Algorithms, 48(2):333–359, 2003. 2, 3, 4, 5, 6, 7, 8, 9, 10

[10] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis. The complexity of multiterminal cuts. SIAM Journal on

Computing, 23(4):864–894, 1994. 2, 4, 12

[11] E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks
with power estimation. Soviet Mathematics Doklady, 11:1277–1280, 1970. 2

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
5

[13] P. L. Erdős and L. A. Székely. Evolutionary trees: an integer multicommodity
max-flow–min-cut theorem. Advances in Applied Mathematics, 13(4):375–389,
1992. 13

18

[14] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006. 5

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979. 6

[16] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20,
1997. 2, 4, 10

[17] N. Garg, V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted
graphs. Journal of Algorithms, 50(1):49–61, 2004. 3

[18] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980. 10

[19] J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity
and exact algorithms for Multicut. In Proc. 32nd SOFSEM, volume 3831 of
Lecture Notes in Computer Science, pages 137–147. Springer, 2006. 11, 12

[20] J. Guo and R. Niedermeier. Fixed-parameter tractability and data reduction
for Multicut in Trees. Networks, 46(3):124–135, 2005. 2, 4, 7

[21] J. Guo and R. Niedermeier. Exact algorithms and applications for Tree-Like
Weighted Set Cover. Journal of Discrete Algorithms, 4(4):608–622, 2006. 2

[22] T. C. Hu. Multicommodity networks flow. Operations Research, 9:898–900,
1963. 2

[23] A. Itai. Two-commodity flow. Journal of the ACM, 25:596–611, 1978. 2

[24] E. Kenar and J. Uhlmann. Multicut in graphs. Student research project, WSI
für Informatik, Universität Tübingen, Germany, June 2005. 17

[25] T. Kloks. Treewidth: Computations and Approximations, volume 842 of Lecture

Notes in Computer Science. Springer, 1994. 5

[26] D. Marx. Parameterized graph separation problems. Theoretical Computer

Science, 351(3):394–406, 2006. 2, 3, 4

[27] T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. SIAM
Monographs on Discrete Mathematics and Applications. SIAM, 1999. 3

[28] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley, 1988. 12

[29] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006. 5

[30] B. A. Reed. Algorithmic aspects of tree width. In B. A. Reed and C. L.
Sales, editors, Recent Advances in Algorithms and Combinatorics, pages 85–
107. Springer, 2003. 4, 5

[31] N. Robertson and P. D. Seymour. Graph minors. II: Algorithmic aspects of
tree-width. Journal of Algorithms, 7:309–322, 1986. 4

19

[32] J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with
an application to domination-like problems. In Proc. 3rd WADS, volume 709
of Lecture Notes in Computer Science, pages 610–621. Springer, 1993. 4

20

	Introduction
	Trees
	Interval Graphs
	Unrestricted Vertex Multicut in Interval Graphs.
	Restricted Vertex Multicut in Interval Graphs

	General Graphs and Bounded Treewidth
	Conclusions
	Acknowledgements
	References

