
Developing Fixed-Parameter Algorithms to Solve

Combinatorially Explosive Biological Problems

Falk Hüffner Rolf Niedermeier Sebastian Wernicke

Institut für Informatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{hueffner,niedermr,wernicke}@minet.uni-jena.de
http://theinf1.informatik.uni-jena.de

Abstract

Fixed-parameter algorithms can efficiently find optimal solutions to
some computationally hard (NP-hard) problems. We survey five main
practical techniques to develop such algorithms. Each technique is circum-
stantiated by case studies of applications to biological problems. We also
present other known bioinformatics-related applications and give pointers
to experimental results.
Key Words: Computationally hard problems; combinatorial explosions;
discrete problems; fixed-parameter tractability; optimal solutions.

1 Introduction

Many problems that emerge in bioinformatics require vast amounts of computer
time to be solved optimally. A typical example is the following: Given a series
of n experiments of which some pairs have conflicting results (that is, at least
one must have been faulty), identify a minimum-size subset of experiments to
eliminate so that no conflict remains. This problem is notoriously difficult to
solve. For this and many other problems, the root of these difficulties can be
identified as their NP-hardness, which implies a combinatorial explosion in the
solution space that apparently cannot be easily avoided [27]. Thus, whenever a
problem is proven to be NP-hard, it is common to employ heuristic algorithms,
approximation algorithms, or attempt to sidestep the problem whenever large
instances need to be solved. All the concrete case studies we provide in this
survey deal with NP-hard problems.

Often, however, it is not only the size of an instance that makes a problem
hard to solve, but rather its structure. The concept of fixed-parameter tractabil-
ity (FPT) reflects this observation and renders it more precise by measuring
structural hardness by a so-called parameter, which is typically a nonnegative
integer variable denoted k. This generalizes the concept of “easy special cases”
that are known for virtually all NP-hard problems: Whenever the parameter k

1

turns out to be small, a fixed-parameter algorithm is going to be provably effi-
cient while guaranteeing the optimality of the solution obtained. For instance,
our fault identification problem can be solved quickly whenever the number
of faulty experiments is small—an assumption easy to make in practice, since
otherwise the results would not be worth much anyway.

A particular appeal of FPT is that the parameter can be chosen from basi-
cally boundless possibilities. For instance, we might in our example choose the
maximum number of conflicts for a single experiment or the size of the largest
group of pairwise conflicting experiments to be the parameter. This makes FPT
a many-pronged attack that can be adapted to different practical applications
of one problem. Note, however, that not all parameters need to lead to efficient
algorithms; in fact, FPT provides tools to classify parameters as “not helpful,”
meaning that we cannot expect efficient solvability even when the parameter is
small.

Fixed-parameter algorithms have by now facilitated many success stories in
bioinformatics. Several techniques have emerged as being applicable to large
classes of problems. In the main part of this work, we present five of these
techniques, namely kernelization (Section 2), depth-bounded search trees (Sec-
tion 3), tree decompositions of graphs (Section 4), color-coding (Section 5), and
iterative compression (Section 6). We start each section by giving an overview
of basic concepts and ideas, followed by one to three detailed case studies con-
cerning practically relevant bioinformatics problems. Finally, we survey known
applications, implementations, and experimental results, thereby highlighting
the strengths and fields of applicability of each technique.

Before discussing the main techniques, we continue with a crash course of
computational complexity theory and a formal definition for the concept of
fixed-parameter tractability. Furthermore, some terms from graph theory are
introduced, and we present our running example problem Vertex Cover.

1.1 Computational Complexity Theory

A core topic of computational complexity theory is the evaluation and com-
parison of different algorithms for a problem [43]. Since most algorithms are
designed to work with inputs of arbitrary length, the efficiency (or complexity)
of an algorithm is not stated just for a single input (instance) or a collection
of inputs, but as a function that relates the input length n to the number of
steps that are required to execute the algorithm. Since instances of the same
size might take different amounts of time, the worst-case runtime is considered.
This figure is given in an asymptotic sense; the standard way for this being the
big-O notation: we say that f(n) = O(g(n)) when f(n)/g(n) is upper-bounded
by a positive constant in the limit for large n [17].

Determining the computational complexity of problems (meaning the best
possible asymptotic runtime of an algorithm for them) is a key issue in theoret-
ical computer science. Of central importance herein is to distinguish between
problems that can be solved efficiently and those that presumably cannot. To
this end, theoretical computer scientists have coined the notions of polynomial-

2

time solvable on the one hand and NP-hard on the other [27]. In this sense,
polynomial-time solvability has become a synonym for efficient solvability. This
means that for a size-n input instance of a problem, an optimal solution can
be computed in O(nc) time, where c is some positive constant. By way of
contrast, the (unproven, yet widely believed) working hypothesis of theoretical
computer science is that NP-hard problems cannot be solved in O(nc) time for
any constant c. More specifically, typical runtimes for NP-hard problems are
of the form O(cn) for some constant c > 1, or even worse; that is, we have an
exponential growth of the number of computation steps.

As there are thousands of practically important NP-hard optimization prob-
lems, and the number is continuously growing [44], several approaches have been
developed that try to circumvent the assumed computational intractability of
NP-hard problems. One such approach is based on polynomial-time approxima-
tion algorithms, where one gives up seeking optimal solutions in order to have
efficient algorithms [5, 51]. Another commonly employed strategy is that of
heuristics, where one gives up any provable performance guarantees concerning
runtime and/or solution quality by developing algorithms that “usually” behave
well in “most” practical applications [40].

1.2 Parameterized Complexity

For many applications the compromises inherent to approximation algorithms
and heuristics are not satisfactory. Fixed-parameter algorithms can provide an
alternative by providing optimal solutions with useful runtime guarantees [22].
The core concept is formalized as follows.

Definition 1. An instance of a parameterized problem consists of a problem
instance I and a parameter k. A parameterized problem is fixed-parameter
tractable if it can be solved in f(k) · |I|O(1) time, where f is a computable
function solely depending on the parameter k, not on the input size |I|.

For NP-hard problems, f(k) will of course not be polynomial—since oth-
erwise we would have an overall polynomial-time algorithm—but typically be
exponential like 2k. Clearly, fixed-parameter tractability captures the notion
of “efficient for small parameter values”: for any constant k, we obtain a
polynomial-time algorithm. Moreover, the exponent of the polynomial must be
independent of k, which means that the combinatorial explosion is completely
confined to the parameter.

As an example, consider again the identification of k faulty experiments
among n experiments. We can solve this problem in O(2n) time by trying
all possible subsets. However, this is not feasible for n > 40. In contrast, a
fixed-parameter algorithm with runtime O(2k · n) exists, which allows to solve
the problem even for n = 1000, if k < 20 (as will be discussed in Section 2.3,
instances can even be solved for much larger values of k in practice by an
extension of this approach).

Note that—as parameterized complexity theory points out—there are prob-
lems that are probably not fixed-parameter tractable.

3

Figure 1: A graph with a size-8 vertex cover (cover vertices are marked black).

Two recent monographs are available on parameterized complexity, one fo-
cusing on theoretical foundations [26], and one focusing on techniques and al-
gorithms [41], the latter also being the focus of our considerations here.

1.3 Graph Theory

Many of the problems we deal with in this work are from graph theory [21]. A
graph G = (V, E) is given by a set of vertices V and a set of edges E, where every
edge {v, w} is an undirected connection of two vertices v and w. Throughout
this work, we use n to denote the number of vertices and m to denote the
number of edges. For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is
the graph (V ′, {{v, w} ∈ E | v, w ∈ V ′}), that is, the graph G restricted to the
vertices in V ′.

It is not hard to see that we can formalize our introductory example problem
of recognizing faulty experiments as a graph problem: vertices correspond to
experiments, and edges correspond to pairs of conflicting experiments. Thus,
we need to chose a small set of vertices (the experiments to eliminate) so that
each edge is incident to at least one chosen vertex. This is formally known as
the NP-hard Vertex Cover problem, which serves as a running example for
several techniques in this work.

Vertex Cover

Input: A graph G = (V, E) and a nonnegative integer k.
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such
that each edge in E has at least one of its endpoints in C.

The problem is illustrated in Figure 1. Vertex Cover can be considered
the Drosophila of fixed-parameter research in that many initial discoveries that
influenced the whole field originated from studies of this single problem.

2 Kernelization: Data Reduction With Guaran-

teed Effectiveness

The idea of data reduction is to quickly presolve those parts of a given problem
instance that are (relatively) easy to cope with, shrinking it to those parts that
form the “really hard” core of the problem. Computationally expensive algo-
rithms need then only be applied to this core. In some practical scenarios, data

4

reduction may even reduce instances of a seemingly hard problem to triviality.
Once an effective (and efficient) reduction rule has been found, it is useful in
virtually any problem solving context, whether it be heuristic, approximative,
or exact.

This section introduces the concept of kernelizations, that is, polynomial-
time data reduction with guaranteed effectiveness. These are closely connected
to and emerge within the FPT framework.

2.1 Basic Concepts

Today, there are many examples of combinatorial problems that would not be
solvable without employing heuristic data reduction and preprocessing algo-
rithms. For example, commercial solvers for hard combinatorial problems such
as the integer linear program solver CPLEX heavily rely on data-reducing pre-
processors for their efficiency [10]. Obviously, many practitioners are aware of
the concept of data reduction in general. The reason why they should also con-
sider FPT in this context is that fixed-parameter theory provides a way to use
data reduction rules not only in a heuristic way, but with guaranteed perfor-
mance using so-called kernelizations. For a reduced instance, these guarantee
an upper bound on its size that solely depends on the parameter value. To
render a precise definition of this:

Definition 2 ([22, 41]). Let I be an instance of a parameterized problem
with given parameter k. A reduction to a problem kernel (or kernelization) is
a polynomial-time algorithm that replaces I by a new instance I ′ and k by a
new parameter k′ ≤ k such that—independently of the size of I—the size of I ′

is guaranteed to only depend on some function in k. Furthermore, the new
instance I ′ must have a solution with respect to the new parameter k′ if and
only if I has a solution with respect to the original parameter k.

Kernelizations can help to understand the practical effectiveness of some
data reduction rules and, conversely, the quest for kernelizations can lead to
new and powerful data reduction rules based on deep structural insights.

Intriguingly, there is a close connection between fixed-parameter tractable
problems and those problems for which there exists a problem kernel—they are
exactly the same. Unfortunately, the runtime of a fixed-parameter algorithm
directly obtained from a kernelization is usually not practical and, in the other
direction, there exists no constructive scheme for developing data reduction rules
for a fixed-parameter tractable problem. Hence, the main use of this equivalence
is to establish the fixed-parameter tractability or amenability to kernelization
of a problem; it is also useful for showing that we need not search any further
(e.g., if a problem is known to be fixed-parameter intractable, we do not need
to look for a kernelization).

5

2.2 Case Study

In this section, we first illustrate the concept of kernelization by a simple exam-
ple concerning the Vertex Cover problem. We then show how a generalization
of this method leads to a very effective kernelization.

2.2.1 A Simple Kernelization for Vertex Cover

Consider our running example Vertex Cover. In order to cover an edge in
the graph, one of its two endpoints must be in the vertex cover. If one of these is
a degree-1 vertex (that is, it has exactly one neighbor), then the other endpoint
has the potential to cover more edges than this degree-1 vertex, leading to a
first data reduction rule.

Reduction Rule VC1

For degree-1 vertices, put their neighboring vertex into the cover.

Here, “put into the cover” means adding the vertex to the solution set and
removing it and its incident edges from the instance. Note that this reduction
rule assumes that we are only looking for one optimal solution to the Vertex

Cover instance we are trying to solve; there may exist other minimum vertex
covers that do include the reduced degree-1 vertex.1

After having applied Rule VC1, we can further do the following in the fixed-
parameter setting where we ask for a vertex cover of size at most k.

Reduction Rule VC2

If there is a vertex of degree at least k+1, put this vertex into the cover.

The reason this rule is correct is that if we did not take v into the cover, then
we would have to take every single one of its k + 1 neighbors into the cover in
order to cover all edges incident to v. This is not possible because the maximum
allowed size of the cover is k.

After exhaustively performing Rules VC1 and VC2, no vertex in the re-
maining graph has a degree higher than k, meaning that at most k edges can
be covered by choosing an additional vertex into the cover. Since the solution
set may be no larger than k, the remaining graph can have at most k2 edges
if it is to have a solution. Clearly, we can assume without loss of generality
that there are no isolated vertices (that is, vertices with no incident edges) in a
given instance. In conjunction with Rule VC1, this means that every vertex has
degree at least two. Hence, the remaining graph can contain at most k2 vertices.

Abstractly speaking, what we have done so far is the following: After apply-
ing two polynomial-time data reduction rules to an instance of Vertex Cover,
we arrived at a reduced instance whose size can solely be expressed in terms of
the parameter k. Hence, considering Definition 2, we have found a kernelization
for Vertex Cover.

1There exist suitable reduction rules when it is of interest to enumerate all vertex covers
of a given graph, but these are beyond the scope of this work. For instance, Damaschke [18]
suggests the notion of a full kernel that contains all solutions in a compressed form and
thereby allows enumeration of them. This is an emerging field of research, and not many full
kernels are known.

6

G

I

H

Figure 2: A graph G with a crown I ∪ H . Note how the thick edges constitute
a maximum matching of size |H | in the bipartite graph induced by the edges
between I and H .

2.2.2 Improving Effectiveness by Generalization: Crown Reductions

Besides the simple-to-achieve size-k2 problem kernel for Vertex Cover we
have just discussed, there are several more advanced kernelization techniques for
Vertex Cover. The more advanced methods generally feature two important
improvements: First, they do not require the parameter k to be stated explicitly
beforehand (contrary to Rule VC2), that is, they are parameter-independent.
Second, they improve the upper bounds on the kernel size to being linear in
k. We explore one of these advanced methods in more detail here, namely the
so-called crown reduction rules [1, 16].

Crown reduction rules are a prominent example for an advanced kerneliza-
tion for Vertex Cover; they constitute a generalization of the elimination of
degree-1 vertices we have seen in Rule VC1. A crown in a graph consists of an
independent set I (that is, no two vertices in I are connected by an edge) and
a set H containing all vertices adjacent to I. In order for I ∪ H to be a crown,
there has to exist a size-|H | maximum bipartite matching in the bipartite graph
induced by the edges between I and H , that is, one in which every element of H
is matched. (See, e.g., [17] for an introduction on bipartite matching and the
involved algorithmics.) An example for a crown structure is given in Figure 2.

If there is a crown I ∪ H in the input graph G, then we need at least |H |
vertices to cover all edges in the crown. But since all edges in the crown can be
covered by taking at most |H | vertices into the cover (as I is an independent
set), there is a minimum-size vertex cover for G that contains all the vertices
in H and none of the vertices in I. We may thus delete any given crown I ∪ H
from G, reducing k by |H |. In a sense, the degree-1 vertices we took care of in
Rule VC1 are the most simple crowns.

Two issues remain to be dealt with, namely how to find crowns efficiently and
giving an upper bound on the size of the problem kernel that can be obtained via
crown reductions. It turns out that finding crowns can be achieved in polynomial
time [16]. The size of the thus reduced instance is upper-bounded via the
following theorem (a proof of which can be found in [1]):

Theorem 1. A graph that is crown-free and has a vertex cover of size at most k
can contain at most 3k vertices.

7

In this way, by generalizing Rule VC1—which by itself does not constitute a
kernelization—we have obtained an efficient kernelization that does not require
an explicitly stated value for the parameter k and yields a small kernel for
Vertex Cover.2 Even smaller kernels of size upper-bounded by 2k are attain-
able with other methods, for example using the so-called “Nemhauser–Trotter
kernelization” (see [41] for details).

2.3 Applications and Implementations

Since many initial and influential discoveries concerning FPT were made from
studies of Vertex Cover, it comes as no surprise that the experimental field
is more advanced for this problem than for others from the realm of fixed-
parameter tractability.

Abu-Khzam et al. [1] studied various kernelization methods for Vertex

Cover and their practical performance both with respect to time as well as
with respect to the resulting kernel size. For bioinformatics-related networks
derived from protein databases and microarray data, they found that crown
reductions turn out to be very fast to compute in practice and can be as effective
as approaches with a better worst-case bound of 2k (such as the Nemhauser–
Trotter reduction). Abu-Khzam et al. therefore recommend always using crown
reduction as a general preprocessing step when solving Vertex Cover before
attempting other, more costly, reduction methods.

Solving Vertex Cover is of relevance to many bioinformatics-related sce-
narios such as microarray data analysis [15] and the computation of multiple
sequence alignments [13]. Besides solving instances of Vertex Cover, an-
other important application of Vertex Cover kernelizations is that of search-
ing maximum cliques (that is, maximum-size fully connected subgraphs) in a
graph. Here, use is made of the fact that an n-vertex graph has a maximum
clique of size (n − k) if and only if its complement graph3 has a size-k mini-
mum vertex cover. Details and experimental results for this with applications
to computational biology are given, e.g., by Abu-Khzam et al. [2]. State-of-the
art implementations of fixed-parameter algorithms and kernelizations for Ver-

tex Cover enable finding cliques and dense subgraphs consisting of 200 or
more vertices (e.g., see [15]) in biological networks such as they appear in the
analysis of microarray data.

Another biologically relevant clustering problem where kernelizations have
been successfully implemented is the Clique Cover problem. Here, the task is
to cover all edges of a graph using at most k cliques (these may overlap). Using
data reduction, Gramm et al. [30] showed instances with a solution size of up
to k = 250 to be solvable in practice. Finally, a further example for a clustering
problem where kernelizations have proven to be quite useful in practice is the
Cluster Editing problem that we discuss in more detail in Section 3.2.2 [20].

2Another example for a data reduction for Vertex Cover that is based on schemes that
generalize to arbitrarily large graph substructures is given by Chen et al. [14].

3That is, the “edgewise inverse” graph that contains exactly those edges the original graph
does not contain.

8

3 Depth-Bounded Search Trees

Once the data reductions we have discussed in the previous section have been
applied to a problem instance, we are left with the “really hard” problem ker-
nel to be solved. A standard way to explore the huge search space related to
optimally solving a computationally hard problem is to perform a systematic
exhaustive search. This can be organized in a tree-like fashion, which is the
subject of this section.

3.1 Basic Concepts

Search trees algorithms—also known as backtracking algorithms, branching al-
gorithms, or splitting algorithms—certainly are no new idea and have exten-
sively been used in the design of exact algorithms (e.g., see [17, 48]). The
main contribution of fixed-parameter theory to search tree algorithms is the
consideration of search trees whose depth is bounded from above by the parame-
ter. Combined with insights on how to find useful—and possibly non-obvious—
parameters, this can lead to search trees that are much smaller than those of
naive brute-force searches. For example, a very naive search tree approach for
solving Vertex Cover is to just take one vertex and branch into two cases:
either this vertex is in the vertex cover or not. For an n-vertex graph, this leads
to a search tree of size O(2n). As we outline in this section, we can do much
better than that and obtain a search tree whose depth is upper-bounded by k,
giving a size bound of O(2k) (extending what we discuss here, there are even
better search trees of size O(1.28k) possible). Since usually k � n, this can
draw the problem into the zone of feasibility even for large graphs (as long as k
is small).

Besides depth-bounding, fixed-parameter theory provides additional means
to provably improve the speed of search tree exploration, particularly by inter-
leaving this exploration with kernelizations, that is, data reduction is applied
to partially solved instances during the exploration.

3.2 Case Studies

Starting with our running example Vertex Cover, this section introduces the
concept of depth-bounded search trees by three case studies.

3.2.1 Vertex Cover Revisited

For many search tree algorithms, the basic idea is to find a small subset of the
input instance in polynomial time such that at least one element of this subset
must be part of an optimal solution to the problem. In the case of Vertex

Cover, the most simple such subset is any two vertices that are connected by
an edge. By definition of the problem, one of these two vertices must be part of
a solution or the respective edge would not be covered. Thus, a simple search-
tree algorithm to solve Vertex Cover on a graph G proceeds by picking an

9

. . .

initial k

k − 1

k − 2

.k − 3

Figure 3: Simple search tree for finding a vertex cover of size at most k in a
given graph. The size of the tree is upper-bounded by O(2k).

arbitrary edge e = {v, w} and recursively searching for a vertex cover of size k−1
both in G − v and G − w.4 That is, the algorithm branches into two subcases
knowing one of them must lead to a solution of size at most k—provided that
it exists.

As shown in Figure 3, the recursive calls of the simple Vertex Cover

algorithm can be visualized as a tree structure. Because the depth of the recur-
sion is upper-bounded by the parameter value and we always branch into two
subcases, the number of cases that are considered by this tree—its size, so to
say—is upper-bounded by O(2k). Note how this size is independent of the size
of the input instance and only depends on the value of the parameter k.

The currently “best” search trees for Vertex Cover are of worst-case size
O(1.28k) [14] and mainly achieved by elaborate case distinctions. However, for
practical applications it is always concrete implementation and testing that has
to decide whether the administrative overhead caused by distinguishing more
and more cases pays off. A simpler algorithm with slightly worse search tree
size bounds may be preferable.

3.2.2 The Cluster Editing Problem

For Vertex Cover, we have found a depth-bounded search tree by observing
that at least one endpoint of any given edge must be part of the cover. A
somewhat similar approach can be used to derive a depth-bounded search tree
for the following clustering problem:

Cluster Editing

Input: A graph G = (V, E) and a nonnegative integer k.
Task: Find whether we can modify G to consist of disjoint cliques (that
is, fully connected components) by adding or deleting at most k edges.

4For a vertex v ∈ V , we define G − v to be the graph G with both the vertex v and the
edges incident to v removed.

10

Figure 4: Illustration for the Cluster Editing problem: By removing two
edges from and adding one edge to the graph on the left (that is, k = 3), we
can obtain a graph that consists of two disjoint cliques.

An illustration for this problem is given in Figure 4. Cluster Editing

has important applications in graph-modeled data clustering, e.g., to cluster
microarray data: Here, the individual datapoints are represented as vertices.
Edges connect two vertices if these have similar expression profiles. The underly-
ing assumption is that the datapoints will form dense clusters in the constructed
graph that are only sparsely connected to each other. Thus, by adding and re-
moving only a few edges, we can reveal the underlying correlation structure in
the form of disjoint cliques.

Similar to Vertex Cover, a search tree for Cluster Editing can be
obtained by noting that the desired graph of disjoint cliques forbids a certain
structure: If two vertices are connected by an edge, then their neighborhoods
must be the same. Hence, whenever we encounter two connected vertices u
and v in the input graph G that are connected by an edge and where one
vertex, say u, has a neighbor w that is not connected to v, we are compelled to
do one of three things: Either remove the edge {u, v}, or connect v with w, or
remove the edge {u, w}. Note that each such modification counts with respect
to the parameter k. Therefore, exhaustively branching into three cases for at
most k forbidden substructures, we obtain a search tree of size O(3k) to solve
Cluster Editing. The currently best branching scheme has a search-tree size
of O(1.92k) [29]; interestingly, it was derived by using computer-aided algorithm
design. Experimental results for Cluster Editing are reported in [20].

3.2.3 The Center String Problem

The Center String problem is also known as Consensus String or Closest

String.

Center String

Input: A set of k length-` strings s1, . . . , sk and a nonnegative integer d.
Task: Find a center string s that satisfies dH(s, si) ≤ d for all i =
1, . . . , k.

Here, dH(s, si) denotes the Hamming distance between two strings s and si,
that is, the number of positions where s and si differ. Note that there are at
least two immediately obvious parameterizations of this problem. The first is
given by choosing the “distance parameter” d and the second is given by the
number k of input strings. Both parameters are reasonably small in various

11

ATCTA AGAA T

ATCTACAG AA

ATCTACAGAA T

ATCTA AGA AT

ATCTA AGAA T

ATCTACAGAAAT

TAGATGTCTTTA

T G

T C

G

T G

T G

...GGTGAG

...GGTGGA

...GGCGAG

...GGCGAG

...GGCAAG

TGAATGC...

GGATTGT...

GGAATGC...

GGAATGC...

GGAATGC...

closest string:

primer candidate:

Figure 5: Illustration to show how DNA primer design can be achieved by solv-
ing Center String instances on length-` windows of aligned DNA sequences.
(Note that the primer candidate is not the center string sought after but its
nucleotide-wise complement.)

applications; we refer to Gramm et al. [33] for more details. Here, we focus on
the parameter d.

One application scenario where this problem appears is in primer design
where we try to find a small DNA sequence called primer that binds to a set
of (longer) target DNA sequences as a starting point for replication of these
sequences. How well the primer binds to a sequence is mostly determined by
the number of positions in that sequence that hybridize to it. While often done
by hand, Stojanovic et al. [50] proposed a computational approach for finding a
well-binding primer of length `. First, the target sequences are aligned, that is,
as many matching positions within the sequences as possible are grouped into
columns. Then, a “sliding window” of length ` is moved over this alignment,
giving a Center String problem for each window position. Figure 5 illustrates
this (see [28] for details).

In the remainder of this case study, we sketch a fixed-parameter search tree
algorithm for Center String due to Gramm et al. [33], the parameter being
the distance d. Unlike for Vertex Cover and Cluster Editing, the central
challenge lies in even finding a depth-bounded search tree, which is all but
obvious at a first glance. Once found, however, the derivation of the upper
bound for the search tree size is straightforward. The underlying algorithm is
very simple to implement, and we are not aware of a better one.

The main idea behind the algorithm is to maintain a candidate string ŝ
for the center string and compare it to the strings s1, . . . , sk. If ŝ differs from
some si in more than d positions, then we know that ŝ needs to be modified in at
least one of these positions to match the character that si has there. Consider
the following observation:

Observation 1. Let d be a nonnegative integer. If two strings si and sj have a
Hamming distance greater than 2d, then there is no string that has a Hamming
distance of at most d to both of si and sj.

12

This means that si is allowed to differ from ŝ in at most 2d positions. Hence,
among any d + 1 of those positions where si differs from ŝ, at least one must
be modified to match si. This can be used to obtain a search tree that solves
Center String.

We start with a string from {s1, . . . , sk} as the candidate string ŝ, knowing
that a center string can differ from it in at most d positions. If ŝ already is a
valid center string, we are done. Otherwise, there exists a string si that differs
from ŝ in more than d positions, but less than 2d. Choosing any d + 1 of these
positions, we branch into (d + 1) subcases, each subcase modifying a position
in ŝ to match si. This position cannot be changed anymore further down in
the search tree (otherwise, it would not have made sense to make it match si

at that position). Hence, the depth of the search tree is upper-bounded by d,
for if we were to go deeper down in the tree, then ŝ would differ in more than d
positions from the original string we started with. Thus, Center String can
be solved by exploring a search tree of size O((d + 1)d) [33]. Combining data
reduction with this search tree, we arrive at the following.

Theorem 2. Center String can be solved in O(k · ` + k · d · (d + 1)d) time.

It might seem as if this result is purely of theoretical interest—after all, the
term (d+1)d becomes prohibitively large already for, say, d = 15. However, two
things are to be noted in this respect: First, for one of the main applications of
Center String, primer design, d is very small (most often less than 4). Second,
empirical analysis reveals that when the algorithm is applied to real-world and
random instances, it often beats the proven upper bound by far, solving many
real-world instances in less than a second. The algorithm is also faster than an
Integer Linear Programming formulation of Center String when the input
consists of many strings and ` is small [33].

Unfortunately, many variants of Center String—roughly speaking, these
deal with finding a matching substring and distinguish between strings to which
the center is supposed to be close and to which it should be distant—are known
to be intractable from a fixed-parameter point of view [23, 31, 39].

3.3 Applications and Implementations

In combination with data reduction, the use of depth-bounded search trees has
proven itself quite useful in practice, for example allowing to find vertex covers
of more that ten thousand vertices in some dense graphs of biological origin [2].
It should also be noted that search trees trivially allow for a parallel implemen-
tation: when branching into subcases, each process in a parallel setting can fur-
ther explore one of these branches with no additional communication required.
Cheetham et al. [13] were the first to practically demonstrate this with their
parallel Vertex Cover solver; they achieve a near-optimum (i.e., linear with
the number of processors employed) speedup on multiprocessor systems, solving
instances with k ≥ 400 in mere hours. Recent research even indicates that in
some cases, parallelizing may yield a super-linear speedup because the branches
that lead to a solution are explored earlier than in a sequential setting [2].

13

Besides in fixed-parameter theory, search tree algorithms are studied ex-
tensively in the area of artificial intelligence and heuristic state space search.
There, the key to speedups are admissible heuristic evaluation functions which
quickly give a lower bound on the distance to the goal. The reason that admis-
sible heuristics are rarely considered by the FPT community in their works5 is
that they typically cannot improve the asymptotic runtime. Still, the speedups
obtained in practice can be quite pronounced, as demonstrated for Vertex

Cover [24].
As with kernelizations, algorithmic developments outside the fixed-parameter

setting can make use of the insights that have been gained in the development
of depth-bounded search trees in a fixed-parameter setting. A recent example
for this is the Minimum Quartet Inconsistency problem arising in the con-
struction of evolutionary trees. Here, an algorithm that uses depth-bounded
search trees was developed by Gramm and Niedermeier [32]. Their insight was
recently used by Wu et al. [52] to develop a (non-parameterized) faster algorithm
for this problem.

In conclusion, depth-bounded search trees with clever branching rules are
certainly one of the first approaches to try when solving fixed-parameter tractable
problems in practice.

4 Tree Decompositions of Graphs

Many NP-hard graph problems become computationally feasible when they are
restricted to graphs without cycles, that is, trees or collections of trees (forests).
Trees, however, form a very limited class of graphs that often do not suffice
as a model in real-life applications. Hence, as a compromise between general
graphs and trees, one might want to look at “tree-like” graphs. This likeness
is formalized by the concept of tree decompositions of graphs. Introduced by
Robertson and Seymour about twenty years ago, tree decompositions nowadays
play a central role in algorithmic graph theory [21]. In this section, we survey
some important aspects of tree decompositions and their algorithmic use with
respect to computational biology and FPT.

4.1 Basic Concepts

There is a very helpful and intuitively appealing characterization of tree decom-
positions in terms of a robber–cop game in a graph [11]: A robber stands on a
graph vertex and, at any time, he can run at arbitrary speed to any other vertex
of the graph as long as there is a path connecting both. He is not permitted
to run through a cop, though. A cop, at any time, either stands at a graph
vertex or is in a helicopter (that is, he is above the game board). The goal is
to land a helicopter on the vertex occupied by the robber. Note that, due to
the use of helicopters, cops are not constrained to move along graph edges. The
robber can see a helicopter approaching its landing vertex and he may run to a

5See, e.g., [32] for a counterexample

14

d

f

b

a

c

e g

i

h

a
d

b

b
d

c

b
e

d

d
h

e

ie
h

g

e
g

f

h

Figure 6: A graph together with a tree decomposition of width 2. Observe
that—as demanded by the consistency property—each graph vertex induces a
subtree in the decomposition tree.

new vertex before the helicopter actually lands. Thus, for a set of cops the goal
is to occupy all vertices adjacent to the robber’s vertex and to land one more
remaining helicopter on the robber’s vertex itself. The treewidth of the graph
is the minimum number of cops needed to catch a robber minus one (observe
that if the graph is a tree, two cops suffice and trees hence have a treewidth of
one) and a corresponding tree decomposition is a tree structure that provides
the cops with a scheme to catch the robber. The tree decomposition indicates
bottlenecks in the graph and thus reveals an underlying scaffold-like structure
that can be exploited algorithmically.

Formally, tree decompositions and treewidth center around the following
somewhat technical definition; Figure 6 shows a graph together with an optimal
tree decomposition of width two.

Definition 3. Let G = (V, E) be a graph. A tree decomposition of G is a pair
〈{Xi | i ∈ I}, T 〉 where each Xi is a subset of V , called a bag, and T is a tree
with the elements of I as nodes. The following three properties must hold:

1.
⋃

i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and

3. for all i, j, k ∈ I, if j lies on the path between i and k in T then Xi∩Xk ⊆
Xj.

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I}− 1. The treewidth of G
is the minimum k such that G has a tree decomposition of width k.

The third condition of the definition is often called consistency property. It
is important in dynamic programming, the main algorithmic tool when solving
problems on graphs of bounded treewidth. An equivalent formulation of this
property is to demand that for every graph vertex v, all bags containing v form
a connected subtree.

For trees, the bags of a corresponding tree decomposition are simply the
two-element vertex sets formed by the edges of the tree. In the definition, the
subtraction of 1 thus ensures that trees have a treewidth of 1. In contrast, a

15

clique of n vertices has treewidth n− 1. The corresponding tree decomposition
trivially consists of one bag containing all graph vertices; in fact, no tree de-
composition with smaller width is attainable. More generally, it is known that
every complete subgraph of a graph G is completely “contained” in a bag of G’s
tree decomposition.

Tree decompositions of graphs are connected to another central concept in
algorithmic graph theory: graph separators are vertex sets whose removal from
the graph separates the graph into two or more connected components. Each
bag of a tree decomposition forms a separator of the corresponding graph.

Given a graph, determining its treewidth is an NP-hard problem itself. How-
ever, several tools and heuristics exist that construct tree decompositions [12],
and for some graphs that appear in practice, computing a tree decomposition
is easy. Here, we concentrate on the algorithmic use of tree decompositions,
assuming that they are provided to us.

4.2 Case Study

Typically, tree decomposition based algorithms proceed according to the follow-
ing two-stage scheme:

1. Find a tree decomposition of bounded width for the input graph.

2. Solve the problem by dynamic programming on the tree decomposition,
starting from the leaves.

Intuitively speaking, the decomposition tree provides us with sort of a scaf-
fold that allows an efficient and consistent processing through the graph in order
to solve the given problem. Note that this scaffold leads to optimal solutions
even when the utilized tree decompositions are not optimal; however, the algo-
rithm will run slower and consume more memory in that case.

To exemplify dynamic programming on tree decompositions, we make use of
our running example Vertex Cover and sketch a fixed-parameter dynamic
programming algorithm for Vertex Cover with respect to the parameter
treewidth.

Theorem 3. For a graph G with a given width-ω tree decomposition 〈{Xi | i ∈
I}, T 〉, an optimal vertex cover can be computed in O(2ω · ω · |I|) time.

The basic idea of the algorithm is to examine for each bag Xi all of the at
most 2|Xi| possibilities to obtain a vertex cover for the subgraph G[Xi]. This
information is stored in tables Ai, i ∈ I. Adjacent tables are updated in a
bottom-up process starting at the leaves of the decomposition tree. Each bag of
the tree decomposition thus has a table associated with it. During this updating
process it is guaranteed that the “local” solutions for each subgraph associated
with a bag of the tree decomposition are combined into a “globally optimal”
solution for the overall graph G. (We omit several technical details here; these
can be found in [41].)

Observe that the following points of Definition 3 guarantee the validity of
the above approach.

16

1. The first condition in Definition 3, that is, V =
⋃

i∈I Xi, makes sure that
every graph vertex is taken into account during the computation.

2. The second condition in Definition 3, that is, ∀e ∈ E ∃i ∈ I : e ∈ Xi,
makes sure that all edges can be treated and thus will be covered.

3. The third condition in Definition 3 guarantees the consistency of the dy-
namic programming, since information concerning a particular vertex v is
only propagated between neighbored bags that both contain v.

One thing to keep in mind for a practical application is that storing dynamic
programming tables requires memory space that grows exponentially in the
treewidth. Hence, even for “small” treewidths, say, between 10 and 20, the
computer program may run out of memory and break down.

4.3 Applications and Implementations

Tree decomposition based algorithms are a valuable alternative whenever the
underlying graphs have small treewidth. As a rule of thumb, the typical border
of practical feasibility lies somewhere below a treewidth of 20 for the underly-
ing graph. Successful implementations for solving Vertex Cover with tree
decomposition approaches have been reported by Alber et al. [3] and by Betzler
et al. [9].

Another recent practical application of tree decompositions was given by
Xu et al. [53] who proposed a tree decomposition based algorithm to solve two
problems encountered in protein structure prediction, namely the prediction of
backbone structure and side-chain prediction. To this end, they modeled these
two problems as a graph labeling problem and showed that the resulting graphs
have a very small treewidth in practice, allowing the problems to be solved
efficiently.

Besides taking an input graph, computing a tree decomposition for it, and
hoping that the resulting tree decomposition has a small treewidth, there have
also been cases where a problem is modeled as a graph problem such that it
can be proven that the resulting graphs have a tree decomposition with small
treewidth that can efficiently be found. As an example, Song et al. [49] used
a so-called conformational graph to specify the consensus sequence-structure of
an RNA family. They were able to prove that the treewidth of this graph is
basically determined by the structural elements that appear in the RNA. More
precisely, they show that if there is a bounded number of crossing stems, say k,
in a pseudoknot structure, then the resulting graph has treewidth (2+k). Since
the number of crossing stems is usually small, this yields a fast algorithm for
searching RNA secondary structures.

A further strong example in this direction are probabilistic inference net-
works, which play a vital role in several decision support systems in medical,
agricultural, and other applications [37, 6]. Here, tree decomposition based
dynamic programming is a key solving method.

17

5 Color-Coding

The color-coding method due to Alon et al. [4] is a general method for finding
small patterns in graphs. It is clearly not as generally applicable as data reduc-
tion or search trees, but can lead to very efficient algorithms for certain prob-
lems. In its simplest form, it can solve the Minimum Weight Path problem,
which asks for the cheapest path of length k in a graph. This has been employed
with protein–protein interaction networks to find signaling pathways [36, 46] and
to evaluate pathway similarity queries [47].

5.1 Basic Concepts

Naively trying all roughly nk possibilities of finding a small structure of k vertices
within a graph of n vertices quickly leads to a combinatorial explosion, making
this approach infeasible even for rather small input graphs of a few hundred
vertices. The central idea of color-coding is to randomly color each vertex of
the graph with one of k colors and to “hope” that all vertices in the subgraph
searched for obtain different colors (it becomes colorful). When this happens,
the task of finding the subgraph is greatly simplified: it can be solved by dynamic
programming in a runtime where the exponential part depends only on the size k
of the substructure searched for, as opposed to the O(nk) runtime of the naive
approach.

Of course, most of the time the target structure is not actually colorful.
Therefore, we have to repeat the process of randomly coloring and then search-
ing (called trial) many times with a fresh coloring until with sufficiently high
probability at least once our target structure is colorful. Since the number of
trials also depends only on k (albeit exponentially), this algorithm has a fixed-
parameter runtime.

5.2 Case Study

Formally stated, the problem we consider is the following:

Minimum Weight Path

Input: An undirected edge-weighted graph G and a nonnegative inte-
ger k.
Task: Find a simple length-k path in G that minimizes the sum over
its edge weights.

This problem is well-known to be NP-hard [27, ND29]. What makes the
problem hard is the requirement of simple paths, that is, paths where no ver-
tex may occur more than once (otherwise, it is easily solved by traversing a
minimum-weight edge k − 1 times).

Given a fixed coloring of vertices, finding the minimum-weight colorful path
is accomplished by dynamic programming: Assume that for some i < k we have
computed a value W (v, S) for every vertex v ∈ V and cardinality-i subset S of
vertex colors that denotes the minimum weight of a path that uses each color

18

v1

v3

v2

v4

2

3

1

4

2

W (v2, { , , }) = 5 W (v3, { , , }) = 3 W (v1, { , , , }) =
min{W (v2, { , , }) + 2,

W (v3, { , , }) + 3} = 6

v1

2

3

v2

4

1

3

v3

v1v4 v1

v3

v2

v4

2

3

1

4

22

Figure 7: Example for solving Minimum Weight Path using the color-coding
technique. Here, using (1) a new table entry (right) is calculated using two
already known entries (left and middle).

in S exactly once and ends in v. Clearly, this path is simple because no color is
used more than once. We can now use this to compute the values W (v, S) for all
cardinality-(i+1) subsets S and vertices v ∈ V , because a colorful length-(i+1)
path that ends in a vertex v ∈ V can be composed of a colorful length-i path
that does not use the color of v and ends in a neighbor of v. More precisely, we
let

W (v, S) = min
e={u,v}∈E

(

W (u, S \ {color(v)}) + w(e)
)

. (1)

See Fig. 7 for an example.
It is easy to verify that the dynamic programming takes O(2km) time.

Whenever the minimum-weight length-k path in the input graph is colored
with k colors (i.e., every vertex has a different color), then it is found. The
problem, of course, is that the coloring of the input graph is random and hence
many coloring trials have to be performed to ensure that the minimum-weight
path is found with a high probability. More precisely, the probability of any
length-k path (including the one with minimum weight) being colorful in a sin-
gle trial is

Pc =
k!

kk
>

√
2πke−k (2)

because there are kk ways to arbitrarily color k vertices with k colors and k!
ways to color them such that no color is used more than once. Using t trials,
a path of length k is found with probability 1 − (1 − Pc)

t. To ensure that a
colorful path is found with a probability greater than 1−ε (for some 0 < ε ≤ 1),
at least

t(ε) =

⌈

ln ε

ln(1 − Pc)

⌉

= | ln ε| · O(ek) (3)

trials are therefore needed, which bounds the overall runtime by 2O(k) · nO(1).
While the result is only correct with a certain probability, the user can specify
any desired error probability, say 0.1%, and even very low error probabilities do
not incur excessive extra runtime costs.

19

5.3 Applications and Implementations

Protein interaction networks represent proteins by nodes and mutual protein–
protein interaction probabilities by weighted edges. They are a valuable source
of information for understanding the functional organization of the proteome.
Scott et al. [46] demonstrated that high-scoring simple paths in the network
constitute plausible candidates for linear signal transduction pathways, simple
meaning that no vertex occurs more than once and high-scoring meaning that
the product of edge weights is maximized.6

The currently most efficient implementation based on color-coding [36] is
capable of finding optimal paths of length up to 13 in seconds within the yeast
protein interaction network, which contains about 4 500 vertices. A variant with
better theoretical runtime has recently been suggested [38], but to the best of
our knowledge has not yet been implemented.

A particularly appealing aspect of the color-coding method is that it can be
easily adapted to many practically relevant variations of the problem formula-
tion:

• The set of vertices where a path can start and end can be restricted (such
as to force it to start in a membrane protein and end in a transcription
factor [46]).

• Not only the minimum-weight path can be sought after but rather a col-
lection of low-weight paths (typically, one demands that these paths must
differ in a certain amount of vertices to ensure that they are diverse and
not small modifications of the global minimum-weight path).

• Recently, it has been demonstrated that pathway queries to a network,
that is, the task of finding a pathway in a network that is as similar as
possible to a query pathway, can be handled with color-coding [47].

Besides path problems, color-coding has also been used to give algorithms
that find small trees in graphs [46] and for graph packing problems [38], where
the goal is to find many disjoint copies of a pattern in a graph. No application
outside the realm of small patterns in graphs is currently known.

6 Iterative Compression

Of the techniques we survey, iterative compression is by far the youngest, ap-
pearing first in a work by Reed, Smith, and Vetta in 2004 [45]. Although it is
perhaps not quite as generally applicable as data reduction or search trees, it
appears to be useful for solving a wide range of problems and has already led
to significant breakthroughs in showing fixed-parameter tractability results.

6To match the above definition of Minimum Weight Path, one works with the
weight w(e) := − log p(e) of an edge e with interaction probability p(e) between e’s endpoints,
such that the goal is to minimize the sum of weights for the edges of a path.

20

B

A B

A

BA

Figure 8: A Minimum Fragment Removal instance (left), and an optimal
solution (right): when deleting two fragments (dashed), the remaining frag-
ments can be allocated to the two chromosome copies (A and B) such that no
conflicting fragments get the same assignment.

6.1 Basic Concepts

The central concept of iterative compression is to employ a so-called compression
routine.

Definition 4. A compression routine is an algorithm that, given a problem
instance and a solution of size k, either calculates a smaller solution or proves
that the given solution is of minimum size.

Using this routine, one finds an optimal solution to a problem by induc-
tively building up the problem structure and iteratively compressing intermedi-
ate solutions. The point is that if the compression routine is a fixed-parameter
algorithm with respect to the parameter k, then so is the whole algorithm.

The main strength of iterative compression is that it allows one to see the
problem from a different angle. For the compression routine, we do not only
have the problem instance as input, but also a solution, which carries valuable
structural information on the input. Also, the compression routine does not need
to find an optimal solution at once, but only any better solution. Therefore, the
design of a compression routine can often be simpler than designing a complete
fixed-parameter algorithm.

However, while the mode of use of the compression routine is usually straight-
forward, finding the compression routine itself is not—even when we already
know a problem to be fixed-parameter tractable, it is not clear that a compres-
sion routine with interesting runtime exists.

6.2 Case Studies

The showcase for iterative compression is the Minimum Fragment Removal

problem, also known as Graph Bipartization. This problem appears in the
context of SNP haplotyping [42]. When analyzing DNA fragments obtained
by shotgun sequencing, it is initially unknown which of the two chromosome
copies of a diploid organism a fragment belongs to. We can, however, determine
for some pairs of fragments that they cannot belong to the same chromosome
copy since they contain conflicting information at some SNP locus. Using this

21

information, it is straightforward to reconstruct the chromosome assignment.
We can model this as a graph problem, where the fragments are the vertices
and a conflict is represented as an edge. The task is then to color the vertices
with two colors such that no vertices with the same color are connected by an
edge.

The problem gets difficult in the presence of errors such as parasite DNA
fragments which randomly conflict with other fragments. In this scenario, we ask
for the least number of fragments to remove such that we can get a consistent
fragment assignment. Using the number of fragments k to be removed as a
parameter is a natural approach, since the result is only meaningful for small k
anyway.

Iterative compression provided the first fixed-parameter algorithm for Min-

imum Fragment Removal with this parameter [45]. We sketch how to apply
this to finding an optimal solution (a removal set) for Minimum Fragment

Removal: Starting with an empty graph G′ and an empty fragment removal
set C′, we add one vertex v at a time from the original graph to both G′ (in-
cluding edges to vertices already in G′) and to the removal set. Then C′ is still
a valid removal set. While C′ may not be optimal (it can be too large by 1),
we can find an optimal removal set for G′ by applying the compression routine
to G′ and C′. Since eventually G′ = G, we obtain an optimal removal set for G.

The compression routine itself works by examining a number of vertex cuts
in an auxiliary graph (that is, a set of vertices whose deletion makes the graph
disconnected), a task which can be accomplished in polynomial time by maxi-
mum flow techniques. We refer to the literature for details [35, 45]. The runtime
of the complete algorithm is O(3k · mn).

6.3 Applications and Implementations

Nearly all of the currently known iterative compression algorithms solve feedback
set problems in graphs, that is, problems where one wishes to destroy certain
cycles in a graph by deleting at most k vertices or edges (see [25] for a survey
on feedback set problems). Probably the most prominent among them is Feed-

back Vertex Set, which also has applications for genetic linkage analysis [8].
However, the currently known iterative compression algorithms [19, 34] exhibit
a rather bad combinatorial explosion; a randomized fixed-parameter algorithm
from [7] so far appears to be better for practical applications.

While thus no convincing practical results for iterative compression-based
algorithms for Feedback Vertex Set are currently known, first experimen-
tal results for iterative compression-based algorithms for Minimum Fragment

Removal are quite encouraging. An implementation, improved by heuristics,
can solve all problems from a testbed based on human genome data within
minutes whereas established methods are only able to solve about half of the
instances within reasonable time [35].

22

7 Conclusion

We surveyed several techniques for developing efficient fixed-parameter algo-
rithms for computationally hard (biological) problems. A broader perspective
is given in the recent monograph [41]. Since many biologically relevant compu-
tational problems appear to “carry small parameters,” we firmly believe that
there will continue to be a strong interaction between parameterized complex-
ity analysis and algorithmic bioinformatics. Since the theory of fixed-parameter
algorithmics is still very young (basically starting in the nineties of the last cen-
tury), the whole field is still vividly developing, offering many tools and chal-
lenges with potentially high impact particularly in the field of computational
(molecular) biology.

8 Notes

1. Parameter choice: Fixed-parameter algorithms are the better the smaller
the parameter value is. Hence, try to find parameterizations with small
parameter values.

2. A natural way to find significant problem parameterizations is to identify
parameters that measure the distance from tractable (that is, efficiently
solvable) problem instances.

3. Avoid exponential-space algorithms when there are alternatives, since in
practice this usually turns out to be more harmful than exponential time.

4. Always start by designing data reduction rules. They are helpful in com-
bination with basically any algorithmic technique you might try later.

5. Use data reduction not only as a preprocessing step. In search tree al-
gorithms, branching can produce new opportunities for data reduction.
Therefore, apply data reductions repeatedly during the course of the whole
algorithm.

6. In search tree algorithms, try to avoid complicated case distinctions when
a simpler search strategy yields almost the same running time bounds.

7. Use high-level programming languages that allow for quicker implemen-
tation of ideas and are less error prone. For exponential-time algorithms,
algorithmic improvements can often lead to a speedup by several orders of
magnitude, dwarfing the speedup of 2–10 gained by choice of programming
language.

8. Try to augment search tree algorithms with admissible heuristic evaluation
functions (see Section 3.3).

9. Many fixed-parameter algorithms can be easily adapted to run on parallel
machines.

23

10. Do not be afraid of bad upper bounds for fixed-parameter algorithms—the
analysis is worst-case and often much too pessimistic.

Acknowledgments This work was supported by the Deutsche Forschungsge-
meinschaft, Emmy Noether research group PIAF (fixed-parameter algorithms),
NI 369/4 (Falk Hüffner), and the Deutsche Telekom Stiftung (Sebastian Wer-
nicke).

References

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H.
Suters, and C. T. Symons. Kernelization algorithms for the vertex cover
problem: Theory and experiments. In Proc. 6th Workshop on Algorithm
Engineering and Experiments (ALENEX ’04), pages 62–69. SIAM, 2004.

[2] F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons. Scal-
able parallel algorithms for FPT problems. Algorithmica, 45(3):269–284,
2006.

[3] J. Alber, F. Dorn, and R. Niedermeier. Empirical evaluation of a tree
decomposition based algorithm for vertex cover on planar graphs. Discrete
Applied Mathematics, 145(2):219–231, 2005.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM,
42(4):844–856, 1995.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation: Combinatorial Optimiza-
tion Problems and Their Approximability Properties. Springer, 1999.

[6] E. Bachoore and H. L. Bodlaender. Weighted treewidth: Algorithmic tech-
niques and results. Technical Report UU-CS-2006-013, Department of In-
formation and Computing Sciences, Universiteit Utrecht, 2006.

[7] A. Becker, R. Bar-Yehuda, and D. Geiger. Randomized algorithms for the
loop cutset problem. Journal of Artificial Intelligence Research, 12:219–
234, 2000.

[8] A. Becker, D. Geiger, and A. Schäffer. Automatic selection of loop breakers
for genetic linkage analysis. Human Genetics, 48(1):49–60, 1998.

[9] N. Betzler, R. Niedermeier, and J. Uhlmann. Tree decompositions of
graphs: Saving memory in dynamic programming. Discrete Optimization,
3(3):220–229, 2006.

[10] R. E. Bixby. Solving real-world linear programs: A decade and more of
progress. Operations Research, 50:3–15, 2002.

24

[11] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209:1–45, 1998.

[12] H. L. Bodlaender. Discovering treewidth. In Proc. 31st Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM ’05),
volume 3381 of LNCS, pages 1–16. Springer, 2005.

[13] J. Cheetham, F. K. H. A. Dehne, A. Rau-Chaplin, U. Stege, and P. J.
Taillon. Solving large FPT problems on coarse-grained parallel machines.
Journal of Computer and System Sciences, 67(4):691–706, 2003.

[14] J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds
for vertex cover. In Proc. 31st International Symposium on Mathemati-
cal Foundations of Computer Science (MFCS ’06), volume 4162 of LNCS,
pages 238–249. Springer, 2006.

[15] E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D.
Mountz, N. E. Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly,
and R. W. Williams. Complex trait analysis of gene expression uncovers
polygenic and pleiotropic networks that modulate nervous system function.
Nature Genetics, 37:233–242, 2005.

[16] B. Chor, M. R. Fellows, and D. W. Juedes. Linear kernels in linear time, or
how to save k colors in O(n2) steps. In Proc. 30th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG ’04), volume 3353
of LNCS, pages 257–269. Springer, 2004.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2nd edition, 2001.

[18] P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. Theoretical Computer Science, 351(3):337–350,
2006.

[19] F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and
K. Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback
vertex set problem. In Proc. 11th International Computing and Combina-
torics Conference (COCOON ’05), volume 3595 of LNCS, pages 859–869.
Springer, 2005. Long version to appear in Theory of Computing Systems.

[20] F. K. H. A. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and
Y. Zhang. The cluster editing problem: Implementations and experiments.
In Proc. 2nd International Workshop on Parameterized and Exact Compu-
tation (IWPEC ’06), volume 4169 of LNCS, pages 13–24. Springer, 2006.

[21] R. Diestel. Graph Theory. Springer, 3rd edition, 2005.

[22] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

25

[23] M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized in-
tractability of motif search problems. Combinatorica, 26(2):141–167, 2006.

[24] A. Felner, R. E. Korf, and S. Hanan. Additive pattern database heuristics.
Journal of Artificial Intelligence Research, 21:1–39, 2004.

[25] P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems.
In D. Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Opti-
mization, Vol. A, pages 209–258. Kluwer, 1999.

[26] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[27] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[28] J. Gramm. Fixed-Parameter Algorithms for the Consensus Analysis of Ge-
nomic Sequences. PhD thesis, WSI für Informatik, Universität Tübingen,
Germany, 2003.

[29] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation
of search tree algorithms for hard graph modification problems. Algorith-
mica, 39:321–347, 2004.

[30] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction, exact,
and heuristic algorithms for clique cover. In Proc. 8th Workshop on Algo-
rithm Engineering and Experiments (ALENEX ’06), pages 86–94. SIAM,
2006. Long version to appear under the title “Data reduction and exact
algorithms for clique cover” in ACM Journal of Experimental Algorithmics.

[31] J. Gramm, J. Guo, and R. Niedermeier. Parameterized intractability of dis-
tinguishing substring selection. Theory of Computing Systems, 39(4):545–
560, 2006.

[32] J. Gramm and R. Niedermeier. A fixed-parameter algorithm for mini-
mum quartet inconsistency. Journal of Computer and System Sciences,
67(4):723–741, 2003.

[33] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algo-
rithms for closest string and related problems. Algorithmica, 37(1):25–42,
2003.

[34] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Improved
fixed-parameter algorithms for two feedback set problems. In Proc. 9th
Workshop on Algorithms and Data Structures (WADS ’05), volume 3608
of LNCS, pages 158–168. Springer, 2005. Long version to appear under the
title “Compression-based fixed-parameter algorithms for feedback vertex
set and edge bipartization” in Journal of Computer and System Sciences.

[35] F. Hüffner. Algorithm engineering for optimal graph bipartization. In
Proc. 4th International Workshop on Efficient and Experimental Algo-
rithms (WEA ’05), volume 3503 of LNCS, pages 240–252. Springer, 2005.

26

[36] F. Hüffner, S. Wernicke, and T. Zichner. Algorithm engineering for color-
coding to facilitate signaling pathway detection. In Proc. 5th Asia-Pacific
Bioinformatics Conference (APBC ’07), Advances in Bioinformatics and
Computational Biology. World Scientific, 2007. To appear.

[37] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

[38] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Divide-and-color. In
Proc. 32nd International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG ’06), LNCS. Springer, 2006. To appear.

[39] D. Marx. The closest substring problem with small distances. In Proc. of
the 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’05), pages 63–72, 2005.

[40] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics.
Springer, 2nd edition, 2004.

[41] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

[42] A. Panconesi and M. Sozio. Fast hare: A fast heuristic for single indi-
vidual SNP haplotype reconstruction. In Proc. 4th Workshop on Algo-
rithms in Bioinformatics (WABI ’04), volume 3240 of LNCS, pages 266–
277. Springer, 2004.

[43] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[44] C. H. Papadimitriou. NP-completeness: A retrospective. In Proc. 24th
International Colloquium on Automata, Languages and Programming
(ICALP ’97), volume 1256 of LNCS, pages 2–6. Springer, 1997.

[45] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Opera-
tions Research Letters, 32(4):299–301, 2004.

[46] J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient algorithms for
detecting signaling pathways in protein interaction networks. Journal of
Computational Biology, 13(2):133–144, 2006.

[47] T. Shlomi, D. Segal, E. Ruppin, and R. Sharan. QPath: a method for
querying pathways in a protein–protein interaction network. BMC Bioin-
formatics, 7:199, 2006.

[48] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, 1998.

[49] Y. Song, C. Liu, R. L. Malmberg, F. Pan, and L. Cai. Tree decomposition
based fast search of RNA structures including pseudoknots in genomes.
In Proc. 4th International IEEE Computer Society Computational Systems
Bioinformatics Conference (CSB 2005), pages 223–234. IEEE Computer
Society, 2005.

27

[50] N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Good-
man, W. Miller, and R. Hardison. Comparison of five methods for finding
conserved sequences in multiple alignments of gene regulatory regions. Nu-
cleic Acids Research, 27(19):3899–3910, 1999.

[51] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[52] G. Wu, J.-H. You, and G. Lin. A lookahead branch-and-bound algorithm
for the maximum quartet consistency problem. In Proc. 5th Workshop on
Algorithms in Bioinformatics (WABI ’05), volume 3692 of LNCS, pages
65–76. Springer, 2005.

[53] J. Xu, F. Jiao, and B. Berger. A tree-decomposition approach to protein
structure prediction. In Proc. 4th International IEEE Computer Society
Computational Systems Bioinformatics Conference (CSB 2005), pages 247–
256. IEEE Computer Society, 2005.

28

