
A Structural View on Parameterizing Problems:

Distance from Triviality?

Jiong Guo, Falk Hüffner, and Rolf Niedermeier

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13,
D-72076 Tübingen, Fed. Rep. of Germany

{guo,hueffner,niedermr}@informatik.uni-tuebingen.de

Abstract. Based on a series of known and new examples, we propose
the generalized setting of “distance from triviality” measurement as a
reasonable and prospective way of determining useful structural problem
parameters in analyzing computationally hard problems. The underly-
ing idea is to consider tractable special cases of generally hard problems
and to introduce parameters that measure the distance from these spe-
cial cases. In this paper we present several case studies of distance from
triviality parameterizations (concerning Clique, Power Dominating

Set, Set Cover, and Longest Common Subsequence) that exhibit
the versatility of this approach to develop important new views for com-
putational complexity analysis.

1 Introduction

Vertex Cover is one of the NP-complete problems that stood at the cradle
of parameterized algorithm design and analysis [11]. Given an undirected graph
with n vertices and a nonnegative integer k, the question is whether we can
find a set of at most k graph vertices such that each graph edge has at least
one of its endpoints in this set. The currently best fixed-parameter algorithms
exactly solve Vertex Cover in O(1.3k + kn) time [8,22]; that is, Vertex
Cover is fixed-parameter tractable when parameterized by k. A different way
of parameterizing Vertex Cover is to consider the structure of the input graph.
If the given graph allows for a tree decomposition [26,4] of width w, then it is
well-known that Vertex Cover can be solved in O(2w ·n) time [30] independent
of the size k of the cover set we are searching for. Hence, Vertex Cover is also
fixed-parameter tractable when parameterized by w. As a rule, most problems
can be parameterized in various reasonable ways.1 The example Vertex Cover
exhibits two fundamentally different ways of parameterization—“parameterizing
by size” (i.e., the size of the vertex cover) and “parameterizing by structure”
(i.e., the treewidth of the underlying graph). In this paper we propose to take

? Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.

1 For instance, Fellows [13] discusses how to parameterize the Max Leaf Spanning

Tree problem in at least five different ways.

a broader, generalized view on parameterizing problems by structure, leading
to a generic framework of new research questions in parameterized complexity
analysis.

The leitmotif of parameterized complexity theory [11] is to gain a better un-
derstanding of problem hardness through a refined complexity analysis that uses
a two-dimensional view on problems by means of parameterization. A natural
way to do this is as follows. Consider a problem such as Vertex Cover and find
out what efficiently solvable special cases there are known. For instance, Vertex
Cover is trivially solvable on trees. Now, for example, consider the parameter d

defined as the number of edges that have to be deleted from a graph to transform
it into a tree. In this sense parameter d measures the “distance from triviality”
and one may ask whether Vertex Cover is fixed-parameter tractable when
parameterized by d. In this simple example the answer is clearly “yes” because
such a graph has treewidth bounded by d + 1 [3] and, thus, Vertex Cover
can be solved using the tree decomposition approach [30]. But in other cases
this “distance from triviality” approach to parameterization often leads to in-
teresting new research questions: For instance, in a recent work Hoffmann and
Okamoto [19] describe a fixed-parameter algorithm for the Traveling Sales-
man Problem in the two-dimensional Euclidean plane based on the following
distance from triviality parameterization: Consider a set of n points in the Eu-
clidean plane. Determine their convex hull. If all points lie on the hull, then
this gives the shortest tour. Otherwise, Hoffmann and Okamoto show that the
problem is solvable in O(k! · k · n) time where k denotes the number of points
inside the convex hull. Thus, the distance from triviality here is the number k

of inner points.
In this paper we extend the distance from triviality concept to a broader

setting and we discuss further examples for the fruitfulness of this new param-
eterization methodology. We present further recent examples from the litera-
ture concerning Satisfiability [28] and Graph Coloring [7] that fit into our
framework. In addition, we provide four new fixed-parameter tractability results
using this framework for Clique, Power Dominating Set, Set Cover, and
Longest Common Subsequence. Given all these case studies, we hope to con-
vince the reader that, in a sense, “parameterizing away from triviality” yields a
generic framework for an extended parameterized complexity analysis to better
understand computational (in)tractability. Further aspects of our scenario and
its prospects for future research are discussed in the concluding section.

2 Preliminaries and Previous Work

Preliminaries. Parameterized complexity theory [11] offers a two-dimensional
framework for studying the computational complexity mostly of NP-hard prob-
lems. A parameterized language (problem) L is a subset L ⊆ Σ∗ × Σ∗ for some
finite alphabet Σ. For (x, k) ∈ L, by convention, the second component denotes
the parameter. The two dimensions of parameterized complexity analysis are
constituted by the input size n := |(x, k)| and the parameter value k (usually

2

a nonnegative integer). A parameterized language is fixed-parameter tractable if
it can be determined in f(k) · nO(1) time whether (x, k) ∈ L, where f is a com-
putable function only depending on k. Since the parameter k represents some
aspect(s) of the input or the solution, there usually are many meaningful ways
to parameterize a problem. An important issue herein is whether a problem is
fixed-parameter tractable with respect to a chosen parameter or not (i.e., W[1]-
hard, see [11] for details), and, in case of fixed-parameter tractability, how small
the usually exponential growth of the function f can be kept. Hence, investigat-
ing different parameterizations gives insight into what causes the computational
(in)tractability of a problem and in which qualitative and quantitative sense this
happens. Refer to [10,14,21] for recent surveys on parameterized complexity.

Previous Work. The aim of this paper is to stimulate research on the structural
parameterization “distance from triviality.” Clearly, one of the most sophisti-
cated examples in this context is the notion of bounded treewidth developed
by Robertson and Seymour [26]. Without going into details, we remark that
the basic motivation for considering this concept can be derived from the fact
that many NP-hard graph problems (such as Vertex Cover) become easy
(linear-time solvable) on trees. Treewidth then measures how tree-like a graph
is, and if this parameter is small, then many otherwise hard graph problems
can be solved efficiently (see [4] for a survey). In this sense treewidth measures
the distance from the triviality “tree” and problems such as Vertex Cover are
fixed-parameter tractable with respect to this structural parameter [30].

Another prominent problem is Graph Coloring. Leizhen Cai [7] recently
initiated a study of Graph Coloring which falls into our framework. For
instance, considering split graphs (where Graph Coloring is solvable in poly-
nomial time) he showed that Graph Coloring is fixed-parameter tractable
with respect to parameter k on graphs that originate from split graphs when
adding or deleting k edges. By way of contrast, it is W[1]-hard when deletion
of k vertices leads to a split graph. Interestingly, the problem is much harder in
case of bipartite graphs instead of split graphs: Graph Coloring becomes NP-
complete for graphs that originate from bipartite graphs by adding three edges
or if two vertex deletions are needed to make a graph bipartite. In summary, Cai
states that “this new way of parameterizing problems adds a new dimension to
the applicability of parameterized complexity theory” [7].2

Finally, to emphasize that not only graph problems fall into our framework
we give an example with Satisfiability. It is easy to observe that a boolean
formula in conjunctive normal form which has a matching between variables and
clauses that matches all clauses is always satisfiable. For a formula F , considered
as a set of m clauses over n variables, define the deficiency as δ(F) := m − n.
The maximum deficiency is δ∗(F) := maxF ′⊆F δ(F ′). Szeider shows that the
satisfiability of a formula F can be decided in O(2δ∗(F) ·n3) time [28]. Note that

2 Juedes et al. [20] show that coloring an n-vertex-graph with n − k colors is fixed-
parameter tractable with respect to k. Clearly, k = 0 is trivial. This parameteriza-
tion, however, is not a structural one.

3

a formula F with δ∗(F) = 0 has a matching as described above. Again, δ∗(F) is
a structural parameter measuring the distance from triviality in our sense.

In the following sections we provide new case studies for the applicability of
the distance from triviality concept in various contexts. Clearly, it is conceiv-
able that several other examples from the literature will fit as examples into
our concept.3 An important point, however, is that all of the parameterizations
discussed here have nothing to do with the solution itself (i.e., the value to be
determined or optimized). Our parameterizations are structural ones.

3 Case Study Clique

The Clique problem is defined as follows:

Input: A graph G = (V, E) and a nonnegative integer s.
Question: Does G contain a clique, i.e., a complete subgraph, of size s?

Clique is W[1]-complete with respect to the natural parameter s [11]. It
is also hard to approximate to an arbitrary constant factor. Here we exhibit
fixed-parameter tractability with respect to the distance from a trivial case.

Our trivial case is the class of cluster graphs : graphs which are a disjoint
union of cliques. Clique can be trivially solved in linear time on such graphs. We
examine Clique on graphs which are “almost” cluster graphs, namely, on graphs
which are cluster graphs with k edges added. From a general result on graph
modification problems by Leizhen Cai [6] it follows that finding the added k

edges is fixed-parameter tractable with respect to k. Improved algorithms for
this problem (which is known as Cluster Deletion) were given by Gramm et
al. [15,16], providing an algorithm running in O(1.53k + |V |3) time.

It remains to show how to solve Clique for the “almost cluster graph” G

after identifying the k added edges and the corresponding cluster graph G′. If
the largest clique in G is not one which is already contained in G′, then each
of its vertices must have gained in degree by at least one compared to G′. This
means it can only be formed by a subset of the up to 2k vertices “touched” by
the added edges. Hence, we solve Clique for the subgraph of G induced by
the up to 2k vertices which are endpoints of the added edges. This step can be
done for example by using Robson’s algorithm for Independent Set [27] on
the complement graph in O(1.222k) = O(1.49k) time, which is dominated by the
above time bound for the Cluster Deletion subproblem. The largest clique
for G is simply the larger of the clique found this way and the largest clique
in G′. We obtain the following theorem:

Theorem 1. Clique for a graph G = (V, E) which is a cluster graph with k edges

added can be solved in O(1.53k + |V |3) time.

3 For instance, Nishimura et al. [23] developed algorithms for recognizing general
classes of graphs generated by a base graph class by adding at most k vertices.
Their fixed-parameter tractability studies are closely related to our methodology.

4

4 Case Study Power Dominating Set

Domination in graphs is among the most important problems in combinatorial
optimization. We consider here the Power Dominating Set problem [18],
which is motivated from applications in electric networks. The task is to place
monitoring devices (so-called PMUs) at vertices such that all edges and vertices
are observed. The rules for observation are:

1. A PMU in a vertex v observes v and all incident edges and neighbors of v.
2. Any vertex that is incident to an observed edge is observed.
3. Any edge joining two observed vertices is observed.
4. If a vertex is incident to a total of i > 1 edges and if i− 1 of these edges are

observed, then all i edges are observed. This rule is reminiscent of Kirchhoff’s
current law from electrical engineering.

We can now formulate the Power Dominating Set problem:

Input: A graph G = (V, E) and a nonnegative integer k.
Question: Does G have a power dominating set of size at most k,
that is, a subset M ⊆ V of vertices such that by placing a PMU in
every v ∈ M , all vertices in V are observed?

Power Dominating Set is NP-complete [18]. There is an algorithm known
which solves Power Dominating Set in linear time on trees [18]. Since we use
this algorithm as a building block for our result, we briefly sketch how it proceeds.
This algorithm works bottom-up from the leaves and places a PMU in every
vertex which has at least two unobserved children. Then it updates observation
according to the four observation rules and prunes completely observed subtrees,
since they no longer affect observability of other vertices.

Our goal is now to find an efficient algorithm for input graphs that are
“nearly” trees. More precisely, we aim for a fixed-parameter algorithm for graphs
which are trees with k edges added.

Note that a tree with k edges added has treewidth bounded by k+1 [3]. While
Dominating Set is fixed-parameter tractable with respect to the parameter
treewidth [2], no such result is currently known for Power Dominating Set.
This motivates our subsequent result.

As a first step we present a simple algorithm with quadratic running time
for the case of one single added edge.

Lemma 1. Power Dominating Set for a graph G = (V, E) with n := |V |
which is a tree with one edge added can be solved in O(n2) time.

Proof. Graph G contains exactly one cycle and a collection of trees Ti touching
the cycle at their roots.

We use the above mentioned linear time algorithm to find an optimal solution
for each Ti. When it reaches the root ri, several cases are possible:

– The root ri needs to be in M , and we can remove it. This breaks the cycle,
and we can solve the remaining instance in linear time.

5

– The root ri is not in M , but already observed. Then all children of ri in Ti

except for at most one are observed, or we would need to take ri into M .
Then, we can remove Ti except for ri and except for the unobserved child,
if it exists. The root ri remains as an observed degree-2 or degree-3 vertex
on the cycle.

– The root ri still needs to be observed. This is only possible if it has exactly
one child in Ti which is unobserved since otherwise ri either would be in M ,
or be observed. As in the previous case, we keep ri and the unobserved child,
and the rest of Ti can again be removed.

If after these data reductions two observed vertices are adjacent on the cycle,
their connecting edge becomes observed, and we can break the cycle. Otherwise,
we call it a reduced cycle.

At least one vertex on the reduced cycle has to be added to M . We simply
try each vertex. After each choice, the rest of the cycle decomposes into a tree
after pruning observed edges, and can be handled in linear time. From all possible
initial choices, we keep the one leading to a minimal M , which then is an optimal
choice for the initial problem. Since there are O(n) vertices and edges on the
cycle, this takes O(n2) time. ut

We note without proof that Lemma 1 can be improved to linear time by ex-
amining a fixed-size segment of the cycle. In each possible case we can determine
at least one vertex in the segment which has to be taken into M .

Lemma 1 is applicable whenever each vertex is part of at most one cycle. We
now generalize this and Haynes et al.’s [18] result.

Theorem 2. Power Dominating Set for a graph which is a tree with k edges

added is fixed-parameter tractable with respect to k.

Proof. We first treat all trees which are attached in single points to cycles as
in the proof of Lemma 1. What remains are degree-2 vertices, degree-3 vertices
with a degree-1 neighbor, and other vertices of degree 3 or greater, the joints.
For a vertex v, let deg v denote its degree, that is, the number of its adjacent
vertices. We branch into several cases for each joint:

– The joint v is in M . We can prune it and its incident edges.
– The joint v is not in M . Note that the only effect v can still have is that

a neighbor of v becomes observed from application of observation rule 4
(“Kirchhoff’s current law”) applied to v. We branch further into deg v ·
(deg v − 1) cases for each pair (w1, w2) of neighbors of v with w1 6= w2.
In each branch, we omit the edges between v and all neighbors of v ex-
cept w1 and w2. Clearly any solution of such an instance provides a solution
for the unmodified instance. Furthermore, it is not too hard to show that if
the unmodified instance has a solution of size s, then on at least one branch
we will also find a solution of size s. To see this, consider a solution M for the
unmodified problem. Vertex v is observed; this can only be either because
a neighbor w1 of v was put into M , or because there is a neighbor w1 of v

6

such that the edge {w1, v} became observed from observation rule 4. Fur-
thermore, as mentioned, there can be at most one vertex w2 which becomes
observed by observation rule 4 applied to v. Then M is also a valid solution
for the branch corresponding to the pair (w1, w2).

In each of the less than (deg v)2 branches we can eliminate the joint. If we branch
for all joints in parallel, we end up with an instance where every connected com-
ponent is a tree or a cycle with attached degree-1 vertices, which can be solved
in linear time. The number of cases to distinguish is

∏
v is joint(deg v)2. Since

there are at most 2k joints, each of maximum degree k, the total running time is
roughly bounded by O(n · 24k log k), confirming fixed-parameter tractability. ut

5 Case Study Tree-like Weighted Set Cover

Set Cover is one of the most prominent NP-complete problems. Given a base
set S = {s1, s2, . . . , sn} and a collection C of subsets of S, C = {c1, c2, . . . , cm},
ci ⊆ S for 1 ≤ i ≤ m, and

⋃
1≤i≤m ci = S, the task is to find a subset C ′ of C with

minimal cardinality which covers all elements in S, i.e.,
⋃

c∈C′ c = S. Assigning
weights to the subsets and minimizing the total weight of the collection C ′

instead of its cardinality, one naturally obtains the Weighted Set Cover
problem. We call C ′ the minimum set cover of S resp. the minimum weight

set cover. We define the occurrence of an element s ∈ S in C as the number
of subsets in C which contain s. Set Cover remains NP-complete even if the
occurrence of each element is bounded by 2 [24].

Definition 1 (Tree-like subset collection).
Given a base set S = {s1, s2, . . . , sn} and a collection C of subsets of S, C =
{c1, c2, . . . , cm}. We say that C is a tree-like subset collection of S if we can

organize the subsets in C in an unrooted tree T such that every subset one-to-

one corresponds to a node of T and, for each element sj ∈ S, 1 ≤ j ≤ n, all

nodes in T corresponding to the subsets containing sj induce a subtree of T .

We call T the underlying subset tree and the property of T that, for each s ∈
S, the nodes containing s induce a subtree of T , is called the “consistency prop-

erty” of T . Observe that the consistency property is also of central importance in
Robertson and Seymour’s famous notion of tree decompositions of graphs [26,4].
By results of Tarjan and Yannakakis [29], we can test whether a subset collec-
tion is a tree-like subset collection and, if so, we can construct a subset tree for
it in linear time. Therefore, in the following we always assume that the subset
collection is given in form of a subset tree. For convenience, we denote the nodes
of the subset tree by their corresponding subsets.

Here, we consider the Tree-like Weighted Set Cover (TWSC) problem
with bounded occurrence which is defined as follows:

Tree-like Weighted Set Cover with bounded occurrence:
Input: Given a base set S = {s1, s2, . . . , sn} and a tree-like collection C

7

of subsets of S, C = {c1, c2, . . . , cm}. Each element of S can be in at
most d subsets for a fixed d ≥ 1. Each subset in C has a positive real
weight w(ci) > 0 for 1 ≤ i ≤ m. The weight of a subset collection is the
sum of the weights of all subsets in it.
Task: Find C ′ ⊆ C with minimum weight which covers all elements
in S, i.e.,

⋃
c∈C′ c = S.

TWSC with bounded occurrence d ≥ 3 is NP-complete even if the underlying
subset tree is a star [17]. However, it can be solved in O(m2n) time if the under-
lying subset tree is a path [17]. Now our goal is, based on the “trivial” path-like
case, to give a fixed-parameter algorithm for TWSC with bounded occurrence
where the number of leaves of the subset tree functions as the distance parameter
from the path-like case.

The fixed-parameter algorithm. Given a subset tree T with k leaves, the following
observations are easy to prove.

Observation 1. The maximum degree of the nodes of T is upperbounded by k.
Observation 2. The number of tree nodes with more than 2 neighbors is upper-

bounded by k.
Observation 3. For each c ∈ C, the number of subsets c′ ∈ C which share some

elements with c, i.e., c∩c′ 6= ∅, is upperbounded by d ·k. These subsets and c

induce a subtree of T .

For a subset c ∈ C, let deg c denote the degree of its corresponding node
in T . The basic idea of the algorithm is to divide the tree-like instance into
several “independent” path-like instances and to solve these instances separately
by using the O(m2n)-time algorithm. Instances are independent if they share
no common elements with each other. For each tree node c with deg c ≥ 3, we
construct a set Hc := {c′ | c ∩ c′ 6= ∅}. Note that |Hc| ≤ d · k by Observation 3.
To cover all elements of c, we have to add some subsets from Hc into the set
cover. We delete the subsets added into the set cover and all their adjacent edges
from T . Furthermore, we delete elements of S which are already covered from
all remaining subsets. Observe that if c is in the set cover, we retain several
subtrees of T after deleting c; otherwise, c is now an empty subset. By deleting
all empty subsets, the subset tree T is divided into several subtrees. Due to the
consistency property of T , all these resulting subtrees are independent. Since the
possible combinations of the subsets from Hc which cover all elements of c are
upperbounded by 2dk, we can have up to 2dk new instances by dividing T at c.
By processing all nodes c with deg c ≥ 3 in the same way, there are O(2dk2

) new
instances each of which consists of O(m) independent path-like instances. Then
the minimum set cover for one of these new instances is the union of the optimal
solutions for the path-like instances with the subsets already added into the set
cover while processing the nodes with degree at least 3. In summary, we get the
following theorem:

Theorem 3. TWSC with occurrence bounded by d can be solved in O(2dk2

·m2n)
time, where k denotes the number of the leaves of the subset tree.

8

Note that while results from [17] only cover cases with bounded subset size, we
impose no such restriction here. However, here we need the bounded occurrence
restriction.

6 Case Study Longest Common Subsequence

In this section we deal with the Longest Common Subsequence problem, an
important problem in theoretical computer science and computational biology.

Longest Common Subsequence (LCS):
Input: Given a set of k strings X1, X2, . . . , Xk over an alphabet Σ and
a positive integer m.
Question: Is there a string X ∈ Σ∗ of length at least m that is a
subsequence of Xi for i = 1, . . . , k?

LCS is NP-complete even if |Σ| = 2. Concerning the parameterized complex-
ity of LCS with unbounded alphabet size, Bodlaender et al. [5] showed that LCS
is W[t]-hard for t ≥ 1 with k as parameter, W[2]-hard with m as parameter,
and W[1]-hard with k and m as parameters. With a fixed alphabet size, LCS is
trivially fixed-parameter tractable with m as parameter, but W[1]-hard with k

as parameter [25].
Let n denote the maximum length of the input strings and sa

i denote the
number of occurrences of letter a ∈ Σ in Xi. We consider a new parameterization
of LCS with k and s := maxa∈Σ max1≤i≤k sa

i as parameters. To begin with, we
show that the case s = 1 of this parameterization, where every letter occurs in
each string only once, is solvable in polynomial time.

Without loss of generality, we assume that all input strings have the same
length n, Σ = {1, 2, . . . , n}, and X1 = 1 2 3 · · ·n. Then the strings X2, X3, . . . , Xk

are permutations of X1. We construct a directed graph G with n×k vertices; each
vertex represents a position in a string. A directed edge is added from vi,j to vi+1,l

for 1 ≤ i < k iff the letters in position j of Xi and in position l of Xi+1 are the
same. It is easy to observe that a longest common subsequence one-to-one corre-
sponds to a maximum set of directed paths in G which do not cross each other.
Two paths P and P ′ cross each other if there is an edge (vi,j , vi+1,l) in P and an
edge (vi,j′ , vi+1,l′) in P ′ with j ≤ j′ and l ≥ l′. In order to find a maximum set of
the noncrossing paths in G, we construct a “path-compatibility” graph PC(G)
from G: For each directed path in G, we create a vertex Pa in PC(G) where a

is the position in X1 where the path starts. We add a directed edge (Pa, Pb)
from Pa to Pb if Pa does not cross Pb and a < b. Thus, PC(G) is an acyclic
directed graph and a maximum set of noncrossing paths of G one-to-one corre-
sponds to a longest path in PC(G). By using depth-first search for each vertex
in PC(G) with in-degree of zero, we can easily find such a longest path.

Concerning the running time to solve LCS on such an instance, we note that
graphs G and PC(G) can be constructed in O(k · n) and O(k · n2) time, respec-
tively. Finding a longest path in PC(G) can be done in O(n) time. Summarizing,
the running time for solving LCS on these instances is O(k · n2).

9

The fixed-parameter algorithm. Given strings X1, X2, . . . , Xk, we construct a
graph G with n · k vertices as described above. However, a vertex vi,l with 1 ≤
i < k has to be connected to all vertices vi+1,h, 1 ≤ h ≤ n, where Xi+1 has
the same letter in position h as Xi in position l. Graph G can be constructed
in O(k·n2) time. Then we construct the path-compatibility graph PC(G) from G.
Since the number of paths in G can be up to

∑
a∈Σ

∏
1≤i≤k sa

i = O(n · sk),

we have O(n · sk) vertices in PC(G). Each vertex Pj1,j2,...,jk
represents a path

in G, and the indices j1, j2, . . . , jk denote the positions in the k strings where
this path passes. Furthermore, a directed edge from Pj1,j2,...,jk

to Pj′

1
,j′

2
,...,j′

k

is added into PC(G) if the corresponding paths do not cross each other, are
vertex-disjoint, and j1 < j′1. It is easy to verify that by finding a longest path in
this acyclic directed graph, we get a longest common subsequence of the input
instance. The construction of the edges in PC(G) takes O(k) time per vertex
pair, and we obtain an algorithm running in O(k · (n · sk)2) = O(22k log s · k · n2)
time. This yields the following result.

Theorem 4. Longest Common Subsequence can be solved in O(22k log s ·
k · n2) time, where s denotes the maximum occurrence number of a letter in an

input string.

7 Concluding Discussion

The art of parameterizing problems is of key importance to better understand
and cope with computational intractability. In this work we proposed a natural
way of parameterizing problems—the parameter measures some distance from
triviality. The approach consists of two fundamental steps. Assume that we study
a hard problem X.

1. Determine efficiently solvable special cases of X (e.g., in case of graph prob-
lems, the restriction to special graph classes)—the triviality.

2. Identify useful distance measures from the triviality (e.g., in case of trees
and graphs the treewidth of a graph)—the (structural) parameter.

As to step 2, observe that various distance measures are possible such as edge
deletions or vertex deletions in case of graphs. It is important, however, that
we can efficiently determine the distance of a given input instance to the chosen
triviality with respect to the parameter considered. For instance, it is “easy” to
determine the distance of a graph to being acyclic with respect to edge dele-
tion (this leads to the polynomial-time solvable Feedback Edge Set problem)
whereas it is hard to determine the distance of a graph to being bipartite with
respect to edge deletion (this leads to the NP-hard Graph Bipartization prob-
lem). However, in case we are explicitly given the “operations” that transform
the given object into a trivial one (e.g., the edges to be deleted to make a graph
bipartite), the question for the parameterized complexity of the underlying prob-
lem with respect to the distance parameter might still be of interest. In the new
case studies presented in this paper the distance measurement for Longest

10

Common Subsequence was easy to determine whereas in the Clique case the
measurement led to an NP-hard but fixed-parameter tractable problem.

We do not claim that all the parameterizations we considered generally lead
to small parameter values. This was not the central point, which, by way of
contrast, was to extend the range of feasible special cases of otherwise compu-
tationally hard problems. As pointed out by an anonymous referee, it would be
interesting to study more drastic distance measures such as considering relative
distances—for instance, what if 1 % of all edges may be edited in a graph.

It is worth emphasizing that the tractable trivial case may refer to polynomial-
time solvability as well as fixed-parameter tractability.4 An example for the latter
case is Dominating Set on planar graphs which is fixed-parameter tractable [1,2].
These results were extended to graphs of bounded genus [12,9], genus here mea-
suring the distance from the “trivial case” (because settled) planar graphs. More-
over, the proposed framework might even be of interest in the approximation
algorithms context where triviality then might mean good polynomial-time ap-
proximability (e.g., constant factor or approximation scheme). In summary, we
strongly believe that distance from triviality parameterization leads to a wide
range of prospective research opportunities.

References

1. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed
parameter algorithms for Dominating Set and related problems on planar graphs.
Algorithmica, 33(4):461–493, 2002. 11

2. J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond, and
U. Stege. Refined search tree technique for Dominating Set on planar graphs. In
Proc. 26th MFCS, volume 2136 of LNCS, pages 111–122. Springer, 2001. 5, 11

3. H. L. Bodlaender. Classes of graphs with bounded treewidth. Technical Report
RUU-CS-86-22, Dept. of Computer Sci., Utrecht University, 1986. 2, 5

4. H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proc. 22nd

MFCS, volume 1295 of LNCS, pages 19–36. Springer, 1997. 1, 3, 7
5. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. The pa-

rameterized complexity of the longest common subsequence problem. Theoretical

Computer Science, 147:31–54, 1995. 9
6. L. Cai. Fixed-parameter tractability of graph modification problems for hereditary

properties. Information Processing Letters, 58:171–176, 1996. 4
7. L. Cai. Parameterized complexity of Vertex Colouring. Discrete Applied Mathe-

matics, 127(1):415–429, 2003. 2, 3
8. J. Chen, I. A. Kanj, and W. Jia. Vertex Cover: Further observations and further

improvements. J. Algorithms, 41:280–301, 2001. 1
9. E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential

parameterized algorithms on graphs of bounded-genus and H-minor-free graphs.
In Proc. 15th SODA, pages 830–839. SIAM, 2004. 11

10. R. G. Downey. Parameterized complexity for the skeptic. In Proc. 18th IEEE

Annual Conference on Computational Complexity, pages 147–169, 2003. 3
11. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999. 1,

2, 3, 4

4 The latter being of particular interest when attacking W[1]-hard problems.

11

12. J. Ellis, H. Fan, and M. R. Fellows. The Dominating Set problem is fixed parameter
tractable for graphs of bounded genus. In Proc. 8th SWAT, volume 2368 of LNCS,
pages 180–189. Springer, 2002. 11

13. M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT.
In Proc. 29th WG, volume 2880 of LNCS, pages 1–12. Springer, 2003. 1

14. M. R. Fellows. New directions and new challenges in algorithm design and com-
plexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages 505–520.
Springer, 2003. 3

15. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. In Proc. 5th CIAC, volume
2653 of LNCS, pages 108–119. Springer, 2003. To appear in Theory of Computing

Systems. 4
16. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of search

tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–347,
2004. 4

17. J. Guo and R. Niedermeier. Exact algorithms and applications for Tree-like
Weighted Set Cover. Manuscript, June 2004. 8, 9

18. T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning. Dom-
ination in graphs applied to electric power networks. SIAM J. Discrete Math.,
15(4):519–529, 2002. 5, 6

19. M. Hoffmann and Y. Okamoto. The traveling salesman problem with few inner
points. In Proc. 10th COCOON, volume 3106 of LNCS. Springer, 2004. 2

20. D. Juedes, B. Chor, and M. R. Fellows. Linear kernels in linear time, or How to
save k colors in O(n2) steps. In Proc. 30th WG, LNCS. Springer, 2004. To appear.
3

21. R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter algo-
rithms. In Proc. 29th MFCS, LNCS. Springer, 2004. To appear. 3

22. R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms for
Weighted Vertex Cover. J. Algorithms, 47(2):63–77, 2003. 1

23. N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable algo-
rithms for nontrivial generalizations of Vertex Cover. In Proc. 7th WADS, volume
2125 of LNCS, pages 75–86. Springer, 2001. To appear in Discrete Applied Math-

ematics. 4
24. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-

plexity classes. J. Comput. Syst. Sci., 43:425–440, 1991. 7
25. K. Pietrzak. On the parameterized complexity of the fixed alphabet Shortest

Common Supersequence and Longest Common Subsequence problems. J. Comput.

Syst. Sci., 67(4):757–771, 2003. 9
26. N. Robertson and P. D. Seymour. Graph minors. II: Algorithmic aspects of tree-

width. J. Algorithms, 7:309–322, 1986. 1, 3, 7
27. J. M. Robson. Algorithms for maximum independent sets. J. Algorithms, 7:425–

440, 1986. 4
28. S. Szeider. Minimal unsatisfiable formulas with bounded clause-variable difference

are fixed-parameter tractable. In Proc. 9th COCOON, volume 2697 of LNCS, pages
548–558. Springer, 2003. 2, 3

29. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13(3):566–579, 1984. 7

30. J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with an
application to domination-like problems. In Proc. 3rd WADS, volume 709 of LNCS,
pages 610–621. Springer, 1993. 1, 2, 3

12

	A Structural View on Parameterizing Problems: Distance from Triviality
	Jiong Guo, Falk Hüffner, and Rolf Niedermeier

