
Error Compensation in Leaf Root Problems?

Michael Dom, Jiong Guo, Falk Hüffner, and Rolf Niedermeier

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13,
D-72076 Tübingen, Fed. Rep. of Germany

{dom,guo,hueffner,niedermr}@informatik.uni-tuebingen.de

Abstract. The k-Leaf Root problem is a particular case of graph
power problems. Here, we study “error correction” versions of k-Leaf

Root—that is, for instance, adding or deleting at most l edges to gener-
ate a graph that has a k-leaf root. We provide several NP-completeness
results in this context, and we show that the NP-complete Closest 3-

Leaf Root problem (the error correction version of 3-Leaf Root) is
fixed-parameter tractable with respect to the number of edge modifica-
tions in the given graph. Thus, we provide the seemingly first nontrivial
positive algorithmic results in the field of error compensation for leaf root
problems with k > 2. To this end, as a result of independent interest,
we develop a forbidden subgraph characterization of graphs with 3-leaf
roots.

1 Introduction

Graph powers are a classical concept in graph theory (cf. [2, Section 10.6]) with
recently increased interest from an algorithmic point of view. The k-power of
a graph G = (V, E) is the graph Gk = (V, E′) with (u, v) ∈ E′ iff there is a
path of length at most k between u and v in G. We say G is the k-root of Gk;
deciding whether a graph is a power of some other graph is called the graph
root problem. It is NP-complete in general [18], but one can decide in O(|V |3)
time whether a graph is a k-power of a tree for any fixed k [12]. In particular,
it can be decided in linear time whether a graph is a square of a tree [17,14].
Very recently, Lau [14] shows that it can be found in polynomial time whether a
graph is a square of a bipartite graph, but it is NP-complete to decide whether
a graph is a cube of a bipartite graph. Moreover, Lau and Corneil [15] give a
polynomial-time algorithm for recognizing k-powers of proper interval graphs
for every k and show that, contrariwise, recognizing squares of chordal graphs
and split graphs is NP-complete. Here, we concentrate on certain variants of
tree powers. Whereas Kearney and Corneil [12] study the problem where ev-
ery tree node one-to-one corresponds to a graph vertex, Nishimura, Ragde, and
Thilikos [21] introduced the notion of leaf powers where exclusively the tree
leaves stand in one-to-one correspondence to the graph vertices. Motivated by
applications in computational biology, Lin, Kearney, and Jiang [16] and Chen,

? Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.

Jiang, and Lin [4] examine the variant of leaf powers where all inner nodes of
the root tree have degree at least three. The corresponding algorithmic prob-
lems to decide whether a graph has a k-root are called k-Leaf Root [21] and
k-Phylogenetic Root [16], respectively. For k ≤ 4, both problems are solv-
able in polynomial time [21,16]. The complexities of both problems for k ≥ 5
are still open. Moreover, Chen et al. [4] show that, under the assumption that
the maximum degree of the phylogenetic root is bounded from above by a con-
stant, there is a linear-time algorithm that determines whether a graph has a
k-phylogeny for arbitrary k.

What to do if the given input graph has no k-leaf root? In particular, the in-
put graph might be “close” to having a root but due to certain “errors” (as occur
in many practical applications), the graph structure would need some “correc-
tion” first before the computation of a k-leaf root is doable. This problem was
already recognized by Kearney and Corneil [12], and they introduced the Clos-

est k-Tree Power problem. In this “error correction setting” the question is
whether a given graph can be modified by adding or deleting at most l edges such
that the resulting graph has a k-tree root. Unfortunately, this problem turns out
to be NP-complete for k ≥ 2 [12,10]. One also obtains NP-completeness for the
corresponding problems Closest k-Phylogenetic Root [4] and, as we point
out here, Closest k-Leaf Root. In addition, for Closest k-Leaf Root we
study other edge modification problems—namely, only to allow edge deletions
or only to allow edge insertions—and we show NP-completeness. See Table 1 in
Section 4 for an overview concerning complexity results for Closest k-Leaf

Root and its variants.
To the best of our knowledge, the above error correction scenario so far only

led to results showing hardness of complexity. We are not aware of any results
concerning approximation or non-trivial exact algorithms. In contrast, we show
the seemingly first positive algorithmic results in this context, proving fixed-
parameter tractability with respect to the number l of edge modifications for
Closest 3-Leaf Root and all its variants mentioned above. To achieve our
fixed-parameter results, we develop a novel forbidden subgraph characterization
of graphs that are 3-leaf powers—a result that may be of interest on its own: A
graph is a 3-leaf power iff it is chordal and it contains none of the 5-vertex graphs
bull, dart, and gem as induced subgraph (see Section 3 for details). A much sim-
pler characterization of graphs that are 2-leaf powers is already known by for-
bidding an induced path of three vertices [23]. This characterization finds direct
applications in corresponding fixed-parameter algorithms [7] (fixed-parameter
tractability is also implied by a more general result of Leizhen Cai [3]), whereas
our new characterization of 3-leaf powers requires a more tricky approach. Due
to the lack of space, many proofs are deferred to the full version of this paper.

2 Preliminaries, Basic Definitions, and Previous Work

We consider only undirected graphs G = (V, E) with n := |V | and m := |E|.
Edges are denoted as tuples (u, v). For a graph G = (V, E) and u, v ∈ V , let

2

dG(u, v) denote the length of the shortest path between u and v in G. With
E(G), we denote the edge set E of a graph G = (V, E). We call a graph G′ =
(V ′, E′) an induced subgraph of G = (V, E) if V ′ ⊆ V and E′ = {(u, v) | u, v ∈
V ′ and (u, v) ∈ E}. An edge between two vertices of a cycle that is not part of
the cycle is called chord. An induced cycle of length at least four is called hole.
A chordal graph is a graph that contains no hole. For two sets A and B, A M B

denotes the symmetric difference A \ B ∪ B \ A.
Closely related to the well-known graph power concept (cf. [2, Section 10.6])

is the notion of a k-leaf power of a tree, introduced by Nishimura, Ragde, and
Thilikos [21]:

Definition 1. Given an unrooted tree T with leaves one-to-one labeled by the
elements of a set V . The k-leaf power of T is a graph, denoted T k, with T k :=
(V, E), where E := {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.

The following problem is inspired by the problem of forming a phylogenetic
tree1 based on a binary similarity measure.

k-Leaf Root (LRk)
Instance: A graph G.
Question: Is there a tree T such that T k = G?
Nishimura et al. [21] show that k-Leaf Root can be solved in polynomial

time for k ≤ 4. As already Nishimura et al. point out, in practice phylogenetic
problems involve errors in distance estimators. This motivates the following.

Closest k-Leaf Root (CLRk)
Instance: A graph G = (V, E) and a nonnegative integer l.
Question: Is there a tree T such that T k and G differ by at most l edges,

that is, |E(T k) M E(G)| ≤ l?
This problem is also denoted more precisely as CLRk Edge Editing. In this

paper we also study two variations, where the distance estimator is assumed to
have only one-sided errors:

– CLRk Edge Insertion: Only inserting edges into G is allowed to obtain T k;
– CLRk Edge Deletion: Only deleting edges from G is allowed to obtain T k.

CLR2 Edge Editing has been studied under various names in the litera-
ture. The first proof of its NP-completeness is due to Křivánek and Morávek [13],
where it is called Hierarchical-Tree Clustering. Independently, the prob-
lem was studied by Shamir, Sharan, and Tsur as Cluster Editing [23] and
by Bansal, Blum, and Chawla as Correlation Clustering [1]. CLR2 Edge

Deletion (also known as Cluster Deletion) was shown to be NP-complete
by Natanzon [19].

Lin, Kearney, and Jiang [16] consider a variant of k-Leaf Root where the
inner nodes of the output tree are not allowed to have degree 2. They call this
problem k-Phylogenetic Root (PRk), and show that PRk can be solved in

1 That is, a tree where leaves correspond to species and internal nodes represent
evolutionary events.

3

PSfrag replacements

gembull dart

P4

2K2

Fig. 1. 5-vertex graphs that occur as forbidden induced subgraphs

linear time for k ≤ 4.2 As for leaf roots, the generalization that allows for the
input graph to contain errors is a better match for the biological motivation,
and one can ask for the Closest k-Phylogenetic Root (CPRk), defined
analogous to Closest k-Leaf Root. CPRk is examined by Chen, Jiang, and
Lin [4], who show that it is NP-complete for k ≥ 2.

Among other things, we show that CLR3 is fixed-parameter tractable with
respect to parameter l. That is, we show that CLR3 can be solved in f(l) ·nO(1)

time, where f is an (exponential) function only depending on l. For small l,
as might be naturally expected since l refers to the number of errors, effi-
cient (polynomial-time) algorithms are possible. Two recent surveys on fixed-
parameter tractability can be found in [6,20].

3 Forbidden Subgraph Characterization for 3-Leaf

Powers

It is not hard to see that graphs that are 2-leaf powers are exactly the graphs
where every connected component is a clique. Shamir et al. [23] note that these
graphs are characterized by a forbidden induced subgraph, namely a path of three
vertices (P3). In this section we derive a similar, but far less evident forbidden
subgraph characterization of 3-leaf powers: they are chordal graphs that contain
no induced bull, dart, or gem (see Figure 1).

Forbidden subgraph characterizations can be valuable in various ways. For in-
stance, they can lead to fixed-parameter algorithms for the corresponding graph
modification problems. Leizhen Cai [3] shows that with a finite set of forbidden
subgraphs, finding the l edges to be modified is fixed-parameter tractable with
respect to l. Using the single forbidden subgraph P3, this immediately applies
to the case of 2-leaf powers; for 3-leaf powers, exploiting the subsequent for-
bidden subgraph characterization is one of the decisive ingredients of the fixed-
parameter algorithms presented in Section 5. Note, however, that here Cai’s
result does not apply directly, since chordal graphs do not admit a characteriza-
tion by a finite set of forbidden subgraphs.

As we will see, 3-leaf powers are closely connected to the concept of a critical
clique, which was introduced by Lin et al. [16].

2 For k = 4, they show this only for connected graphs.

4

PSfrag replacements

u v

w

x

x

y

y

(a) (b)

u

v w

Fig. 2. Neighborhood of 3 vertices u, v, w from 3 different critical cliques

Definition 2. A critical clique of a graph G is a clique K where the vertices
of K all have the same set of neighbors in G \K, and K is maximal under this
property.

In other words, a critical clique is a module that is maximal and a clique.
The following connection to 3-leaf powers can be shown:

Lemma 1. If a graph G is a 3-leaf power, then every clique in G consists of at
most two critical cliques.

Lemma 2. For a chordal graph G, the following are equivalent:

(1) There is a clique K in G that consists of at least three critical cliques.
(2) G contains a bull, dart, or gem (see Figure 1) as induced subgraph.

Proof. (1) ⇒ (2): Let u, v, w be three vertices from K that belong to different
critical cliques. We distinguish two cases.

(a) There is a vertex x which is connected to exactly one of u, v, w, say to u

(see Figure 2 (a)). Since v and w belong to different critical cliques, there
must be a vertex y which is connected to only one of them, say to v.
The edges (y, u) and (y, x) can be present or not, except that if (y, x)
is present, then (y, u) must also be present, because otherwise x, y, v, u

induce a hole. This leaves 3 possibilities, where we get the induced sub-
graphs bull, dart, and gem, respectively.

(b) There is no vertex which is connected to exactly one of u, v, w (see Fig-
ure 2 (b)). Then there is a vertex x which is connected to exactly two
of u, v, w, say to u and v (otherwise, u, v, w would have identical neigh-
borhood, and would be in the same critical clique). Since u and v belong
to different critical cliques, there is a vertex y which is adjacent to only
one of them, say to u. By the precondition of this case, y is connected
to w. The vertices x and y cannot be connected, since otherwise x, y, w, v

induce a hole. We get an induced gem.

(2) ⇒ (1): Assume G contains a forbidden subgraph. Let u, v, w be the vertices
of a triangle in the forbidden subgraph (in the case of the gem, the triangle
which contains both degree-3 vertices). Then u, v, w form a clique. Let x

and y be the remaining two vertices in the subgraph. Since each of u, v, w

is adjacent to a different combination of x and y, they belong to 3 different
critical cliques. ut

5

Since between the vertices of two critical cliques either all pairwise or no
connections are present, the concept of a critical clique graph [16] comes up
naturally. As we will see, the structure of the critical clique graph is already
close to the structure of the 3-leaf roots we are looking for. For easier distinction
from the elements of G, we use the term nodes for vertices in the critical clique
graph.

Definition 3. Given a graph G = (V, E). Let C be the collection of its critical
cliques. Then the critical clique graph CC(G) is a graph (C, EC) with

(Ki, Kj) ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : (u, v) ∈ E.

That is, the critical clique graph has the critical cliques as nodes, and two nodes
are connected iff the corresponding critical cliques together form a larger clique.

Since every vertex of G belongs to exactly one critical clique, the critical
clique graph of G can be constructed in O(n · m) time by iterating through the
vertices and constructing the critical clique they are part of by comparing their
neighborhood to that of all adjacent vertices.

The following lemma reveals details of the structure of a critical clique graph.

Lemma 3. If every clique of a graph G consists of at most two critical cliques,
then CC(G) does not contain a clique of three or more vertices.

Utilizing Lemmas 1, 2, and 3, we can obtain the main theorem of this section.

Theorem 1. For a graph G, the following are equivalent:

(1) G has a 3-leaf root.

(2) G is chordal and contains no bull, dart, or gem as induced subgraph.

Proof. (1) ⇒ (2): If G is a leaf power, then G must be chordal [16]. Then, by
Lemma 1 and Lemma 2, it does not contain any of the forbidden subgraphs.

(2) ⇒ (1): If G is chordal, then so is CC(G), since if CC(G) contained a hole,
we could also find a hole in G by taking one arbitrary vertex from each
critical clique on the cycle. With Lemma 3, it follows that CC(G) is a forest.
For each connected component of CC(G), construct a leaf root by attaching
to each node a new leaf node for each vertex of the corresponding critical
clique. Finally, create a new node and connect this node to an arbitrary
inner node of each newly constructed tree. Then, the resulting tree T is a
3-leaf root of G. To see this, consider two vertices u, v, u 6= v of G. They
are connected in G iff they are in the same critical clique, or they are in two
adjacent critical cliques. This is equivalent to the distance of u and v in T

being 2 and 3, respectively. ut

6

Table 1. Complexity of Closest k-Leaf Root. The polynomial-time solvabil-
ity of CLR2 Edge Insertion is trivial; the results for k ≥ 3 are discussed in
Section 4. The main new result is NP-completeness of CLRk Edge Insertion

for k ≥ 3.

k = 2 k ≥ 3

Edge editing NP-complete [13] NP-complete
Edge deletion NP-complete [19] NP-complete
Edge insertion P NP-complete

4 NP-Completeness Results

In Table 1 we summarize known and new results on the classical complexity (P
vs. NP) of Closest k-Leaf Root problems. The NP-completeness of CLRk

Edge Editing and CLRk Edge Deletion for k ≥ 3 can be shown by an
adaption of the NP-completeness proof for CPRk by Chen et al. [4]. We refer
to the full version of this paper for details on how to adapt their proof.

CLR2 Edge Insertion can be trivially solved in polynomial time, since
it is exactly the problem of adding edges to a graph so that each connected
component becomes a clique. However, it can be shown that for k ≥ 3 this
problem becomes NP-complete by giving a reduction from Maximum Edge

Biclique [22]; we defer the proof to the full version of this paper.

Theorem 2. CLRk Edge Insertion is NP-complete for k ≥ 3.

5 Fixed-Parameter Tractability Results for CLR3

In this section we show fixed-parameter tractability with respect to the number
of editing operations l for CLR3 Edge Insertion, CLR3 Edge Deletion,
and CLR3 Edge Editing. According to the characterization of 3-leaf powers
from Theorem 1, the algorithms have two tasks to fulfill:

(1) Edit the input graph G to get rid of the forbidden subgraphs bull, dart, and
gem.

(2) Edit G to make it chordal.

Lin et al. [16] show the usefulness of the critical clique graph for the construc-
tion of the 3-leaf root (see also Section 3). The following lemma demonstrates
that the critical clique graph is also of crucial importance for our algorithms
solving CLR3: our algorithms work with the critical clique graph CC(G) in-
stead of G. We defer the proof of the lemma to the full version of this paper
since it is similar to the proof of Lemma 2. We use C4 to denote a chordless cycle
of four vertices.

Lemma 4. If a graph G contains no bull, dart, gem, or C4 as induced subgraph,
then there is no triangle in its critical clique graph.

7

Following from Lemma 4, if we can show that there is an optimal solution for
CLR3 problems which can be represented as editing operations on the critical
clique graph, then the two above tasks can be fulfilled in two independent phases:
First, eliminate each induced bull, dart, gem, and C4 in the critical clique graph
using a search tree of bounded depth. Then, edit each of the resulting critical
clique graphs to make it a forest. The optimal solution is then the solution with
minimum total number of editing operations in the two steps. The following two
lemmas show that it is indeed correct to work only with CC(G) instead of G.

Lemma 5. Graph G contains a bull, dart, gem, or C4 iff its critical clique graph
CC(G) contains a bull, dart, gem, or C4, respectively.

Lemma 6. Given a graph G. Then there is always an optimal solution for
CLR3 Edge Editing that is represented by edge editing operations on CC(G).
That is, one can find an optimal solution that does not delete any edges within a
critical clique; furthermore, in this optimal solution, between two critical cliques
either all or no edges are inserted or deleted.

Based on Lemmas 5 and 6, we can now consider a critical clique of G as
a single vertex and work on CC(G) instead of G. One more benefit of this
approach is that we can eliminate several forbidden subgraphs in G by only
one modification operation in CC(G). A modification operation on CC(G) can
decrease the parameter l by more than one since it can correspond to more than
one modification operation on G. Then, our algorithm scheme is as follows:

(0) Construct CC(G) from G.
(1) Edit CC(G) to get rid of the forbidden subgraphs bull, dart, gem, and C4.
(2) Edit CC(G) to make it a forest.

Note that after modifying CC(G), two or more nodes in CC(G) might obtain
identical neighborhoods. Since each node in CC(G) has to represent a critical
clique in G, a merge operation is needed, which replaces these nodes in CC(G)
by a new node with the same neighborhood as the original nodes. Therefore, in
the following, we assume that after each modification operation, we check for
every pair of nodes whether a merge operation between them is possible, which
can be done in O(n · m) time.

We now examine the running time of the respective steps. As mentioned in
Section 3, CC(G) can be constructed in O(n·m) time. By Cai’s result [3], there is
a fixed-parameter algorithm for Step (1). More specifically, because of Lemma 4,
we know that each triangle in CC(G) is either part of a bull, dart, or gem,
or it has one edge in common with a C4. We can then determine a forbidden
subgraph by first finding a triangle in O(n · m) time, and then partitioning
the n − 3 nodes not in the triangle into eight sets depending on to which of the
three nodes in the triangle they are connected. This allows to find a bull, dart,
gem, or C4 in additional O(n) time. If we do not find a triangle, we can find
a C4 by determining the shortest cycle in O(n ·m) time [9]. In summary, we find
a forbidden subgraph in O(n · m) time.3

3 Note that using algorithms based on matrix multiplication, we can alternatively do
this in O(n2.38) time [5].

8

Therefore, we can employ a search tree which finds a forbidden subgraph and
branches into several cases corresponding to each editing operation that destroys
it. As an example, for edge deletion, this will lead to an O(7l·nm) time algorithm,
since the highest number of edges occurring in any forbidden subgraph is seven
(gem). We mention in passing that the techniques applied by Gramm et al. [7,8]
for CLR2 could be adapted to improve the base 7 of the exponential component
of the running time. In the descriptions of the respective algorithms, we now
only need to deal with Step (2) to show fixed-parameter tractability.

As shown in the proof of Theorem 1, if CC(G) has more than one connected
component, we can solve the problem for each component independently, and
then connect the generated leaf roots by adding a new inner node and connecting
it to an arbitrary inner node of each leaf root. This allows us in the following
without loss of generality to only consider connected graphs. Note that this
property does not hold for Closest k-Phylogenetic Root, which makes it
considerably harder to obtain analogous results.

5.1 Edge Deletion

As stated above, the task of Step (2) is to transform a bull-, dart-, gem-, and
C4-free CC(G), which does not contain a triangle as an induced subgraph, into
a forest by edge deletions. Observe that after getting rid of all forbidden sub-
graphs in Step (1), throughout Step (2) CC(G) always remains bull-, dart-, gem-,
and C4-free when only edge deletions are allowed. Hence, Step (2) of our algo-
rithm scheme can be handled with a polynomial-time algorithm, as stated in the
following lemma.

Lemma 7. Given a critical clique graph CC(G) that contains no induced bull,
dart, gem, or C4. Then we can find an optimal solution for CLR3 Edge Dele-

tion by finding a maximum weight spanning tree for CC(G), where edges are
weighted by the product of the sizes of the critical cliques corresponding to their
two endpoints.

Theorem 3. CLR3 Edge Deletion with l edge deletions allowed is fixed-
parameter tractable with respect to l.

Proof. We employ a search tree of height bounded by l. In each inner node of the
search tree, we find a forbidden subgraph and branch into at most seven cases
corresponding to the edges of the forbidden subgraph. At each leaf of the search
tree, we find a maximum weight spanning tree in O(m log n) time. In summary,
we have a running time of O(7l · nm). ut

5.2 Edge Insertion

If CC(G) after Step (1) contains no cycle, i.e., it is a tree, then there is no edge
insertion required. For a CC(G) containing at least one cycle, the only possible
way to make it a tree by edge insertions is to trigger a merge operation for

9

some nodes on this cycle such that the remaining nodes induce no cycle. Recall
that two nodes can be merged iff they are adjacent and they have the same
neighborhood. Thus, in order to merge two nodes Ki and Kj , we have to insert
an edge between them if they are not already adjacent; furthermore, we need to
connect Ki to all neighbors of Kj and connect Kj to all neighbors of Ki. Since
each cycle of CC(G) has length at least four, two nodes Ki and Kj on the same
cycle either are not adjacent or there are at least two neighbors which are not
common to Ki and Kj . Hence, we need at least one edge insertion to merge two
nodes on a cycle.

We show the fixed-parameter tractability of CLR3 Edge Insertion with
respect to l by giving a simple search tree algorithm that tries all possible pairs
of nodes to merge in a cycle. For this, it suffices to determine an upper bound for
the length of a cycle in CC(G) that depends only on l. We achieve this by giving
a connection between the triangulation of a hole and the merge operations that
turn a cycle into a tree.

A triangulation of a hole C = (VC , EC), where VC denotes the set of the
vertices on this cycle and EC the set of the edges, is a set D of chords of C such
that there is no hole in C ′ = (VC , EC ∪ D). A triangulation F of a graph G is
minimal if no proper subset of F triangulates G.

Lemma 8. Each set of edges inserted into a cycle C of a critical clique graph
to transform C into a tree is a triangulation of C.

Kaplan, Shamir, and Tarjan [11] show that a minimal triangulation D of
an n-cycle C consists of n − 3 chords, which implies that a graph G that can
be triangulated by at most l edge insertions cannot have a chordless cycle of
length more than l + 3. This is also the key idea of one of their fixed-parameter
algorithms for Minimum Fill-In, which is the problem to make a graph chordal
by edge insertion. With Lemma 8, we conclude that the maximum cycle length
of CC(G) is bounded above by l + 3; otherwise, there is no solution to CLR3

Edge Insertion using only l insertion operations.
Altogether, we get the following theorem.

Theorem 4. CLR3 Edge Insertion on a graph G = (V, E) with l edge in-
sertions allowed is fixed-parameter tractable with respect to l.

5.3 Edge Editing

In this section we extend the algorithm for CLR3 Edge Insertion from Sec-
tion 5.2 to solve CLR3 Edge Editing by additionally taking edge deletions
into account. We distinguish two types of cycles: the long cycles having length
greater than l + 3, and the short cycles having length at most l + 3.

We can destroy a short cycle in CC(G) by deleting at least one edge from it,
or by merging some critical cliques. This means we have at most l + 3 possible
edge deletions and at most (l + 3)2 possible merge operations. However, merge
operations with both edge deletion and edge insertion are more complicated
than merge operations with only edge insertion. Suppose that we merge a pair

10

of critical cliques Ki and Kj on a cycle. As with only edge insertions allowed,
we insert an edge between Ki and Kj if they are not adjacent. There may be
some critical cliques which are neighbors of Ki but not of Kj or vice versa. To
satisfy the neighborhood condition of a critical clique, for each of these neigh-
bors which are not common to Ki and Kj , we have to either insert an edge to
make it a common neighbor of both critical cliques, or delete an edge to make it
nonadjacent to both critical cliques. However, there may be at most l such non-
common neighbors, since there are at most l edge editing operations allowed. A
merge operation between Ki and Kj is then possible only if they have at most l

noncommon neighbors. Thus, we have at most 2l different ways to merge these
two critical cliques. Altogether, we now have (l + 3) + (l + 3)2 · 2l branchings to
transform a short cycle into a tree.

Theorem 5. CLR3 Edge Editing on a graph G = (V, E) with l edge editing
operations allowed is fixed-parameter tractable with respect to l.

6 Concluding Remarks

Our algorithmic results fall into the broad category of complexity for graph mod-
ification problems. In addition, we recently obtained a fixed-parameter tracta-
bility result for CLR3 Vertex Deletion, the NP-complete problem that asks
for the least number of vertices to delete to make a graph a 3-leaf root. The
line of research initiated in our work offers several future challenges. We only
mention four points.

– In ongoing work we examine the generalization of our fixed-parameter trac-
tability results for Closest 3-Leaf Root to Closest 4-Leaf Root.
For k ≥ 5 the question is completely open. The difficulty here lies in the
more complicated structure of the critical clique graph; for example, it is no
longer required to be a tree.

– It remains open to provide a problem kernel for 3-Leaf Root [6,20].
– One challenge is to investigate whether similar fixed-parameter tractability

results can be achieved for the closely related phylogenetic root problems
studied in [4,16]. Forbidding degree-2 nodes there in the output trees seems
to make things more elusive, though.

– From a more applied point of view, it would be interesting to see how small
the combinatorial explosion for CLR3 and its variants in the parameter l

(denoting the number of modifications) can be made. Encouraging results
for the “simpler” but still NP-complete Closest 2-Leaf Root problem are
obtained in [7,8] (where the problem is referred to as Cluster Editing).

References

1. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proc. 43rd FOCS,
pages 238–247. IEEE Computer Society, 2002. 3

2. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. SIAM
Monographs on Discrete Mathematics and Applications, 1999. 1, 3

11

3. L. Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58:171–176, 1996. 2, 4, 8

4. Z.-Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with bounded
degrees and errors. SIAM Journal on Computing, 32(4):864–879, 2003. 2, 4, 7, 11

5. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9:251–280, 1990. 8

6. M. R. Fellows. New directions and new challenges in algorithm design and com-
plexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages 505–520.
Springer, 2003. 4, 11

7. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. In Proc. 5th CIAC, volume 2653
of LNCS, pages 108–119. Springer, 2003. Long version to appear in Theory of

Computing Systems. 2, 9, 11
8. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of search

tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–347,
2004. 9, 11

9. A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on

Computing, 7(4):413–423, 1978. 8
10. T. Jiang, G. Lin, and J. Xu. On the closest tree kth root problem. Manuscript,

Department of Computer Science, University of Waterloo, 2000. 2
11. H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion

problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal

on Computing, 28(5):1906–1922, 1999. 10
12. P. E. Kearney and D. G. Corneil. Tree powers. Journal of Algorithms, 29(1):111–

131, 1998. 1, 2
13. M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.

Acta Informatica, 23(3):311–323, 1986. 3, 7
14. L. C. Lau. Bipartite roots of graphs. In Proc. 15th ACM-SIAM SODA, pages

952–961. ACM/SIAM, 2004. 1
15. L. C. Lau and D. G. Corneil. Recognizing powers of proper interval, split, and

chordal graphs. SIAM Journal on Discrete Mathematics, 18(1):83–102, 2004. 1
16. G. Lin, P. E. Kearney, and T. Jiang. Phylogenetic k-root and Steiner k-root. In

Proc. 11th ISAAC, volume 1969 of LNCS, pages 539–551. Springer, 2000. 1, 2, 3,
4, 6, 7, 11

17. Y. L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM Journal

on Discrete Mathematics, 8(1):99–118, 1995. 1
18. R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Applied

Mathematics, 54(1):81–88, 1994. 1
19. A. Natanzon. Complexity and approximation of some graph modification problems.

Master’s thesis, Department of Computer Science, Tel Aviv University, 1999. 3, 7
20. R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter algo-

rithms. In Proc. 29th MFCS, volume 3153 of LNCS, pages 84–103. Springer, 2004.
4, 11

21. N. Nishimura, P. Ragde, and D. M. Thilikos. On graph powers for leaf-labeled
trees. Journal of Algorithms, 42(1):69–108, 2002. 1, 2, 3

22. R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied

Mathematics, 131(3):651–654, 2003. 7
23. R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In Proc.

28th WG, volume 2573 of LNCS, pages 379–390. Springer, 2002. Long version to
appear in Discrete Applied Mathematics. 2, 3, 4

12

	Error Compensation in Leaf Root Problems
	Michael Dom, Jiong Guo, Falk Hüffner, and Rolf Niedermeier

