
Algorithms and Experiments for
Parameterized Approaches to

Hard Graph Problems

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena

von Dipl.-Inform. Falk Hüffner
geboren am 25. 02. 1976 in Oldenburg (Oldenburg)

Gutachter

1. Prof. Dr. Rolf Niedermeier (Friedrich-Schiller-Universität Jena)

2. Prof. Dr. Michael R. Fellows (The University of Newcastle, Australien)

3. Prof. Dr. Peter Rossmanith (Rheinisch-Westfälische Technische Hochschule
Aachen)

Tag der letzten Prüfung des Rigorosums: 17. Dezember 2007

Tag der öffentlichen Verteidigung: 19. Dezember 2007

Zusammenfassung

Diese Dissertation beschäftigt sich mit Entwurf, Analyse, Implementierung und
experimenteller Bewertung von Algorithmen für schwere Graphprobleme. Das
Ziel ist es zu belegen, dass das Konzept der parametrisierten Komplexität, und
insbesondere neuartige algorithmische Techniken, deren Entwicklung auf dieses
Konzept zurückgeht, zu einsetzbaren Programmen für die exakte Lösung von
Praxisinstanzen führt.

Insbesondere untersuchen wir die drei Graphprobleme Clique Cover, Ba-
lanced Subgraph und Minimum-Weight Path. Beim Clique Cover-Problem ist
die Aufgabe, eine kleinstmögliche Menge von Cliquen zu finden, die alle Kanten
abdeckt. Es hat Anwendungen in Compileroptimierung, geometrischen Berech-
nungsproblemen und angewandter Statistik. Beim Balanced Subgraph-Problem
sucht man nach einer Zweifärbung der Knotenmenge, die die Inkonsistenzen mit
Kantenbeschriftungen minimiert. Es hat Anwendungen in sozialen Netzwerken,
Systembiologie und integriertem Schaltungsentwurf. Das Minimum-Weight

Path-Problem besteht darin, einen einfachen Pfad einer gegebenen Länge mit
minimalem Gewicht zu finden. Es hat Anwendungen in Systembiologie und
Textanalyse.

Alle drei Probleme sind, wie viele andere praktisch relevante Graphrobleme,
NP-schwer. Deshalb braucht vermutlich jeder exakte Algorithmus eine Laufzeit,
die exponentiell mit der Eingabegröße wächst. Die Idee der parametrisierten
Komplexität ist eine zweidimensionale Sichtweise, d. h. zusätzlich zur Eingabe-
größe n betrachten wir einen Parameter k; ein typischer Parameter ist die Größe
der Lösung. Ein Problem ist festparameter-handhabbar, wenn eine Instanz der
Größe n in Zeit f(k) ·nO(1) gelöst werden kann, wobei f eine beliebige berechen-
bare Funktion ist, die den exponentiellen Anteil der Laufzeit absorbiert. Somit
können wir gute Laufzeiten erwarten, wenn der Parameter in der Anwendung
klein ist.

Diverse Techniken zum Entwurf von Festparameter-Algorithmen sind vor-
geschlagen worden. Wir untersuchen drei solche Techniken: Datenreduktion,
iterative Kompression und Farbkodierung.

Datenreduktion. Datenreduktion ist eine klassische Methode, mit schweren
Problemen umzugehen: bevor der eigentliche Lösungsprozess gestartet wird,
versucht man, die Größe der Eingabe zu verringern, indem man Teile entfernt
oder vereinfacht, zum Beispiel weil man sofort sehen kann, dass sie irrelevant für
die Lösung sind. Wir geben effiziente und effektive Datenreduktionsregeln für
Clique Cover an und zeigen so insbesondere, dass Clique Cover festparameter-
handhabbar ist. Zusammen mit einem einfachen Suchbaumalgorithmus ist es so
möglich, exakte Lösungen mit vergleichsweise kurzer Laufzeit zu bekommen.

iii

iv Zusammenfassung

Dies wird durch Experimente mit Anwendungsdaten und generierten Daten
bestätigt.

Wir zeigen weiter eine neuartige Datenreduktion für Balanced Subgraph

basierend auf kleinen Graphseparatoren und einem neuen Konstruktionsschema
für verkleinerte äquivalente Graphkomponenten. Das Datenreduktionsschema
kann für eine Reihe von Graphproblemen angewendet werden, bei denen eine
Färbung oder eine Teilmenge der Knoten gesucht wird. Unsere Implementierung,
die die Datenreduktion mit iterativer Kompression verbindet, kann biologische
Praxisinstanzen exakt lösen, für die bisher nur Approximationen bekannt wa-
ren. Wir bestimmen die Grenzen der Anwendbarkeit durch Experimente mit
generierten Daten.

Iterative Kompression. Iterative Kompression ist eine 2004 entwickelte Tech-
nik, die auf struktureller Induktion und Kompression von Zwischenlösungen
basiert. Mithilfe von iterativer Kompression entwerfen wir die schnellsten zur
Zeit bekannten Festparameter-Algorithmen für eine Reihe von Problemen. Das
erste ist Cluster Vertex Deletion, das Problem, eine minimale Anzahl von
Knoten aus einem Graphen zu löschen, sodass danach jede Zusammenhangskom-
ponente eine Clique ist. Wir geben einen Algorithmus mit Laufzeit O(2k ·k9 +n3)
an, wobei n die Anzahl Knoten im Eingabegraphen und k die Lösungsgröße
ist. Dies ist die erste nichttriviale Anwendung von iterativer Kompression für
ein Problem, das kein Kreiszerstörungsproblem ist, und eine der ersten An-
wendungen, die auch mit gewichteten Daten umgehen können. Als nächstes
betrachten wir das Feedback Vertex Set-Problem in Turniergraphen, also das
Problem, einen Turniergraphen durch Knotenlöschungen azyklisch zu machen,
und erhalten eine Laufzeit von O(2k · n2(logn+ k)). Im Kern benutzt der Algo-
rithmus auf überraschende Weise eine Prozedur zur Bestimmung einer längsten
gemeinsamen Teilzeichenkette.

Wir zeigen weiter, dass das Edge Bipartization-Problem festparameter-
handhabbar ist, indem wir einen auf iterativer Kompression beruhenden Al-
gorithmus mit Laufzeit O(2k ·m2) angeben, wobei m die Anzahl der Kanten
im Eingabegraphen ist. Dieses Resultat kann auf Balanced Subgraph erwei-
tert werden. Wir zeigen weiter einige heuristische Beschleunigungen, die sich
in Experimenten als sehr effektiv herausstellen. Als nächstes geben wir einen
neuartigen Beweis für einen auf iterativer Kompression beruhenden Algorith-
mus für Vertex Bipartization und verbessern die Laufzeit um einen Faktor
von k auf O(3k · mn). Mit einer heuristischen Beschleunigung kann unsere
Implementierung alle Instanzen einer Problemsammlung aus der Bioinformatik
in Minuten lösen, während konventionelle Methoden nur etwa die Hälfte der
Instanzen überhaupt in akzeptabler Zeit lösen können. Weitere Experimente mit

Zusammenfassung v

generierten und zufälligen Eingaben werden gezeigt.

Farbkodierung. Farbkodierung ist eine randomisierte Methode zum Finden
kleiner Teilgraphen der Größe k in einem Graph. Sie wurde bereits benutzt, um
Kandidaten für Signalpfade in Proteininteraktionsnetzwerken zu finden, was als
Minimum-Weight Path-Problem modelliert werden kann. Wir verbessern die
Laufzeit der Farbkodierungsmethode für Minimum-Weight Path von O(5.44k ·
m·(− ln ε)) aufO(4.32k·m·(− ln ε)), wobei ε die Fehlerwahrscheinlichkeit ist. Wir
zeigen weiter, wie heuristische Evaluationsfunktionen benutzt werden können,
um den Suchraum einzuschränken. Unsere Implementierung, die sorgfältig
abgestimmte Datenstrukturen benutzt, kann für praktisch alle für die Suche
nach Signalpfaden relevanten Parametereinstellungen Resultate in Sekunden
liefern, was die interaktive Untersuchung solcher Pfade ermöglicht. Für diese
Aufgabe haben wir die graphische Benutzeroberfläche Faspad entwickelt.

Zusammengefasst haben wir eine Reihe neuer Festparameter-Algorithmen
angegeben und Implementierungen für vier Probleme angegeben, die nach
unserem Stand des Wissens die jeweils schnellsten Löser sind. Dies unterstreicht
die praktische Brauchbarkeit des parametrisierten Ansatzes, und insbesondere
seine Nützlichkeit als Leitfaden für die Entwicklung neuartiger algorithmischer
Techniken wie iterativer Kompression oder Farbkodierung.

Die Implementierungen für Clique Cover, Balanced Subgraph, Vertex

Bipartization und Minimum-Weight Path sind als freie Software unter der
GNU Public License erhältlich bei http://theinf1.informatik.uni-jena.de/∼hueffner/.

http://theinf1.informatik.uni-jena.de/~hueffner/

vi Zusammenfassung

Abstract

This thesis is about the design, analysis, implementation, and experimental
evaluation of algorithms for hard graph problems. The aim is to establish
that the concept of fixed-parameter tractability, and in particular novel algorithmic
techniques whose development was driven by this concept, can lead to practically
useful programs for exactly solving real-world problem instances.

In particular, we examine the three graph problems Clique Cover, Balanced

Subgraph, and Minimum-Weight Path. In the Clique Cover problem, the
task is to find a minimum-cardinality set of cliques that covers all edges. It has
applications in compiler optimization, computational geometry, and applied
statistics. The Balanced Subgraph problem asks for a 2-coloring of a graph that
minimizes the inconsistencies with given edge labels. It has applications in social
networks, systems biology, and integrated circuit design. The Minimum-Weight

Path problem is to find a minimum-weight simple path of a given length. It has
applications in systems biology and text mining.

All three problems, as many other practically relevant graph problems,
are NP-hard, implying that presumably any exact algorithm requires time
exponential in the input size. The idea of parameterized complexity is to take
a two-dimensional view, where in addition to the input size we consider a
parameter k; a typical parameter is the size of the solution. A problem is called
fixed-parameter tractable if an instance of size n can be solved in f(k) · nO(1) time,
where f is an arbitrary computable function that absorbs the exponential part
of the running time. Thus, whenever the parameter turns out to be small in
practice, we can expect good running times.

Various techniques to design fixed-parameter algorithms have been suggested.
We examine three of them: data reduction, iterative compression, and color-
coding.

Data reduction. Data reduction is a classic way of dealing with hard problems:
before starting the actual solving process, one tries to reduce the size of the
instance by removing or simplifying parts, for example because we can imme-
diately infer that they are irrelevant to the solution. We present efficient and
effective data reduction rules for Clique Cover, which in particular allow to
prove that Clique Cover is fixed-parameter tractable. Combined with a simple
search tree algorithm, this allows for exact problem solutions in competitive
time. This is confirmed by experiments with real-world and synthetic data.

We then present a novel data reduction for Balanced Subgraph based on
finding small separators and a novel gadget construction scheme. The data
reduction scheme can be applied to a large number of graph problems where
a coloring or a subset of the vertices is sought. Our implementation, which

vii

viii Abstract

combines the data reduction with iterative compression, can solve biological
real-world instances exactly for which previously only approximations were
known. We chart the borders of tractability by experiments with synthetic data.

Iterative compression. Iterative compression is a technique developed in 2004
that is based on structural induction and compression of intermediary solutions.
Based on iterative compression, we present the fastest currently known fixed-
parameter algorithms for a number of problems. The first is Cluster Vertex

Deletion, the problem of deleting a minimum number of vertices from a
graph to obtain a disjoint union of cliques. We give an algorithm running in
O(2k · k9 + n3) time, where n is the number of vertices in the input graph,
and k is the solution size. This is the first nontrivial application of iterative
compression to a problem that is not a feedback set problem and one of the
first applications that can also deal with weighted instances. We continue with
Feedback Vertex Set in tournaments, the problem of deleting a minimum
number of vertices from a tournament graph to make it acyclic, for which we
give an O(2k · n2(logn+ k)) time algorithm. At its core, it makes surprising use
of a longest common substring procedure.

We go on to show that the Edge Bipartization problem is fixed-parameter
tractable by giving an iterative compression-based algorithm running in O(2k ·
m2) time, where m is the number of edges in the input graph. This result can be
extended to Balanced Subgraph. We further present several heuristic speedups,
which proved very effective in experiments. Next, we give a novel proof of
an iterative compression algorithm for Vertex Bipartization and improve the
running time by a factor of k to O(3k ·mn). With an additional heuristic speedup,
our implementation can solve all instances from a testbed from computational
biology within minutes, whereas established methods are only able to solve
about half of the instances within reasonable time. Further experiments with
synthetic and random inputs are shown.

Color-coding. Color-coding is a randomized method for finding small sub-
graphs of size k in a graph. It has been used to find candidates for signaling
pathways in protein interaction networks, which can be modeled as a Minimum-
Weight Path problem. We improve the worst-case running time of color-coding
for Minimum-Weight Path from O(5.44k ·m · (− ln ε)) to O(4.32k ·m · (− ln ε)),
where ε is the error probability. We further show how to use heuristic evaluation
functions to prune the search space. Our implementation, using carefully tuned
data structures, can for basically all parameter settings relevant to the search for
signaling pathways obtain results within seconds, whereas previous tools used
hours or longer. This allows the interactive exploration of such pathways. For

Abstract ix

this, the graphical user interface Faspad was implemented.
In summary, we have developed a number of new fixed-parameter algorithms

and given implementations for four important problems, all of which are to
the best of our knowledge the currently fastest solvers. This underlines the
viability of the parameterized approach, and in particular its usefulness as a
guide to develop novel algorithmic techniques such as iterative compression and
color-coding.

The implementations for Clique Cover, Balanced Subgraph, Vertex Bi-
partization, and Minimum-Weight Path are available as free software under
the GNU Public License at http://theinf1.informatik.uni-jena.de/∼hueffner/.

http://theinf1.informatik.uni-jena.de/~hueffner/

x Abstract

Preface

This thesis covers a substantial part of my research on fixed-parameter algo-
rithms, focusing on algorithms and experiments for hard graph problems. My
research was part of the project “PIAF” funded by the Deutsche Forschungsge-
meinschaft (DFG), which supported me starting in March 2004. I owe sincere
thanks to Rolf Niedermeier for giving me the opportunity to work in his group
and for his support in my research and the development of this thesis. Further, I
want to thank my colleagues Nadja Betzler, Michael Dom, Jens Gramm, Jiong
Guo, Christian Komusiewicz, Hannes Moser, and Sebastian Wernicke for pro-
ductive cooperation and many interesting discussions. Finally, I am grateful to
Tamara Steijger and Thomas Zichner for helping with implementation and ex-
periments, and to Hans-Peter Piepho (Universität Hohenheim), Ramona Schmid
(Universität Bielefeld), and Anke Truß (Universität Jena) for the interesting
collaborations.

Much of the results in this thesis have been achieved in collaborations with
some of the above mentioned people. In this thesis, I present only results that
concern fixed-parameter algorithms for hard graph problems using three central
techniques (data reduction, iterative compression, and color-coding) to which I
have made substantial contributions. My further research concerns structural
parameterization [Guo et al. 2004], leaf power problems [Dom et al. 2006a, 2005],
multicut problems [Guo et al. 2007a], matrix problems [Brosemann et al. 2006],
feedback set problems [Guo et al. 2006, 2007b], heuristics [Gramm et al. 2006,
2007b], and clustering [Komusiewicz et al. 2007, Guo et al. 2008, Hüffner et al.
2008a, Ponta et al. 2008]. I further collaborated on a number of book chapters
and surveys [Dom et al. 2007, Hüffner 2007, Helwig et al. 2007, Hüffner et al.
2007c,b, 2008b].

This thesis is structured into six chapters. After a brief introduction in Chap-
ter 1, I describe three central problems and their applications in Chapter 2. Then,
one chapter is dedicated to each of the parameterized techniques data reduction
(Chapter 3), iterative compression (Chapter 4), and color-coding (Chapter 5).
Finally, I summarize the findings in Chapter 6. In the following, I briefly sketch
my contributions.

Section 3.1 describes an exact algorithm for Clique Cover based on data
reduction and a search tree algorithm. Jiong Guo found the equivalence of this
problem to the Compact Letter Display problem. I came up with some of the
data reduction rules for Clique Cover (Section 3.1.1); in particular Rule 3.4,
which subsumes several weaker rules. The kernel (Theorem 3.2) was found
by Jiong Guo. Further, I designed the search tree algorithm and did all of the
implementation and experiments (Section 3.1.3). These results were presented at
the 8th Workshop on Algorithm Engineering and Experiments (ALENEX ’06) [Gramm

xi

xii Preface

et al. 2006] and are to appear in the ACM Journal of Experimental Algorithmics
[Gramm et al. 2007a]. Further experimental results and comparisons to heuristics
are to appear in Computational Statistics & Data Analysis [Gramm et al. 2007b].

Section 3.2 describes a data reduction scheme for the Balanced Subgraph

problem. I initiated the study of this problem, designed the data reduction
scheme, and proved its correctness and power. I further did the implementa-
tion. Experiments (Section 3.2.4) were designed by Nadja Betzler and me and
carried out by Nadja Betzler with help from our students Tamara Steijger and
Thomas Zichner. The results were presented at the 6th Workshop on Experimental
Algorithms (WEA ’07) [Hüffner et al. 2007a].

Section 4.3 gives an exact algorithm for Cluster Vertex Deletion based on
iterative compression. I started the examination of this problem, designed the
algorithm, and proved its correctness (Hannes Moser found and fixed an error
in the algorithm). These results are presented at the 8th Latin American Theoretical
Informatics Symposium (LATIN ’08) [Hüffner et al. 2008a].

Section 4.4 applies iterative compression to the Feedback Vertex Set in
tournaments problem. I had the central idea of using a polynomial-time string
problem as a subroutine and proved the correctness of the algorithm. The results
were presented at the 6th Conference on Algorithms and Complexity (CIAC ’06)
[Dom et al. 2006b]; they can also be found in the diploma thesis of Anke Truß
[2005].

Section 4.5 shows how to solve Edge Bipartization by iterative compression.
The idea for the algorithm is due to Jiong Guo, and Jens Gramm found an
initial, very complicated proof. I came up with the vastly simpler proof given
here. These results were presented at the 9th Workshop on Algorithms and Data
Structures (WADS ’05) [Guo et al. 2005] and appeared in the Journal of Computer
and System Sciences [Guo et al. 2006]. The simpler proof further allowed me to
find and prove the improvements presented in Sections 4.5.2 and 4.5.3. The
applicability to Balanced Subgraph was also found by me. I further did the
implementation of the algorithm. These results were sketched in the WEA ’07
paper [Hüffner et al. 2007a], which focuses on the data reduction.

Section 4.6 describes an iterative compression algorithm for Vertex Biparti-
zation. My first contribution is a simpler, more intuitive proof for this result
originally due to Reed et al. [2004]. I further found the algorithmic improve-
ments described in Section 4.6.2 and did the implementation and experiments
(Section 4.6.3). These results were presented at the 4th International Workshop on
Experimental and Efficient Algorithms (WEA ’05) [Hüffner 2005].

Chapter 5 is on the application of the color-coding method to the problem
of finding signaling pathways in protein interaction networks. Sebastian Wer-
nicke devised the improvement of using more colors in the random coloring
process (Section 5.3.1). I developed the speedup by heuristic evaluation func-

Preface xiii

tions (Section 5.3.2), designed the data structures (Section 5.3.3), and found the
improvements for the Pathway Query variant (Section 5.3.4). I further did the
implementation of the algorithm. The experiments (Section 5.4) were designed by
Sebastian Wernicke and mostly carried out by Thomas Zichner. The results were
presented at the 5th Asia–Pacific Bioinformatics Conference (APBC ’07) [Hüffner
et al. 2007d] and are to appear in Algorithmica [Hüffner et al. 2007e]. Thomas
Zichner also implemented the graphical user interface (Section 5.5), which was
drafted by Sebastian Wernicke and me. An applications note describing the
interface was published in Bioinformatics [Hüffner et al. 2007f].

Jena, October 2007 Falk Hüffner

xiv Preface

Contents

1 Introduction 1
1.1 NP-hard problems . 1
1.2 Parameterized complexity and fixed-parameter algorithms 2
1.3 Fundamental fixed-parameter techniques 3

1.3.1 Depth-bounded search trees 4
1.3.2 Dynamic programming . 5
1.3.3 Tree decompositions . 6

1.4 Algorithm engineering . 7
1.5 Notation . 9

2 Problems 13
2.1 Graph modification problems . 13
2.2 Clique Cover . 14
2.3 Bipartization and Balanced Subgraph 18

2.3.1 Edge Bipartization . 18
2.3.2 Balanced Subgraph . 20
2.3.3 Vertex Bipartization . 24

2.4 Minimum-Weight Path . 25

3 Data reduction 29
3.1 Data reduction for Clique Cover 31

3.1.1 Data reduction rules . 32
3.1.2 Search tree algorithm . 37
3.1.3 Implementation and experiments 39
3.1.4 Outlook . 43

3.2 Data reduction for Balanced Subgraph 44
3.2.1 Data reduction scheme . 45
3.2.2 Efficiently finding separators 47
3.2.3 Gadget construction . 48

xv

xvi Contents

3.2.4 Implementation and experiments 54
3.2.5 Outlook . 59

4 Iterative compression 61
4.1 Known results . 62
4.2 Basic method . 63
4.3 Iterative compression for Cluster Vertex Deletion 70

4.3.1 Known results on Cluster Vertex Deletion 71
4.3.2 Iterative compression algorithm 73
4.3.3 Outlook . 78

4.4 Iterative compression for Feedback Vertex Set in tournaments . . 79
4.4.1 Known results on Feedback Vertex Set in tournaments . . 80
4.4.2 Iterative compression algorithm 81
4.4.3 Outlook . 86

4.5 Iterative compression for Edge Bipartization 87
4.5.1 Iterative compression algorithm 88
4.5.2 Exploiting subproblem similarity 93
4.5.3 Heuristic speedup . 96
4.5.4 Generalization to Balanced Subgraph 98
4.5.5 Outlook . 99

4.6 Iterative compression for Vertex Bipartization 101
4.6.1 Iterative compression algorithm 101
4.6.2 Algorithmic improvements 106
4.6.3 Implementation and experiments 109
4.6.4 Outlook . 115

4.7 Outlook . 115

5 Color-coding 117
5.1 Known results . 118
5.2 Basic method . 119

5.2.1 Variations of Minimum-Weight Path 126
5.2.2 Pathway Query . 127

5.3 Algorithm engineering . 128
5.3.1 Increasing the number of colors 129
5.3.2 Heuristic evaluation functions 132
5.3.3 Data structures . 134
5.3.4 Improvements for Pathway Query 135

5.4 Implementation and experiments 136
5.4.1 Minimum-Weight Path . 136
5.4.2 Pathway Query . 139

5.5 Graphical user interface . 140

Contents xvii

5.5.1 Search parameters . 142
5.5.2 Graphical display . 143

5.6 Outlook . 143

6 Outlook 145

xviii Contents

Chapter 1

Introduction

1.1 NP-hard problems

Many combinatorial problems that come up in the real world have been classified
as NP-hard [Garey and Johnson 1979]. An example is the following task: After a
series of experiments, certain pairs of experiments are found to have conflicting
results. We therefore know that for each pair, at least one of the experiments was
faulty. We now want to find the minimum number of experiments to discard
such that there are no more conflicts. This problem, in its abstract form as a
graph problem, is known as Vertex Cover, where given a graph, we search for
a minimum number of vertices to delete to get rid of all edges. It is by now
an established assumption that NP-hardness implies an inherent combinatorial
explosion in the solution space that leads to running times growing exponentially
with the input size. This means that large instances of NP-hard problems cannot
always be solved efficiently to optimality.

There are several approaches to circumvent this problem in practice. Heuris-
tics drop the demand for useful running time guarantees or for useful quality
guarantees, and are tuned to run fast with good results on typical instances
[Michalewicz and Fogel 2005]. Approximation algorithms trade the demand for
optimality for a provably efficient running time behavior, while still providing
provable bounds on the solution quality [Ausiello et al. 1999, Vazirani 2001].
However, these methods have serious drawbacks. In many applications, it is not
acceptable that there is a chance that the algorithm might take exceptionally long
in corner cases; and the approximation guarantees that are typically obtained
are rather weak (a guarantee such as 10 % error is often not attainable [Ausiello
et al. 1999]). In particular, most of the problems we study here are MaxSNP-hard,
which implies that one cannot get arbitrarily good approximation factors.

1

2 1 Introduction

In the next section, we present the approach of parameterized complexity, which
in many cases can show a way out of this quandary.

1.2 Parameterized complexity and fixed-parameter
algorithms

The central observation that motivates parameterized complexity is that often
even very large instances of NP-hard problems can be easy. The reason is that
they might contain structure that can be exploited. The idea is to measure the
structural complexity by a parameter, which is usually a nonnegative integer
denoted by k. We can then do a two-dimensional complexity analysis, expressing
the growth of the running time both in terms of the input size n and in terms of k.
The hope is to be able to confine the combinatorial explosion to the parameter,
such that we can solve instances fast whenever the parameter is small.

Consider for example the detection of faulty experiments (Vertex Cover)
introduced at the start of Section 1.1. Here, it is quite reasonable to assume that
not very many experiments are faulty; otherwise, the whole series is useless.
Therefore, if we can restrict the combinatorial explosion to the number of faulty
experiments k, we can solve even large instances. This concept is made more
precise in the following definitions introduced by Downey and Fellows [1999].

Definition 1.1. A parameterized problem is a language L ⊆ Σ∗ × Σ∗, where Σ is a
finite alphabet. The second component is called the parameter of the problem.

In all examples in this thesis, the parameter is a nonnegative integer, and
thus we will assume L ⊆ Σ∗ × N. For (x,k) ∈ L, the two dimensions of the
parameterized complexity analysis are then the input size n := |(x,k)| and the
parameter k. Since in all our applications meaningful parameter values are upper-
bounded by |x|, we can simply assume n := |x| in asymptotic considerations. The
central notion of tractability is then the following.

Definition 1.2. A parameterized problem L is fixed-parameter tractable if there
is an algorithm that decides in f(k) · nO(1) time whether (x,k) ∈ L, where f is an
arbitrary computable function depending only on k. The complexity class that contains
the fixed-parameter tractable problems is called FPT.

Note that the concept of fixed-parameter tractability is different from the
notion of “polynomial-time solvable for fixed k”; an algorithm running in O(nk)
time demonstrates that a problem is polynomial-time solvable for any fixed k,
but does not show fixed-parameter tractability.

As an example, we can show that Vertex Cover is fixed-parameter tractable
by giving a simple fixed-parameter algorithm, that is, an algorithm that has a

1.3 Fundamental fixed-parameter techniques 3

running time bound as in Definition 1.2. This algorithm is based on recursive
branching. For any conflict involving two experiments a and b, branch into the
two cases “a is faulty” and “b is faulty”; clearly, at least one of these assumptions
is correct. If we have decided that e. g. a is faulty, then we can remove a from
the instance, thereby getting rid of all conflicts involving a. If there are no more
conflicts to branch on while we have deleted at most k experiments, then we
have found a solution. The size of the thus defined search tree is bounded
by O(2k), since we always branch into two cases and the height of the search
tree is bounded by k. A branching can be easily done in O(n) time, and we
arrive at an overall running time of O(2kn). Thus, we can for example solve
quite large instances with k = 30 and n = 1000 within reasonable time.

An important goal in parameterized complexity research is to further bring
down the combinatorial explosion. For Vertex Cover, algorithms are known
that solve Vertex Cover in O(1.274k + kn) time [Chen et al. 2006], which even
allows to solve instances with k = 120 and n = 1000.

Unfortunately, parameterized complexity is no silver bullet. There are pa-
rameterized problems for which there is good evidence that they are not fixed-
parameter tractable. Analogously to the concept of NP-hardness, Downey and
Fellows [1999] developed the concept of W[1]-hardness, along with correspond-
ing reduction and completeness notions. For our purposes, it will suffice to
know that once a parameterized problem has been classified as W[1]-hard, there
is no hope for a fixed-parameter algorithm.

This drawback is much mitigated by the fact that for a single problem, there
are many parameters to choose from. The canonical choice is for optimization
problems the value that is optimized, such as the number of experiments to omit
in our running example. Another possibility is the distance of the instance to
some tractable case. For instance, the problem of finding a longest common
subsequence for a set of strings is W[1]-hard with respect to several natural
parameters such as length of the common subsequence and number of strings,
but is FPT when the parameter is the maximum number of occurrences of a
letter in a string [Guo et al. 2004].

The classic monograph on parameterized complexity is the one by Downey
and Fellows [1999]. Recently, two new books have appeared: one focusing on
algorithmic aspects [Niedermeier 2006], and the other on complexity theory
[Flum and Grohe 2006].

1.3 Fundamental fixed-parameter techniques

In this section, we briefly survey some FPT techniques that have been used
in previous experimental and practical works (see also Hüffner et al. [2008b]).

4 1 Introduction

Clearly, we cannot list all such implementations here, in particular since many
examples exist where people employed fixed-parameter algorithms and enjoyed
their benefits without being aware of the concept, in particular when the pa-
rameter is nonobvious. A famous example [Downey and Fellows 1999] is a
type inference algorithm used in a compiler for the ML programming language.
Even though it was proved that type inference for ML is EXPTIME-complete
and thus in a sense as hard as any problem that requires exponential time, the
algorithm could deal easily even with very large inputs. The explanation is
that the algorithm is a fixed-parameter algorithm with linear polynomial part,
where the parameter is the nesting depth of let-constructs, which is very small
in real-world programs.

We here omit the three techniques data reduction, iterative compression, and
color-coding, since each of them is given its own chapter, where previous work
will be described.

1.3.1 Depth-bounded search trees

Search trees are probably the most immediate approach to hard problems; the
algorithm we sketched in Section 1.2 to show the fixed-parameter tractability of
Vertex Cover is a search tree algorithm. They are a standard technique e. g. for
satisfiability solvers, where they are known as DPLL (Davis–Putnam–Logemann–
Loveland) algorithms [Davis et al. 1962]; other names used in the literature are
“splitting algorithms” or “backtracking algorithms”.

The general idea is to examine a small part of the input, and then branch into
several cases depending on how the solution for this local structure might look
like. If we can bound both the number of cases and the height of the search tree
by a function of the parameter k, then we obtain a fixed-parameter algorithm.

Much research in the FPT community has focused on improving the run-
ning time of branching algorithms. For example, in a series of papers, the
running time of the above mentioned Vertex Cover algorithm was improved to
O(1.274k + kn) time [Chen et al. 2006]. This is mostly done by case distinction.
However, it is often found (e. g. Böcker et al. [2007]) that this does not always
pay in practice, because of the overhead introduced by the case distinction.

In combination with data reduction (Chapter 3), the use of depth-bounded
search trees has proven itself quite useful in practice, allowing to find vertex
covers of more than ten thousand vertices in some dense graphs of biological
origin [Abu-Khzam et al. 2006]. Search trees also trivially allow for a parallel
implementation: when branching into subcases, each process in a parallel setting
can further explore one of these branches with no additional communication
required. Cheetham et al. [2003] exposed this in their parallel Vertex Cover

solver to achieve a near-optimum (i.e., linear with the number of processors

1.3 Fundamental fixed-parameter techniques 5

employed) speedup on multiprocessor systems, solving instances with n > 700
and k > 400 in mere hours.

Another success story for search trees is Cluster Editing, the problem of
adding and deleting a minimum number of edges of a graph such that every
connected component becomes a clique. Dehne et al. [2006] evaluated a search
tree algorithm by Gramm et al. [2005] that runs in O(2.270k+n3) time, where k is
the number of edge modifications. Rahmann et al. [2007] adapted the approach
to weighted instances and reported further positive results. Recently, Böcker
et al. [2007] improved the worst-case running time to O(1.83k + n3) by using
a different branching method, thereby even beating out an algorithm running
in O(1.920k + n3) time that was obtained by a computer-generated search tree
algorithm [Gramm et al. 2004]. Böcker et al. [2007] reported that they can
compute exact solutions for biological instances of medium size in a matter of
minutes.

1.3.2 Dynamic programming

Dynamic programming is another classic algorithm technique with a vast num-
ber of applications; see e. g. Cormen et al. [2001]. The running time of a dynamic
programming algorithm is usually a function of the table size times a polynomial
of the input size. Therefore, if we can restrict the size of the table to a function
of the parameter, we can obtain a fixed-parameter algorithm.

An important example is the NP-hard Steiner Tree problem, where the task
is, given an edge-weighted graph and a set of vertices called terminals, to find a
minimum-weight tree that connects all terminals (see Prömel and Steger [2002]
for a monograph on Steiner problems). The Dreyfus–Wagner algorithm [Dreyfus
and Wagner 1972] can solve the Steiner Tree problem in O(3kn3) time, where k
is the number of terminals. It thus shows fixed-parameter tractability with the
number of terminals as parameter. Its basic idea is to compute Steiner trees for
subsets of the terminal set and combine them by dynamic programming to form
the solution Steiner tree.

Scott et al. [2005] used Steiner Tree to model the task of finding regulatory
subnetworks in protein interaction network (see Betzler [2006] for more details
and related problems). Since in this application the number of terminals is
small, they could successfully use the Dreyfus–Wagner algorithm to find exact
solutions. Ganley [1999] noted that for the special case of rectilinear Steiner
trees, the Dreyfus–Wagner algorithm is probably the most popular method for
computing optimal solutions in practice. Recently, improvements of the running
time to (2 + ε)k · nO(1) for any fixed ε [Fuchs et al. 2007] and, for the case that
weights are integers bounded by M, to O(2k · n2M + nm logM) [Björklund
et al. 2007] were given. It is not clear that these are practical, though, since the

6 1 Introduction

d

f

b

a

c

e g

i

h

(a) Graph G

a
db

b
dc

b
ed

d
he

ie
hg

e
g

f

h

(b) Tree decomposition of G

Figure 1.1: A graph together with a tree decomposition of width 2

former suffers from a large polynomial time overhead, and the latter from a
large polynomial space overhead.

A major problem with dynamic programming for NP-hard problems is that
it typically requires exponential amounts of memory. Therefore, the problem
is often not that the algorithms run too slow, but rather that they run out of
memory after only a few seconds or minutes. We show some ways of dealing
with this problem in Section 5.3, where dynamic programming is used in a
subroutine of the color-coding method.

1.3.3 Tree decompositions

Many NP-hard graph problems such as Vertex Cover become polynomial-time
solvable when the input is restricted to trees. Based on this, Coppersmith and
Vishkin [1985] gave an algorithm for Vertex Cover that runs fast on “almost
trees”; more precisely, they give an algorithm running in O(2k · |G|) time, where
k is the number of edges that needs to be deleted in the input graph G to obtain
a tree. Treewidth is a more general measure of “tree-likeness”, defined via the
concept of a tree decomposition.

Definition 1.3. Let G = (V ,E) be a graph. A tree decomposition of G is a pair
〈{Xi | i ∈ I}, T〉, where each Xi is a subset of V called a bag, and T is a tree with the
elements of I as nodes. The following three properties must hold:

1.
⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and

1.4 Algorithm engineering 7

3. for all i, j,k ∈ I, if j lies on the path between i and k in T , then Xi ∩ Xk ⊆ Xj.
The width of 〈{Xi | i ∈ I}, T〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G is the
minimum k such that G has a tree decomposition of width k.

Note that subtracting one from the maximum bag size to obtain the width
of a tree decomposition is mostly for aesthetic reasons, so that trees have a
treewidth of 1 and not 2. An equivalent, more intuitive definition is given by
Seymour and Thomas [1993] using a “cops-and-robber game”.

Figure 1.1 shows a graph together with an optimal tree decomposition of
width two. In a tree decomposition 〈B, T〉 of width k, each bag is a separator with
at most k+1 vertices, that is, after its deletion the graph decomposes into at least
two connected components. This allows to solve many problems using a table
that uses only f(k) space for some function f not depending on n and doing
dynamic programming bottom-up from the leaves of T . Thus, these problems
are fixed-parameter tractable with respect to the parameter k. For example for
Vertex Cover, we can for a bag Xi use a table of size 2k+1 that stores for each
possible allocation of the vertices in Xi to one of the two states “in the cover”
and “not in the cover” the minimum cost of a vertex cover for the subgraph of G
corresponding to the subtree below i in T . Further examples are Independent

Set and Dominating Set, which can be solved in O(2kn) and O(4kn) time,
respectively [Alber and Niedermeier 2002]. For these two problems, this is a
particularly appealing result, since for their most natural parameter (the solution
size), one get W[1]-hardness results.

Positive experimental results with tree decomposition approaches have been
reported by Alber et al. [2005] for Vertex Cover. Another practical applica-
tion was given by Xu et al. [2005], who proposed a tree decomposition based
algorithm to solve two problems encountered in protein structure prediction (a
survey covering related results is given by Cai et al. [2007]).

A drawback of treewidth-based algorithms is that finding an optimal tree de-
composition is already NP-hard; however, various exact or heuristic approaches
exist (see e. g. Bodlaender and Koster [2007]). Finding the optimal treewidth is
also fixed-parameter tractable with respect to k [Bodlaender 1996]; however, the
known algorithms have impractical running times.

1.4 Algorithm engineering

In recent times, there is a growing gap between algorithm theory and the
algorithms actually used in practice. The reason is a difference in methodology
and goals. In algorithm theory, one considers simple, abstract problem models
and simple, abstract machine models. The solutions are sophisticated, and the

8 1 Introduction
applications

Algorithm
Engineering

A
lg

or
ith

m
 T

he
or

y

perf. guarantees

analysis

design

abstract

implementation

application

analysis

deduction

realistic
models

implementation

libraries
algorithm

guarantees
performance

design

models

induction

hypotheses
falsifiable

experiments

inputs
real

Figure 1.2: Classic algorithm theory versus algorithm engineering (from
Mehlhorn et al. [2006])

main goal is provable performance guarantees. In practice, one has to deal
with complex requirements and real machines. Much preferred are simple
implementations, and the goal is good observed performance. In the worst
case, these differences in viewpoint lead to unusable solutions from algorithm
theorists and to badly scaling, unreliable solutions from the practitioners.

The goal of algorithm engineering is to bridge this gap. A central demand is
that research in algorithmics should also be concerned with implementations and
experimental evaluations. In fact, algorithm engineering has recently become
synonymous with a change in the overall methodology of algorithm research, as
illustrated in Figure 1.2. Classic algorithm theory works in a linear fashion: From
the application, an abstract model is distilled and an algorithm is designed. Then
this algorithm is mathematically analyzed, leading to performance guarantees.
At this point, the work is often considered done; implementation and application
are typically done as an afterthought, or by other groups.

Initially, the approach of algorithm engineering is the same: from the applica-
tion, a model is extracted, although more emphasis is put on realistic models. An
algorithm is designed and analyzed, providing performance guarantees. After
this, however, implementation and experimental evaluation are not considered
optional, but as an integral component of the process. In particular, real inputs
from the application are to be used. The main difference to classic algorithm the-
ory is that the results from experiments are used in a feedback loop to influence
the design of updated algorithms. This cycle of design, analysis, implementation,

1.5 Notation 9

and experiments is driven by falsifiable hypotheses about how the algorithms
behave, and thus differs fundamentally from the strictly deductive approach that
aims only for performance guarantees. Further, the development of algorithm
libraries that are directly usable by practitioners is seen as another important
research goal.

A successful example of algorithm engineering is route planning in road
networks. In classic algorithm theory, it is clear what to do: this is a shortest path
problem in a graph, and the best algorithm we have for it is Dijkstra’s. However,
for the huge road networks we have to deal with, it is just too slow. The first
idea is to adapt the model: we allow preprocessing of the graph to be able to
quickly answer many queries. But the obvious solution of storing all shortest
paths again does not work: it requires too much memory. Therefore, one has to
exploit properties of real street graphs. For example, Bast et al. [2007] used the
observation that for large distances, one leaves the current location via one of
only a few important traffic junctions. From this, they developed the concept
of transit nodes, which in their experiments allowed to execute queries up to six
orders of magnitude faster than Dijkstra’s algorithm.

In my research, I have tried to initiate research in several areas, following
the guidelines of algorithm engineering. Probably the best example is Chap-
ter 5 dealing with color-coding: here, we have improved the running times
for real-world instances by several orders of magnitude, and provided a user-
friendly tool with a graphical interface. However, since algorithm engineering
encompasses and extends classic algorithm theory, it is an ambitious undertaking
that takes many resources and usually requires the cooperation of several people;
therefore, some parts of this thesis need to be seen as an invitation for further
research following the concept of algorithm engineering.

More information on algorithm engineering can be found in the proceedings
of the Workshop on Algorithm Engineering and Experiments (ALENEX), the Euro-
pean Symposium on Algorithms (Track B), and the Workshop on Experimental Algo-
rithms (WEA), and further the ACM Journal of Experimental Algorithmics or the
website http://www.algorithm-engineering.de/ of the DFG priority program 1307
on algorithm engineering.

1.5 Notation

In this section, we introduce some basic notation used throughout this work.
For a set S and an element x, we write S−x for the set S\ {x}. An optimization

problem is the problem of finding the best solution from all feasible solutions.
More formally, an optimization problem A is a quadruple (I, f,m,g), where

• I is a set of instances;

http://www.algorithm-engineering.de/

10 1 Introduction

• given an instance x ∈ I, f(x) is the set of feasible solutions;

• given an instance x and a feasible solution y of x, m(x,y) denotes the
measure of y, which is usually a positive real number;

• g is the goal function, and is either min or max.

The goal is then to find for some instance x an optimal solution, that is, a feasible
solution y with

m(x,y) = g{m(x,y ′) | y ′ ∈ f(x)}. (1.1)

For a minimization problem (that is, an optimization problem with g = min), a
feasible solution is called minimal if it does not contain another feasible solution
as a proper subset and minimum if there is no other feasible solution with better
measure. We extend weight functions ω : X→ Q to sets in the natural way, that
is, we set ω(S) :=

∑
x∈Sω(x) for S ⊆ P(X).

Undirected graphs. For a general introduction to graph theory, see Diestel
[2005]. An undirected graph G is a tuple (V ,E), where V is a finite set of
vertices and E is a set of edges, which are unordered tuples of vertices, that is,
E ⊆ {{u, v} | u, v ∈ V}. For a graph G = (V ,E), we set V(G) := V and E(G) := E.
For some v ∈ V , the setN(v) := {u ∈ V | {u, v} ∈ E} is the set of neighbors of v. The
closed neighborhood of vertex v, denoted byN[v], is equal toN(v)∪{v}. The degree
of a vertex v is its number of neighbors |N(v)|. We call a graph G ′ = (V ′,E ′)
induced subgraph of a graph G = (V ,E) if V ′ ⊆ V and E ′ = {{u, v} | u, v ∈
V ′ and {u, v} ∈ E}. The graph induced by a vertex set V ′ in G is denoted G[V ′].
With G \ V ′ for some V ′ ⊆ V , we denote the graph G[V \ V ′]. A graph G ′ is a
minor of a graph G if G ′ can be obtained from a subgraph of G by contracting
edges, where “contracting an edge” means to delete the edge and to identify its
endpoints.

A path is a sequence of vertices v1, . . . , vs with {vi, vi+1} ∈ E for all 1 6 i < s.
A graph is connected when there is a path between any two vertices. A cycle is
a path with {vs, v1} ∈ E. A clique is a complete graph, that is, a graph where
∀v,w ∈ V , v 6= w : {v,w} ∈ E. We use special notation for a number of particular
graphs: a Pn is an induced path of n vertices, a Cn is an induced cycle of
n vertices, and a Kn is a clique of n vertices.

The problems we examine typically have as input a graph G = (V ,E). We
then use n to refer to the number of vertices of the input instances, and m to
refer to the number of edges. In all problems we examine, degree-0 vertices
do not play a role. Therefore, to simplify the running time analysis, we always
assume that n = O(m).

1.5 Notation 11

A cut or edge cut between two disjoint vertex sets in a graph is a set of
edges whose removal disconnects these two sets in the graph. Similarly, a
separator in a connected graph is a set of vertices whose deletion makes the
graph disconnected.

A graph class is a set of graphs that is closed under isomorphism. A large
number of graph classes has been considered in the literature (see Brandstädt
et al. [1999] for a survey, covering more than 200 classes).

We frequently use the following characterizations of the class of bipartite
graphs [Kőnig 1936].

Lemma 1.1. For a graph G = (V ,E), the following are equivalent:

1. G is bipartite, that is, V can be partitioned into two sets V1 and V2 called sides
such that there is no {v,w} ∈ E with both v,w ∈ V1 or both v,w ∈ V2. In other
words, G has a cut of size m.

2. V can be colored with two colors such that for all {v,w} ∈ E the vertices v and w
have different colors. The color classes correspond to the sides.

3. G does not contain odd cycles, that is, cycles of odd length.

A graph class is hereditary if it is closed under deleting vertices. Note that
sometimes in literature, “hereditary” is defined as closed under deleting vertices
and edges; for this, we use the term monotone.

A hypergraph is a generalization of an undirected graph, where an edge may
contain more than two vertices. We use the same notation for hypergraphs as
for graphs.

Directed graphs. For a general introduction to directed graphs, see Bang-
Jensen and Gutin [2002]. A directed graph or digraph D is a tuple (V ,A), where
V is a finite set of vertices and A is a set of arcs, which are ordered tuples
of vertices, that is, A ⊆ V2. We consider only digraphs without loops, that
is, (v, v) /∈ A for all v ∈ V . We call a graph D ′ = (V ′,A ′) induced subgraph of a
digraph G = (V ,A) iff V ′ ⊆ V and E ′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ A}. A
tournament T = (V ,A) is a digraph where there is exactly one arc between each
pair of vertices. A cycle is a sequence of distinct vertices v1, . . . , vs with (vi, vi+1) ∈
A for all 1 6 i < s and (vs, v1) ∈ A. A triangle is a cycle of length 3. A topological
sort of a digraph D = (V ,A) is a sequence v1, v2, . . . , vn of the vertices in V
in which each vertex appears exactly once and i < j for each arc (vi, vj) ∈ A.
Clearly, a digraph has a topological sort iff it is acyclic, that is, it does not contain
a cycle.

12 1 Introduction

Chapter 2

Problems

In this chapter, we introduce some of the problems we are dealing with and
state previous results. We first focus on one class of problems, namely graph
modification problems (Section 2.1), which appear in several instances in our
work. We further highlight the three problems Clique Cover (Section 2.2),
Bipartization (Section 2.3), and Minimum-Weight Path (Section 2.4), since
they are central to our algorithms and further serve as examples to illustrate the
rich applications of NP-hard graph problems. Other problems are introduced at
the places where we deal with them algorithmically.

2.1 Graph modification problems

Graph modification problems are a popular means of modelling tasks such
as error correction, conflict resolution, and reconfiguration in networks. In
a graph modification problem, the task is to delete at most k vertices or at
most k edges from a graph such that it becomes a member of a particular
graph class. In addition to vertex deletion and edge deletion, other modification
operations such as edge additions and combinations of modifications have been
considered. Graph modification problems have a large number of applications
(see e. g. Sharan [2002], Guo [2006] and references therein), and many well-known
problems such as Vertex Cover can be reformulated as graph modification
problems. All vertex deletion problems for hereditary graph classes are NP-hard
[Lewis and Yannakakis 1980] (except for trivial classes, that is, classes for which
only finitely many graphs are inside or outside the class). For edge deletion
problems, no such characterization is known, although there are some works
which show edge deletion problems to be NP-hard for a wide set of graph classes

13

14 2 Problems

(e. g., Lewis [1978], El-Mallah and Colbourn [1988], Asano and Hirata [1982]).
Burzyn et al. [2006] listed a large number of standard graph classes, and in each
case the edge deletion problem is NP-hard. However, there are exceptions, for
example finding a minimum set of edges to delete to make a connected graph
cycle-free can be done in polynomial time by finding a maximum spanning tree.

It is well-known (see e. g. Greenwell et al. [1973]) that hereditary graph
classes are exactly those classes that can be characterized by a set of forbidden
subgraphs. Sometimes this set is finite (for example, trivially perfect graphs
are graphs that do not contain a P4 or C4), and sometimes it is infinite (for
example for cycle-free graphs). If we have a finite characterization by forbidden
subgraphs, then we can solve both the vertex- and the edge-deletion problem
by a simple search tree algorithm: Find a forbidden subgraph, and branch
into a number of cases corresponding to deleting a vertex or an edge of this
subgraph. Cai [1996] showed that this even works when we do not know the
set of forbidden subgraphs, but only that it is finite. Therefore, all vertex- and
edge-deletion problems that can be characterized by a finite set of forbidden
subgraphs are in FPT. For hereditary graph classes that require an infinite
number of forbidden subgraphs, no such simple characterization is known. Khot
and Raman [2002] provide a complete characterization of problems that are in
FPT for the parametric dual of graph modification for hereditary graph classes
(that is, finding a subgraph or induced subgraph of size at least k that belongs
to a certain hereditary graph class).

For vertex deletion problems, strong hardness results for approximation
are also known: Lund and Yannakakis [1993] showed that any vertex deletion
problem for a nontrivial hereditary graph class is MaxSNP-hard. They even con-
jecture that problems that require an infinite forbidden subgraph characterization
do not have a constant approximation factor.

Graph modification problems we deal with in this work are Edge Bipartiza-
tion, Balanced Subgraph, and Vertex Bipartization, which are introduced
in-depth in Section 2.3. We further examine Cluster Vertex Deletion (Sec-
tion 4.3) and Feedback Vertex Set in tournaments (Section 4.4).

2.2 Clique Cover

The Clique Cover problem is a fundamental graph problem that occurs in many
contexts and applications. It is also known as Keyword Conflict problem
[Kellerman 1973] or Covering by Cliques (GT17) or Intersection Graph Basis

(GT59) [Garey and Johnson 1979].

2.2 Clique Cover 15

Clique Cover

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Is there a set of at most k cliques in G such that each edge
in E has both its endpoints in at least one of the selected cliques?

We remark that covering vertices by cliques (Vertex Clique Cover or Clique

Partition) is of less interest to be studied on its own because it is equivalent to
the well-investigated Graph Coloring problem: A graph has a vertex clique
cover of size k iff its complement graph can be colored with k colors such that
adjacent vertices have different colors. The variant of Clique Cover where it is
required that the covering cliques are edge disjoint has also been examined in
the parameterized context [Mujuni and Rosamond 2008].

As first observed by Erdős et al. [1966], Clique Cover is equivalent to a
problem from intersection graph theory (see McKee and McMorris [1999] for
a monograph on intersection graphs). Let F = {S1, . . . ,Sn} be a family of sets.
The intersection graph of F, denoted Ω(F), is the graph having F as vertex set
with Si adjacent to Sj iff i 6= j and Si ∩ Sj 6= ∅. It is easy to see that for every
feature x ∈ U(F) :=

⋃
S∈F S, the set Cx := {Si ∈ F | x ∈ Si} forms a clique in Ω(F),

and {Cx | x ∈ U(F)} is a clique cover for Ω(F). Therefore, finding a minimum
cardinality clique cover for a graph G is equivalent to finding a set intersection
representation F for G that minimizes |U(F)| (called Intersection Graph Basis

by Garey and Johnson [1979]). Guillaume and Latapy [2004] argue that this
model is very widely applicable to discover underlying structure in complex
real-world networks.

Hardness and approximation. Clique Cover is NP-hard [Orlin 1977], even
when restricted to planar graphs [Chang and Müller 2001] or graphs with
maximum degree 6 [Hoover 1992]. Further, Clique Cover is not approx-
imable within a factor of nε for some ε > 0 unless P = NP [Lund and Yan-
nakakis 1994], and nothing better than a polynomial approximation factor of
O(n2(log logn)2/(logn)3) is known [Ausiello et al. 1999].

Special cases. Clique Cover is polynomial-time solvable for chordal graphs
[Ma et al. 1989] (a chordal graph has at most n maximal cliques), graphs with
maximum degree 5 [Hoover 1992], line graphs [Orlin 1977], and circular arc
graphs [Hsu and Tsai 1991].

Experimental results. There has been substantial work on polynomial-time
heuristic algorithms for Clique Cover [Kellerman 1973, Kou et al. 1978, Ra-
jagopalan et al. 2000, Piepho 2004, Gramm et al. 2007b, Behrisch and Taraz
2006]. Most of these provided no quality guarantees; one exception is Behrisch

16 2 Problems

and Taraz [2006], who gave simple greedy algorithms for Clique Cover that
provide asymptotically optimal solutions for certain random intersection graphs.
Rajagopalan et al. [2000] compared a heuristic [Kou et al. 1978] and an exact
approach using graph coloring software.

Applications. Applications of Clique Cover include compact representation
of visibility graphs [Agarwal et al. 1994] and circuit synthesis [Khomenko 2007].
It also has several applications in compiler construction, for example as Keyword

Conflict problem [Kou et al. 1978], for optimal placement of synchronization
barriers [O’Boyle and Stöhr 2002], and for instruction scheduling [Rajagopalan
et al. 2000, 2001].

We now look closer at an application from statistics visualization [Piepho
2004], which will also play a role in our experiments in Section 3.1.3. Consider
for example a series of crop yield trials, each under different conditions. We can
use multiple pairwise comparisons to classify each pair of trials as significantly
different (for example, if the mean of the yield differs by more than a threshold
value) or not significantly different. The task is now to represent these O(n2)
comparisons for n trials compactly.

The letter display was suggested by Piepho [2004] as a generally applicable
method for displaying significant differences. For a given set of n trials and a
set H of m pairwise comparisons, where {Ti, Tj} ∈ H iff the trials Ti and Tj are
significantly different, a letter display is a matrix M with n rows, one row for
each trial, which satisfies the following three conditions:

1. Each column contains a different letter and all non-empty entries of one
column contain the same letter.

2. Every row has at least one non-empty entry.

3. Two trials differ significantly iff the corresponding two rows of M contain
no common letter.

Since by the first condition, the actual letter used is completely determined
by the column, we can simplify the task somewhat by thinking of M as a binary
matrix.

Clearly, it is always possible to find a letter display by creating a new column
with two letters for each pair of not significantly different trials. However,
displays created this way may get very large; they can have Ω(n2) columns. To
be useful, we want to minimize the number of columns, which gives rise to the
following problem.

2.2 Clique Cover 17

1 ×
2 ×
3 ×
4 × ×
5 × ×
6 × ×
7 × ×
8 ×

1

2

3

4

5

6

7

8

Figure 2.1: Equivalence of Compact Letter Display and Clique Cover for H =
{{1, 2},{1, 5},{1, 7},{1, 8},{2, 3},{2, 4},{2, 6},{2, 8},{3, 5},{3, 7},{3, 8},{4, 7},{4, 8},{5, 6},{5, 8}}.

Compact Letter Display

Instance: A set T of trials, a set H of pairs of trials, that is, H ⊆ {{t1, t2} |

t1, t2 ∈ T }, which gives the pairs of significantly different trials, and an
integer k > 0.
Question: Is there a letter display for T and H that uses at most k
columns?

In Figure 2.1, we illustrate that Compact Letter Display and Clique Cover

are in fact equivalent, in the sense that trivial reductions in both directions exist.
For this, we establish the following correspondences between a Compact Letter

Display instance and a Clique Cover instance:

• Trials or rows of the letter display correspond to graph vertices;

• Pairs of not significantly different trials correspond to edges, that is, the
elements of H correspond to non-edges;

• Letter display columns correspond to cliques in the clique cover.

For example, trials 5 and 7 occur together in the fourth column of the letter
display; this means that they are not significantly different, and there is an edge
between them in the corresponding Clique Cover instance. In contrast, trials 4
and 7 do not occur together in a column, are thus significantly different, and are
not connected by an edge in the Clique Cover instance.

It is then not too hard to see that, with these correspondences, a solution
for Clique Cover implies a solution of the same size for the corresponding
Compact Letter Display instance, and vice versa. Special handling is only
required for trials significantly different from all other trials (corresponding to
vertices with no edges attached): they require a letter display column, but no
clique is needed to cover them in the given problem formulation. This is easily
accounted for by a straightforward preprocessing step.

18 2 Problems

2.3 Bipartization and Balanced Subgraph

In this section, we introduce the Edge Bipartization problem and its generaliza-
tion Balanced Subgraph. We further examine the variant Vertex Bipartization.
These problems have many applications in areas such as computational biology,
social networks, statistical physics, and VLSI design.

2.3.1 Edge Bipartization

We start with the Edge Bipartization problem, also known as (unweighted)
Minimum Uncut.

Edge Bipartization

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k edge deletions into a
bipartite graph?

Edge Bipartization is the parametric dual of the better known MaxCut

problem (that is, they can be transferred into each other by replacing the param-
eter k by m− k).

MaxCut

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Does G have a cut of size at least k?

Let an edge bipartization set be a set of edges whose deletion makes a graph bi-
partite. Then G has an edge bipartization set of size k iff G has a cut of sizem−k,
and the sets can be transformed into each other by taking the complement with
respect to E. Thus, as decision questions, these problems are equivalent. How-
ever, when considering parameterized complexity or approximation algorithms,
we have to differentiate between the two problems.

Hardness and approximation. Edge Bipartization is one of the 21 problems
for which NP-hardness was first shown by reduction [Karp 1972]. It remains
NP-hard even in triangle-free graphs with maximum degree 3 [Yannakakis 1981].
The problem is known to be MaxSNP-hard [Papadimitriou and Yannakakis
1991] and can be approximated to a factor of O(

√
logn) in polynomial time

[Agarwal et al. 2005]. Another approximation algorithm finds in polynomial
time a solution of size O(k logk), where k is the size of an optimal solution
[Avidor and Langberg 2007]. Assuming Khot’s Unique Games Conjecture, it is
NP-hard to approximate Edge Bipartization within any constant factor [Khot
2002]. For MaxCut, much better guarantees exist: by semidefinite programming,

2.3 Bipartization and Balanced Subgraph 19

it can be approximated by a factor of 0.878 [Goemans and Williamson 1995],
although it is NP-hard to improve this to a factor of 0.942 [Håstad 2001]; in fact,
it has been conjectured that the factor cannot be improved at all [Khot et al.
2007].

Special cases. In planar graphs, Edge Bipartization is solvable in polynomial
time [Orlova and Dorfman 1972, Hadlock 1975]; however, it is NP-hard in
planar graphs with only a single vertex added [Barahona 1980]. Further, it is
polynomially solvable in weakly bipartite graphs [Grötschel and Pulleyblank 1981],
which comprise bipartite graphs and planar graphs. Weakly bipartite graphs
can be characterized as graphs that do not contain a K5 as minor [Guenin 2001].
Edge Bipartization can further be solved in polynomial time for graphs with
any fixed bounded genus [Galluccio et al. 2001], and it can be solved in O(n4c)
time for graphs where the length of odd cycles is bounded by 2c+ 1 [Grötschel
and Nemhauser 1984]. Bodlaender and Jansen [2000] examined a number of
further graph classes and showed for example that Edge Bipartization is
NP-hard in chordal graphs and split graphs, but polynomial-time solvable in
bounded-treewidth graphs and cographs. Bodlaender et al. [2005] showed that
Edge Bipartization is polynomial-time solvable in split-indifference graphs
and graphs with few P4’s. Finally, Dı́az and Kamiński [2007] proved that Edge

Bipartization is NP-hard in unit disk graphs.

Parameterized complexity. Edge Bipartization is a graph modification prob-
lem for a hereditary graph class, but the set of forbidden subgraphs (which by
Lemma 1.1 contains all odd cycles) is infinite. Therefore, it is not immediately
clear that Edge Bipartization is fixed-parameter tractable. The parametric dual
problem MaxCut is in FPT; the best currently known algorithm [Raman and
Saurabh 2007] runs in 1.242knO(1) time. The fact that MaxCut is in FPT might
have suggested that Edge Bipartization is not, since this is often observed for
parametrically dual problems [Khot and Raman 2002]. However, based on the
iterative compression technique, Reed et al. [2004] presented a fixed-parameter
algorithm for the closely related Vertex Bipartization problem, introduced
below. Together with a simple parameter-preserving reduction from Edge Bipar-
tization to Vertex Bipartization [Wernicke 2003], one can use the algorithm
by Reed et al. [2004] to obtain a running time of O(3k · k3m2n) for Edge Bipar-
tization, thus proving that Edge Bipartization is fixed-parameter tractable.
In Section 4.5, we show how to improve this to O(2k ·m2) time, also using an
iterative compression algorithm.

20 2 Problems

Exact algorithms. Williams [2005] presented an exact algorithm for Edge Bi-
partization, which can solve an instance in O(1.732nm3) time, the first improve-
ment for the exponential part over the trivial O(2nm) algorithm. Unfortunately,
this algorithm requires exponential space, and is thus probably unusable in prac-
tice; no polynomial-space algorithm improving over the trivial bound is known.
There has also been some work regarding sparse instances, that is, instances
with few edges. Kneis et al. [2005] give an algorithm running in 1.128mmO(1)

time with exponential space or 1.143mmO(1) with polynomial space (see also
Scott and Sorkin [2007], who point out some errors of Kneis et al. [2005]).

Applications. The problem has applications in genome sequence assembly
[Pop et al. 2004], VLSI chip design [Barahona et al. 1988, Kahng et al. 2001], or
the calculation of the stability of fullerene molecules [Došlić and Vukičević 2007].

Experimental results. Possibly the most common practical approach to exactly
solving Edge Bipartization (or MaxCut) is to use mathematical program-
ming techniques. In this context, usually the weighted version is considered.
Barahona et al. [1985] examine the polytope of the maximum-weight bipartite
subgraph. Grötschel et al. [1987] present some experimental results using poly-
tope approaches. More recently, Liers et al. [2004] describe a solution using
branch & cut, and Rendl et al. [2007] present a MaxCut implementation based
on branch & bound and the semidefinite relaxation.

A large number of heuristics without solution quality guarantees, such as
genetic algorithms, have also been suggested; see e. g. Dolezal et al. [1999] and
Festa et al. [2002] for experimental comparative studies.

2.3.2 Balanced Subgraph

The Balanced Subgraph problem is a generalization of Edge Bipartization.
It is defined on signed graphs, which are undirected graphs where each edge is
annotated with an element of the sign group (that is, the unique two-element
group, which can for example be denoted by the two elements 0 and 1 and the
binary operation a ◦ b := (a+ b) mod 2). The concept of signed graphs has been
introduced first by Harary [1953] in the context of social networks, and has been
rediscovered frequently since, as it is a natural model for many applications; see
Zaslavsky [1998] for a bibliography of signed graphs. The central concept is that
of a balanced signed graph.

Definition 2.1. A signed graph G = (V ,E) with edges labeled by h : E → {0, 1} is

2.3 Bipartization and Balanced Subgraph 21

balanced if there is a vertex coloring f : V → {0, 1} such that

∀{u, v} ∈ E : h({u, v}) ≡ (f(u) + f(v)) (mod 2). (2.1)

Put another way, a 0-edge demands that its endpoints have the same color,
and a 1-edge demands that they have different colors. Therefore, in the following
we use the notations “=-edge” and “ 6=-edge” instead. Let further E= be the set
of =-edges and E6= the set of 6=-edges.

Balanced graphs generalize bipartite graphs, since bipartite graphs are bal-
anced graphs that contain only 6=-edges. Kőnig [1936] proved the following
characterization of balanced graphs (in fact, the well-known characterization of
bipartite graphs (Lemma 1.1) is only a corollary of this result).

Lemma 2.1. For a graph G = (V ,E), the following are equivalent:

1. G is balanced, that is, V can be partitioned into two sets V1 and V2 called sides
such that there is no 6=-edge {v,w} ∈ E with both v,w ∈ V1 or both v,w ∈ V2
and no =-edge {v,w} with v ∈ V1 and w ∈ V2.

2. V can be colored with two colors such that for all {v,w} ∈ E6= the vertices v
and w have different colors, and for all {v,w} ∈ E= the vertices v and w have the
same color. The color classes correspond to the sides.

3. G does not contain unbalanced cycles, that is, cycles with an odd number of
6=-edges.

Using the characterization by a coloring, it is easy to see that balance of a
signed graph can be checked in linear time by depth-first search. The Balanced

Subgraph problem is now defined as follows:

Balanced Subgraph

Instance: A signed graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k edge deletions into a
balanced graph?

Clearly, Balanced Subgraph is a generalization of Edge Bipartization and
thus NP-hardness and approximation hardness results carry over. Moreover,
there is a simple reduction from Balanced Subgraph to Edge Bipartization,
which allows us to transfer some tractability results from Edge Bipartization.
For this, we subdivide each =-edge by one vertex (see Figure 2.2):

Graph Transformation 2.1. Given a signed graph G = (V ,E), construct G ′ =
(V ′,E ′) with V ′ := V ∪ E= and E ′ := E \ E= ∪ {{v, e}, {e,w} | e = {v,w} ∈ E=}.

Proposition 2.1. A Balanced Subgraph instance can be solved with k edge deletions
iff the transformed Edge Bipartization instance can be solved with k edge deletions.

22 2 Problems

=

=

=

6=
6=

6=
6=

6=
6=

(a) (b)

Figure 2.2: Example for reducing Balanced Subgraph to Edge Bipartization.
Colors serve to indicate that the graph is balanced (a) resp. bipartite (b).

Proof. Let X be a solution of the Balanced Subgraph instance G = (V ,E)
with |X| = k and c a balanced coloring of G \ X. Then let c ′ be a coloring
for the transformed instance where the vertices from V have the same color
as in c and newly introduced vertices have the opposite color of both of their
two neighbors (this is well-defined because the new vertices subdivide =-edges,
whose endpoints must be colored equally by c). Then there are at most k edges
whose endpoints are colored equally by c ′, since that can only happen for edges
in X.

Similarly, let X be a solution of Edge Bipartization on the transformed
instance with |X| = k and c a two-coloring of G \X. Then c|V (that is, c restricted
to V) has at most k conflicts with the signs of G, since a conflict can only occur
when a 6=-edge was deleted in X or one of the two edges that replaced a =-edge
was deleted.

From Proposition 2.1, we obtain the fixed-parameter tractability of Balanced

Subgraph, and obtain the same approximation factors as for Edge Bipartiza-
tion. With respect to the maximization variant, we can, however, not directly
obtain the same approximation factor of 0.878 as for MaxCut [Goemans and
Williamson 1995], since the number of edges might double. However, it was
shown by Thagard and Verbeurgt [1998] and independently by DasGupta et al.
[2007] that the semidefinite programming of Goemans and Williamson [1995]
can be adapted to Balanced Subgraph without impairing the approximation
factor. Balanced Subgraph is also polynomial-time solvable in planar graphs
and weakly bipartite graphs, since these classes are closed under Graph Trans-
formation 2.1.

Applications. Balanced Subgraph has a large number of applications. One
of the oldest is in modeling social networks [Harary 1959]. Here, an =-edge
models a positive or friendly connection, a 6=-edge models a negative or un-

2.3 Bipartization and Balanced Subgraph 23

GB

GBGBGB

GBGBAH

AHAHAH

AHAH

G

GGG

GG

I

III

IIR

RRR

RR

F

FFF

FF

Three emperor’s league 1872–81 Triple alliance 1882 German–Russian lapse 1890

French–Russian alliance 1891–94 Entente cordiale 1904 British–Russian alliance 1907

Figure 2.3: Evolution of the major relationship changes from 1872 to 1907
between the protagonists of World War I. Here, GB = Great Britain, AH =
Austria–Hungary, G = Germany, I = Italy, R = Russia, and F = France. Solid lines
denote friendly links and dashed lines unfriendly links. From Antal et al. [2006].

friendly connection, and a non-edge a neutral connection or lack of contact.
The conjecture is that changes in social networks can be explained by a striving
towards balance in this signed graph. The number of edge deletions required to
obtain a balanced graph is then a measure of the distance from stabiblity. An
example is given by Antal et al. [2006] for the relations between nations prior
to World War I (see Figure 2.3). The claim is that a number of events gradually
led to a reorganization of the relations between European nations into a socially
balanced state. Clearly, this model is not perfect, though: it cannot explain
why Italy actually fought on the side of the Entente Powers that include Russia,
France, and the British Empire.

Another application in bioinformatics will be central to our experiments in
Section 3.2.4. DasGupta et al. [2007] used balance in signed graphs to model
the concept of “monotone subsystems”, under the name of “sign-consistent
graphs”. They examine dynamic systems, where an activating connection is
modeled as an =-edge and an inhibiting connection is modeled as a 6=-edge. The
claim is that biological dynamical systems are close to being balanced, and that
finding a minimum set of edges to delete to make the graph balanced can be
used to decompose the graph into “monotone subsystems”, which exhibit stable
behavior and thus allow a better understanding of the dynamics of a system.

Further applications of Balanced Subgraph appear in statistical physics
[Barahona 1982], portfolio risk analysis [Harary et al. 2002], and VLSI design

24 2 Problems

[Chiang et al. 2007].

Experimental results. Similar to Edge Bipartization, polyhedral approaches
have been used for Balanced Subgraph [Barahona and Ridha Mahjoub 1989,
Boros and Hammer 1991], which also cover the weighted case. DasGupta
et al. [2007] implemented the semidefinite programming based approximation
algorithm.

2.3.3 Vertex Bipartization

Vertex Bipartization, also known as Graph Bipartization, Maximum Bi-
partite Induced Subgraph or Odd Cycle Transversal, is the vertex deletion
version of Edge Bipartization. It has been noted (e. g. by Yannakakis [1981]) that
vertex-deletion problems tend to be computationally harder than edge-deletion
problems. It turns out this is true on several counts here.

Vertex Bipartization

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k vertex deletions into a
bipartite graph?

Hardness and approximation. By the general results on vertex deletion prob-
lems for hereditary graph properties (Section 2.1), Vertex Bipartization is
NP-hard [Lewis and Yannakakis 1980] and MaxSNP-hard [Lund and Yannakakis
1993]. The best known approximation is by a factor of O(logn) [Garg et al. 1994].

Special cases and variants. Unlike Edge Bipartization, Vertex Bipartiza-
tion remains NP-hard in planar graphs (even if the maximum degree is 4
[Choi et al. 1989]), although it can be approximated within 9/4 [Goemans and
Williamson 1998]. It is equivalent to the edge-deletion version in graphs with
maximum degree 3 [Choi et al. 1989]; thus, for example, it can be solved in
polynomial-time in planar graphs with maximum degree 3, but remains NP-hard
in triangle-free graphs with maximum degree 3. Cornaz and Ridha Mahjoub
[2007] give polyhedral results for the variant where the edges are weighted, that
is, one wants to find an induced bipartite subgraph with maximum total edge
weight.

Parameterized complexity. In a breakthrough paper, Reed et al. [2004] proved
that Vertex Bipartization is solvable by iterative compression in O(4k · kmn)
time, where k is the number of vertices to delete. This is an important theoretical

2.4 Minimum-Weight Path 25

result, since it implies fixed-parameter tractability for Vertex Bipartization

with respect to k, which was posed as an open question more than five years
earlier [Mahajan and Raman 1999]. Raman et al. [2007] gave an algorithm
running in O(1.62n) time. From a general result by Khot and Raman [2002], it
follows that the parametric dual of Vertex Bipartization, that is, the question
whether a graph has a bipartite induced subgraph with at least k vertices, is
W[1]-hard.

Applications. An application for Vertex Bipartization is in register allocation
for processors that, to save wiring, have their register set divided into two banks
and require the two operands of an instruction to reside in different banks
[Zhuang and Pande 2003]. Conflicts are modeled by a graph where vertices
correspond to operands and edges connect operands that occur together in an
instruction. A minimum graph bipartization set then yields the minimum size
set of operands that have to be copied into both banks to be able to execute the
code.

Another application originates from computational biology. To determine
gene sequences, for technical reasons the DNA is first broken into small frag-
ments (shotgun sequencing), from which the original sequence is reconstructed
by computer. This is complicated by the fact that each gene occurs twice in the
human genome. The two copies are mostly identical, but differ at certain sites
(so-called SNPs). Given a set of gene fragments, the problem of assigning the
fragments to one of these two copies in a consistent manner while dismissing
the least number of SNPs as erroneous is called the Minimum Site Removal

problem [Panconesi and Sozio 2004, Zhang et al. 2006]. The Minimum Site

Removal problem can be solved using Vertex Bipartization algorithms. We
evaluate algorithms in this setting with synthetic data in Section 4.6.3.1.

Further applications appear in VLSI design [Choi et al. 1989, Kahng et al.
2001], linear programming [Gülpinar et al. 2004], computational biology [Rizzi
et al. 2002], and RFID (radio-frequency identification) reader networks [Deola-
likar et al. 2006].

Experimental results. Fouilhoux and Ridha Mahjoub [2006] give polyhedral
method based results for Vertex Bipartization and present computational
results based on branch & bound.

2.4 Minimum-Weight Path

Minimum-Weight Path is the central problem in Chapter 5, which deals with
the color-coding technique. Given an edge-weighted graph and an integer k,

26 2 Problems

the Minimum-Weight Path asks for a simple (non-crossing) path of k vertices
with minimum weight. It is thus a generalization of the well-known NP-hard
Longest Path problem. One motivation to study Minimum-Weight Path comes
from the investigation of protein interaction networks. Proteins participate in
almost every process within the cell, in particular in signaling mechanisms.
Understanding protein interactions is central to understanding the workings
of the cell and can give guidance in developing drugs. A protein interaction
network is a graph that models the way proteins interact: a vertex corresponds
to a protein, and an edge is present if the two corresponding proteins are known
to interact. Since the experimental methods used to determine this are unreliable,
edges are usually annotated with a real number between 0 and 1 that can be
interpreted as the probability that these proteins do actually interact [Suthram
et al. 2006].

Large, high-quality protein interaction networks have only recently become
available [Bader et al. 2003, von Mering et al. 2002]. A Human Interactome
Project [Ideker and Valencia 2006], analogous to the Human Genome Project,
has been initiated with the aim to produce a comprehensive human protein
interaction network. Various approaches have been proposed to data-mine these
networks for biologically meaningful substructures. A special role—with respect
to both biological meaning as well as algorithmic tractability—is played by
the most simple structures, namely linear pathways; in graph terms, these are
simple paths, that is, paths where no vertex can occur more than once. Linear
pathways are easy to understand and analyze and can serve as a seed structure
for experimental investigation of more complex mechanisms [Ideker et al. 2001].

Initiated by Steffen et al. [2002], there have been efforts to design algorithms
for the automated discovery of linear pathways in protein interaction networks.
Scott et al. [2006] demonstrated that high-scoring simple paths in a protein interac-
tion network are plausible candidates for linear signal transduction pathways,
where high-scoring means that the product of interaction probabilities p is maxi-
mized. For easier handling, we will work with the weight w(e) := − logp(e) of
the edges, such that the goal is to minimize the sum of weights for the edges
of a path. To make the finding of signaling pathway candidates algorithmically
feasible and biologically meaningful, the number of vertices that these paths
contain is restricted by some reasonably small integer k. Formally stated, the
NP-hard problem that needs to be solved in order to find minimum-weight
simple paths thus is the following:

2.4 Minimum-Weight Path 27

Minimum-Weight Path

Instance: An undirected graph G = (V ,E) with edges weighted by w :
E→ Q+ and an integer k > 0.
Task: Find a simple path v1, . . . , vk of k vertices with minimum weight,
that is, that minimizes

∑k−1
i=1 w({vi, vi+1}).

Hardness and approximation. Minimum-Weight Path is the weighted gen-
eralization of Longest Path, that is, the question whether a graph contains
a simple path of length k. Longest Path is a classic NP-hard problem. It is
NP-hard because for k = n, it is equivalent to Hamiltonian Path. Moreover,
even finding a constant factor approximation is NP-hard [Karger et al. 1997]. The
best known approximations are by Gabow [2007] and by Feder and Motwani
[2005]. They find in a graph with longest path length k in polynomial time a
path of length exp(

√
logk/ log logk) and k1/(log(n/k)+log logn), respectively.

Parameterized and exact algorithms. Many algorithms for Longest Path, in
particular those using dynamic programming, can be adapted for Minimum-
Weight Path. The best known exact (not parameterized) algorithm is a dynamic
programming based approach due to Bellman [1962] and also Held and Karp
[1962] which runs in O(n22n). Plehn and Voigt [1990] gave an algorithm running
in O((kO(k)nω+1) time, where ω is the treewidth of the graph.

Monien [1985] gave the first fixed-parameter algorithm with a running time
of O(k!nm). Bodlaender [1993] gave an algorithm running in O(2kk!n) time
using dynamic programming. Introducing the color-coding method, Alon et al.
[1995] presented an algorithm solving Minimum-Weight Path in O(5.44km)
time with high probability. The method can be derandomized; the best known
derandomization by Chen et al. [2007b] yields an O(17.4km) time algorithm.
In Section 5.3.1, we show how to speed up the randomized version to achieve
an O(4.32km) time bound.

Recently, two groups [Kneis et al. 2006, Chen et al. 2007b] independently de-
veloped a randomized algorithm inspired by color-coding based on a technique
termed “divide-and-color” and running in O(4kk3.42m) time. This technique can
be derandomized, yielding an O(4k+o(k)m) bound. Thus, with 4k compared
to 4.32k, currently the divide-and-color method has a better exponential bound
of the running time. However, a disadvantage of this technique is that 4k is also
a lower bound on the running time, in the sense that it seems hard to exploit
the particular structure of instances (e. g., sparseness) to get a lower running
time in practice. In contrast, the running times we observed for color-coding
with the improvements from Section 5.3 typically remained much below the
worst-case bound, often by several orders of magnitude. Therefore, implement-

28 2 Problems

ing divide-and-color unmodified seems unlikely to yield faster algorithms in
practice. In fact, Lu et al. [2007] reported on their implementation: “[. . .] we did
not observe significant improvements in actual running time when compared
with the previous approaches” (referring to Steffen et al. [2002] and Scott et al.
[2006]).

Since Minimum-Weight Path is MaxSNP-hard, an exact 2o(k)nO(1) time
algorithm would imply that 3-SAT with n variables, and many other problems,
can be solved in 2o(n) time [Cai and Juedes 2003], a result that is considered
very hard to achieve, if possible at all.

A “hybrid algorithm” was given by Vassilevska et al. [2006], which for
any (constructible) function l(n) ∈ o(n) always either produces a longest path
in O(m+ n2l(n)l(n)!) time, or an l(n) node path in linear time.

Further application. Besides the described application for finding signaling
pathways, Minimum-Weight Path has found different applications. Deshpande
et al. [2007] are concerned with the task of automatically generating headlines
for texts. The assumption is that no semantic information is available; therefore,
the headline is generated by selecting and ordering words from the input text.
This is modeled by a vertex- and edge-weighted graph, where vertices are words
and edges represent pairwise ordering preferences. The desired solution is a
maximum-weight acyclic path of a prespecified length. Acyclicity is important,
because no words should be repeated in the headline. By converting vertex
weights to edge weights, this can easily be reduced to Minimum-Weight Path.

Chapter 3

Data reduction

Data reduction, also known as polynomial-time preprocessing, is a classic ap-
proach for dealing with NP-hard combinatorial optimization problems (see Guo
and Niedermeier [2007] for a recent survey). The idea is to remove redundant
parts of the input, thereby obtaining a hard “core” of the instance. Costly algo-
rithms need then only be applied to this core. Consider for example the Vertex

Cover problem, which asks for a minimum number of vertices to delete to get
rid of all edges. In an instance, we can clearly omit all degree-0 vertices. Further,
if we encounter a degree-1 vertex v, we can safely delete its neighbor w, since
either v or w need to be deleted to cover the edge {v,w}, and taking w will cover
potentially more edges than taking v.

More formally, a (data) reduction rule replaces in polynomial time a given
problem instance I by an instance I ′ with |I ′| < |I| such that I has a solution iff
I ′ has a solution. An instance to which none of a given set of reduction rules
applies is called reduced with respect to these rules.

Data reduction has provided a number of success stories. For example, Bixby
[2002] mentioned a large linear program that can be solved in half an hour
when data reduction is employed, but is “far from even being feasible” for the
unreduced instance even after hours of computation. Another account of the
power of data reduction was given by Weihe [1998], where in the context of the
European railroad network two simple data reduction rules allow an NP-hard
problem to be solved in mere minutes for a graph consisting of more than 160 000
vertices and 1 600 000 edges.

Some data reductions rules are very simple and readily discovered by every-
body tackling a problem. Others are hidden gems that require deeper digging
and insight into a problem’s combinatorial structure. Once an effective (and
efficient) reduction rule has been found, however, it is useful in virtually any

29

30 3 Data reduction

problem solving context, whether it be heuristic, approximative, or exact.
Data reduction for hard problems was usually seen as a heuristic task, because

in the classic one-dimensional complexity analysis, nothing can be proved about
the quality of data reduction; this is because even the smallest provable data
reduction would, by repetition, imply polynomial-time solvability of the instance
and thus P = NP. Parameterized complexity, however, provides a useful notion
of the power of data reduction with the concept of a problem kernel.

Definition 3.1. Let L be a parameterized problem. A reduction to a problem kernel
or kernelization is a transformation of an instance (x,k) to an instance (x ′,k ′), such
that

• (x,k) ∈ L ⇐⇒ (x ′,k ′) ∈ L,

• |x ′| 6 g(k) for some arbitrary computable function g depending only on k,

• k ′ 6 k, and

• the transformation runs in polynomial time.

In other words, a kernelization is a data reduction rule that creates an instance
whose size depends only on the parameter k, and not on the original input
size n anymore. As an example, consider again the Vertex Cover problem, this
time in a parameterized context, where we are also given the maximum number
of deletions as parameter k. If now there is a vertex of degree at least k+ 1, then
we can immediately delete it, because otherwise, we would have to delete all
of its k+ 1 neighbors, which is already too many. If we use this data reduction
rule exhaustively, then no vertex in the remaining graph has a degree higher
than k, meaning that choosing a vertex into the cover can cause at most k edges
to become covered. Since the solution set may be no larger than k, the remaining
graph can have at most k2 edges if it is to have a solution. By the rules dealing
with degree-0 and degree-1 vertices, every vertex has degree at least two, which
implies that the remaining graph can contain at most k2 vertices. Thus, we have
found an O(k2)-size kernel for Vertex Cover.

The notion of kernels opens the door to a fruitful dialog between practitioners
and theoreticians: kernelizations can explain, and prove, why rules work so
well in practice; and the quest for kernelizations can lead to new and powerful
data reduction rules based on deep structural insights. Note that even if the
parameter is not small, reduction rules can still be useful, since they run in
polynomial time.

The connection between fixed-parameter tractability and existence of a prob-
lem kernel is in fact very immediate: they are the same.

3.1 Data reduction for Clique Cover 31

Theorem 3.1 (Cai et al. [1997]). Every problem that is fixed-parameter tractable is
kernelizable and vice versa.

Unfortunately, the practical use of this theorem is limited: the running time
of a fixed-parameter algorithm directly obtained from a kernelization is usually
not practical; and, in the other direction, the theorem does not constructively
provide us with a data reduction for a fixed-parameter tractable problem. Hence,
the main use of Theorem 3.1 is to establish the fixed-parameter tractability or
amenability to kernelization of a problem—or to show that we need not search
any further (e. g., if a problem is known to be fixed-parameter intractable, we do
not need to look for a kernelization).

One success story for kernelization is Dominating Set, the task of finding a
minimum subset D of vertices in a graph such that each vertex is in D or has
at least one neighbor in D. For the case that the input graph is planar, Alber
et al. [2004] gave a linear-size problem kernel, where the parameter is the size
of a dominating set D. Alber et al. [2006] showed that the corresponding data
reduction rules work well on real-world instances (including non-planar ones),
in many cases reducing 99 % or even all of the vertices of the input graph. As
another example, Abu-Khzam et al. [2004a] and Abu-Khzam et al. [2007] studied
various kernelization schemes for Vertex Cover and demonstrated large savings
for data from computational biology.

The use of data reduction techniques is not restricted to a preprocessing
phase; there is empirical as well as theoretical evidence that interleaving data
reduction techniques with the main problem solving algorithm can yield signifi-
cant speedups [Niedermeier and Rossmanith 2000]. We employ interleaving for
Clique Cover in Section 3.1.2.

3.1 Data reduction for Clique Cover

The Clique Cover problem was introduced and motivated in Section 2.2. We
recall its definition:

Clique Cover

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Is there a set of at most k cliques in G such that each edge
in E has both its endpoints in at least one of the selected cliques?

First, as our main algorithmic contribution, we introduce and analyze data
reduction techniques for Clique Cover. As a side effect, we provide a problem
kernel for Clique Cover, showing—somewhat surprisingly—that the problem
is fixed-parameter tractable with respect to the parameter k. We continue with
describing an exact algorithm based on a search tree. For our experimental

32 3 Data reduction

investigations, we combined our data reduction rules with the search tree,
clearly outperforming heuristic algorithms [Kellerman 1973, Kou et al. 1978] in
several ways. For instance, we can solve real-world instances from a statistical
application—so far solved heuristically [Piepho 2004]—optimally without time
loss. This indicates that for a significant fraction of real-world instances our
exact approach is clearly to be preferred to a heuristic approach that is without
guaranteed solution quality. We also experimented with random graphs of
different densities, showing that our exact approach works extremely well for
sparse graphs. In addition, our empirical results reveal that for dense graphs a
data reduction rule that was designed for showing the problem kernel is often
useful. In particular, this gives strong empirical support for further theoretical
studies in the direction of improved fixed-parameter tractability results for
Clique Cover, nicely demonstrating a fruitful interchange between applied and
theoretical algorithmic research.

We formulate reduction rules for a generalized version of Clique Cover in
which already some edges may be marked as “covered”. Then, the question is
to find a clique cover of size k that covers all uncovered edges. Clearly, Clique

Cover is the special case of this annotated version where no edge is marked as
covered.

We start by describing an initialization routine that sets up auxiliary data
structures once at the beginning of the algorithm such that the many applications
of Rule 3.2 (defined below) become cheaper in terms of running time. Moreover,
the data structures initialized here are also used by the exact algorithm proposed
in Section 3.1.2. From the reduction rules below, only Rule 3.1 updates these
auxiliary data structures.

Initialization. We inspect every edge {u, v} of the original graph. We use two
auxiliary variables: We compute a set N{u,v} of u and v’s common neighbors,
and we determine whether the vertices in N{u,v} induce a clique. More pre-
cisely, we compute a positive integer c{u,v}, which denotes the number of edges
interconnecting the vertices of N{u,v}.

Lemma 3.1. The proposed initialization can be done in O(m2) time.

Proof. For an edge {u, v}, we compute N{u,v} in O(n) time. Computing c{u,v} can
be done in O(m) time. Doing this for all edges requires O(m2) time in total.

3.1.1 Data reduction rules

We start the presentation of data reduction rules with a trivial rule removing
isolated elements.

3.1 Data reduction for Clique Cover 33

Reduction Rule 3.1. Remove isolated vertices and vertices that are only incident to
covered edges.

Lemma 3.2. Every application of Rule 3.1 including the update of auxiliary variables
can be executed in O(nm) time.

Proof. The applicability of Rule 3.1 can be checked in O(m+ n) time. Notably,
after removing a vertex, Rule 3.1 requires an update of the data structures
provided by the initialization. For one removed vertex v, we have to adjust
the sets N{u,w} and counters c{u,w} for all adjacent neighbors u and w of v.
For an edge {u,w} with v ∈ N{u,w}, the affected sets and counters can be
updated in O(n) time by removing vertex v from N{u,w} and decreasing c{u,w}

by |N(v)∩N{u,w}|. Form edges, the asymptotic running time of Rule 3.1 amounts
to O(nm).

The next reduction rule is concerned with maximal cliques. Note that we can
safely assume that an optimal solution consists of maximal cliques only, since a
non-maximal clique in a solution can always be replaced by a maximal clique it
is contained in. The following rule identifies maximal cliques which have to be
part of every optimal solution.

Reduction Rule 3.2. If an uncovered edge {u, v} is contained in exactly one maximal
clique C, that is, if the common neighbors of u and v induce a clique, then add C to the
solution, mark its edges as covered, and decrease k by one.

Lemma 3.3. Rule 3.2 is correct. Every application of Rule 3.2 can be executed inO(m)
time.

Proof. The rule is correct: Edge {u, v} has to be covered and, as mentioned above,
we can assume without loss of generality that it is covered by a maximal clique.
If there is exactly one maximal clique C covering {u, v}, then C has to be part of
every optimal solution.

Using the proposed initialization, we can apply Rule 3.2 in O(m) time: For
one edge, by looking up N{u,v} and c{u,v}, we can determine in constant time
whether the rule is applicable. Scanning through all edges and invoking the rule
as soon as we find an edge for which the rule is applicable can be done in O(m)
time.

Rules 3.1 and 3.2 remove all degree-1 and degree-2 vertices from the instance.
Further, they imply that an isolated clique is deleted: Its edges belong to exactly
one maximal clique; the clique, if it contains more than one vertex, is added to
the solution by Rule 3.2 and its vertices are cleaned up by Rule 3.1.

In the following, we present two related Rules 3.3 and 3.4. Rule 3.3 is sub-
sumed by Rule 3.4. Nevertheless, we choose to present the two rules separately,

34 3 Data reduction

v

Figure 3.1: An illustration of the partition of the neighborhood of a vertex v. The
two vertices with rectangles are exits, the other white ones are prisoners. Since
both exits have a prisoner as neighbor, the prisoners dominate the exits.

since Rule 3.3 is easier to understand. Moreover, as will be shown in Theorem 3.2,
already Rule 3.3 is sufficient to show a problem kernel for Clique Cover.

Reduction Rule 3.3. If there is an edge {u, v} whose endpoints have exactly the same
closed neighborhood, that is, N[u] = N[v], then mark all edges incident to u as covered.
To reconstruct a solution for the unreduced instance, add u to every clique containing v.

Comparing N[u] and N[v] for each edge {u, v}, we can in O(nm) time search
an edge for which Rule 3.3 is applicable and invoke the rule.

For formulating a generalization of Rule 3.3, we introduce additional termi-
nology. For a vertex v, we partition the set of vertices that are connected
by an uncovered edge to v into prisoners p with N(p) ⊆ N[v] and exits x
with N(x) \ N[v] 6= ∅. We say that the prisoners dominate the exits if every
exit x has an adjacent prisoner. An illustration of the concept of prisoners and
exits is given in Figure 3.1. The concept of prisoners and exits (and, in addition,
“gates”) was introduced for data reduction rules designed for the Dominating

Set problem [Alber et al. 2004].

Reduction Rule 3.4. Consider a vertex v which has at least one prisoner. If each
prisoner is connected to at least one vertex other than v via an uncovered edge (note
that this is automatically given when the instance is reduced with respect to Rules 3.1
and 3.2), and the prisoners dominate the exits, then delete v. To reconstruct a solution
for the unreduced instance, add v to every clique containing a prisoner of v.

Observe that a vertex v is always a prisoner of a vertex u if u 6= v and N[u] =
N[v] (and vice versa). In particular, this prisoner v dominates all exits in N[u].
Thus, Rule 3.3 is subsumed by Rule 3.4.

3.1 Data reduction for Clique Cover 35

Lemma 3.4. Rule 3.4 is correct. Every application of Rule 3.4 can be executed in
O(n3) time.

Proof. Let G ′ be the input graph G after one application of Rule 3.4. By definition,
every neighbor of v’s prisoners in G is also a neighbor of v itself. If a prisoner
of v participates in a clique C in G ′, then C ∪ {v} is also a clique in G. Therefore,
it is correct to add v to every clique containing a prisoner in G ′. Next, we
show that this also covers all edges incident to v. We consider separately
edges connecting v to prisoners and edges connecting v to exits. Regarding an
edge {v,p} to a prisoner p, vertex p has to be part of a clique C of the solution
for G ′. Therefore, the edge {v,p} is covered by C ∪ {v} in the solution for the
unreduced instance. Regarding an edge {v, x} to an exit x, the exit x is dominated
by a prisoner p and therefore x has to be part of a clique C with p, since the
edge {x,p} needs to be covered. Hence, the edge {v, x} is covered by C ∪ {v} in
the solution for the unreduced instance.

For executing the rule, we inspect every vertex v to test whether the rule
is applicable. To this end, we inspect every neighbor u of v. In O(n) time, we
determine whether u is an exit or a prisoner. Having identified all prisoners,
we can for each exit u determine in O(n) time whether u is dominated by a
prisoner.

One easily observes that there are cases where Rule 3.4 applies but Rule 3.3
does not; however, we could not make use of this fact to improve the theoretical
analysis which follows in Theorem 3.2.

Lemma 3.5. Using Rules 3.1, 3.2, and 3.4, in O(n4) time one can generate a reduced
instance where none of these rules applies any further.

Proof. First, we apply Rule 3.1 to remove the isolated vertices. Then, we repeat
the following operation until neither Rule 3.2 nor Rule 3.4 is applicable: Apply
one of Rules 3.2 and 3.4, if possible, and, after each application, use Rule 3.1 to
remove the vertices only adjacent to covered edges. Since each application of
Rule 3.2 or Rule 3.4 results in at least one vertex only incident to covered edges
and each application of Rule 3.1 removes at least one vertex from the graph, the
above operation is repeated at most n times. From Lemmas 3.2, 3.3, and 3.4, we
can conclude that the total running time for the application of the three rules
amounts to O(n · (nm+m+ n3)). Together with the O(m2) running time of the
initialization shown in Lemma 3.1, the claimed running time follows.

From a theoretical viewpoint, the main result of this section is a problem
kernel with respect to the parameter k for Clique Cover (as we found later, the
central underlying observation was already made by Gyárfás [1990]):

36 3 Data reduction

Theorem 3.2. A Clique Cover instance reduced with respect to Rules 3.1 and 3.3
contains at most 2k vertices or, otherwise, has no solution.

Proof. Consider any graph G = (V ,E) with more than 2k vertices that has a
clique cover C1, . . . ,Ck of size k. We assign to each vertex v ∈ V a binary
vector bv of length k where bit i, 1 6 i 6 k, is set to 1 iff v is contained in
clique Ci. Since there are only 2k possible vectors, there must be u, v ∈ V
with u 6= v but bu = bv. If bu and bv are the all-zero vector, Rule 3.1 applies;
otherwise, u and v are contained in the same cliques. This means that u and v
are connected and share the same neighborhood, and thus Rule 3.3 applies.

Corollary 3.1. Clique Cover is fixed-parameter tractable with respect to the param-
eter k.

Proof. By Theorem 3.2, a Clique Cover instance that is reduced with respect
to Rules 3.1 and 3.3 has at most 2k vertices. It takes O(n4) time to generate a
reduced instance (Lemma 3.5). Thus, we have found a kernel (Definition 3.1)
for Clique Cover, which by Theorem 3.1 implies that Clique Cover is fixed-
parameter tractable.

The result of Corollary 3.1 might be surprising when noting that many graph
problems that involve cliques turn out to be hard in the parameterized sense.
For example, the NP-hard Clique problem, which asks for a clique of size k
in a graph, is known to be W[1]-hard with respect to k [Downey and Fellows
1999], that is, we have a clear indication that this problem is not fixed-parameter
tractable with respect to the parameter “clique size”. Another example even
more closely related to Clique Cover is given by the NP-hard Clique Partition

problem, which is also hard in the parameterized sense. Herein, we ask, given an
undirected graph and k > 0, for a set of k cliques covering all vertices of the input
graph (in contrast to covering all edges as in Clique Cover). Clique Partition

is NP-hard already for k = 3 [Garey and Johnson 1979]. This can be seen by
observing that Clique Partition is equivalent to Coloring on the complement
graph; the number of colors required for Coloring corresponds to the number
of cliques required for Clique Partition. It is well-known that Coloring is
already NP-hard for three colors [Garey and Johnson 1979]. It follows that there
is no hope for obtaining fixed-parameter tractability for Clique Partition with
respect to parameter k, unless P = NP. In contrast, Clique Cover is shown
fixed-parameter tractable in Corollary 3.1; in both cases the number of required
cliques is the considered parameter.

We conclude this section by mentioning an additional rule which does not
yield an improvement on the problem kernel, but gives an empirical speedup
for certain instances (Section 3.1.3). It differs from the above rules in that it does

3.1 Data reduction for Clique Cover 37

vC1

C2

C3

v1
v2

v3

Figure 3.2: Example for Rule 3.5. Dashed edges are covered.

not make the instance smaller (in fact it makes it larger), but intuitively seems to
facilitate application of other data reduction rules since it decomposes the input
into separate components. Figure 3.2 gives an example.

Reduction Rule 3.5. Consider the set N of vertices that are connected to a vertex v
via uncovered edges. Let C1, . . . ,Cl be the connected components induced by N. If
there is more than one connected component (that is, l > 1), then replace v by l new
vertices v1, . . . , vl, and connect for each 1 6 i 6 l the vertex vi to all vertices in Ci. In
addition, all of v1, . . . , vl are connected by covered edges to all vertices that are connected
to v with a covered edge.

Lemma 3.6. Rule 3.5 is correct and can be executed in O(nm) time.

Proof. Let G be a graph and G ′ the result of applying Rule 3.5 to some vertex v.
Consider a clique that contains v in a clique cover for G. Besides v, it can contain
only vertices from a single component Ci and vertices that are connected to v by
a covered edge. Therefore, we can transform it to a clique in G ′ by replacing v
by vi. This transformation will cover all edges in G ′, since for any edge {vi,w}

in G ′ the edge {v,w} will be covered by some clique in a clique cover of G. The
converse direction works analogously. The transformation can be done in O(m)
time for each vertex v.

3.1.2 Search tree algorithm

Search trees are a popular means of exactly solving hard problems; we gave
an introduction and some examples in Section 1.3.1. The basic method is to
identify for a given instance a small set of simplified instances such that the
given instance has a solution iff at least one of the simplified instances has one.

38 3 Data reduction

The algorithm then branches recursively into each of these cases until a stop
criterion is met.

The search tree algorithm presented here for Clique Cover makes use of the
fact that without loss of generality, we can assume that each clique in the cover
is maximal. We choose an uncovered edge, enumerate all maximal cliques this
edge is part of, and then branch according to the clique we add to the clique
cover. The recursion stops as soon as a solution is found or k cliques have been
chosen without finding a solution. The algorithm is presented in pseudo-code
in Figure 3.3.

At first glance, this branching seems to be impractical, since the number of
maximal cliques in a graph can be exponentially large, resulting in a double-
exponentially large search tree; in particular, we do not get a fixed-parameter
time bound with respect to the parameter k, unless we employ the kernelization
from Theorem 3.2 first. However, in practice it turns out that there are usually
only a few branching cases. We try to give some intuition for this: Sensible
inputs for clustering problems are expected to exhibit transitivity in the sense
that if {a,b} and {b, c} are edges, then probably also {a, c} is an edge (that is, its
clustering coefficient is high). Graphs with many maximal cliques, however, are
closely related to the presence of certain complete multipartite graphs [Prisner
1995]; these multipartite graphs are very nontransitive.

Regarding the choice of the edge to branch on, we would, ideally, like to
branch on the edge that is contained in the least number of maximal cliques.
However, this calculation would be costly. Therefore, we make use of the data
structures set up for an efficient incremental application of Rule 3.2. The initial-
ization described in Section 3.1.1 provides a set N{i,j} containing the common
neighborhood of edge {i, j} and a counter c{i,j} containing the number of edges
in the common neighborhood of its endpoints. Therefore,

(|N{i,j}|
2

)
− c{i,j} is the

number of edges missing in the common neighborhood of edge {i, j} as compared
to a clique (called score). For branching, we choose the edge with the lowest
score. If the score is 0, then the edge is contained in only one maximal clique
(and thus will be marked as covered by Rule 3.2). If the score is 1, the edge is
contained in exactly two maximal cliques. Generalizing this, it is plausible to
assume that an edge is contained in few maximal cliques if its score is low.

Having chosen the edge to branch on, we determine the set of maximal
cliques the edge is contained in using a variant of the classic Bron–Kerbosch
algorithm [Bron and Kerbosch 1973] described by Koch [2001]. While the original
Bron–Kerbosch algorithm does not exhibit the desired output sensitivity (it runs
in exponential time even for a single maximal clique), the variant by Koch [2001]
turns out to be fast enough for our purposes.

As suggested e. g. by Niedermeier and Rossmanith [2000], we interleave the

3.1 Data reduction for Clique Cover 39

Input: Graph G = (V ,E).
Output: A minimum cardinality clique cover for G.
1 k← 0; X← nil
2 while X = nil:
3 X← branch(G, k, ∅)
4 k← k+ 1
5 return X

6 function branch(G,k,X):
7 if X covers G: return X
8 reduce(G, k)
9 if k < 0: return nil

10 choose {i, j} such that
(|N{i,j}|

2

)
− c{i,j} is minimal

11 for each maximal clique C in N[i] ∩N[j]:
12 X ′ ← branch(G,k− 1,X ∪ {C})
13 if X ′ 6= nil: return X ′

14 return nil

Figure 3.3: Exact algorithm for Clique Cover, where reduce applies Rules 3.1
to 3.5

search tree with the data reduction, that is, we apply data reduction after each
modification to the graph due to branching. We use the branching routine within
an iterative deepening framework, that is, we impose a maximum search depth k
and increase this limit by one when no solution is found.

3.1.3 Implementation and experiments

We implemented the search tree algorithm from Section 3.1.2 and the data
reduction rules from Section 3.1.1. The program is written in the Objective
Caml programming language [Leroy et al. 1996] and consists of about 1400
lines of code. The source code is free software and available from http://theinf1.
informatik.uni-jena.de/ecc/. Graphs are implemented using a purely functional
representation based on Patricia trees [Okasaki and Gill 1998]. This allows to
(conceptually) modify the graph in the course of the algorithm without having
to worry about how to restore it when returning from the recursion. Moreover,
it allows for quick intersection operations on neighbor sets, as required for
some reduction rules. The cache data structure N described in Section 3.1.1 is
implemented using a priority search queue also based on Patricia trees.

http://theinf1.informatik.uni-jena.de/ecc/
http://theinf1.informatik.uni-jena.de/ecc/

40 3 Data reduction

Table 3.1: Clique cover sizes for five real-world Clique Cover instances, where
“Heuristic” is the heuristic by Kellerman [1973] with the postprocessing by Kou
et al. [1978].

Clique cover size

n m Heuristic Optimal

A 13 55 4 4
B 17 86 6 5
C 124 4847 50 49
D 121 4706 48 48
E 97 3559 34 31

We tested our implementation on various inputs on an AMD Athlon 64 3700+
with 2.2 GHz, 1 MB cache, and 1 GB main memory, running under the Debian
GNU/Linux 3.1 operating system.

Real-world data. We first tested the implementation on five “real-world” in-
stances from an application in graphical statistics [Piepho 2004] (see Table 3.1).
Currently, heuristics like that of Kou et al. [1978] are used to solve the problem
in practice [Piepho 2004, Gramm et al. 2007b]. With our implementation of
the heuristic by Kellerman [1973]—which gives no guarantee for the quality of
the solution—, the running time is negligible for these instances (< 0.1 s). Our
implementation based on the search tree with data reduction could solve all
instances to optimality within less than one second. In all cases, no branching
was required: Rules 3.1 and 3.2 already completely reduced the instances. We
observe that the heuristic produces reasonably good results for these cases;
previously nothing was known about its solution quality. In summary, the
application of our algorithm in this area seems quite attractive, since we can
provide provably optimal results within acceptable running time bounds.

Random graphs. Next, we tested the implementation of the exact algorithm on
random graphs, that is, graphs where every possible edge is present with a fixed
probability (Gn,p model). It is known that with high probability a random graph
has a large clique cover of size Θ(n2/ log2 n) [Frieze and Reed 1995]. Therefore,
relying on branching and a not too large search tree is unlikely to succeed, and
data reduction rules are crucial. The results are presented in Figure 3.4. In the
following, the “size” of an instance means the number of vertices. We examine
three trials: Sparse graphs with m ≈ n lnn, graphs with edge probability 0.1,

3.1 Data reduction for Clique Cover 41

60 80 100 120 140 160 180
Vertices

0

20

40

60

80

100

120

140

160

ru
nn

in
g

tim
e

in
 s

ec
on

ds

(b)

(a)

(a) density 0.1

(b) density 0.15

60 80 100 120 140 160 180
Vertices

0

10

20

30

40

50

60

70

80

90

100

%
 a

bo
rt

ed

(b)
(a)(a) density 0.1

(b) density 0.15

Figure 3.4: Running time for random graphs. Runs were aborted after 10 minutes.
Left: average running time of successful runs; right: percentage of aborted runs.

and graphs with edge probability 0.15. For the denser graphs outliers occur: for
example for graphs of size 79 and edge probability 0.15, all of 20 instances could
be solved within 10 seconds but one, which took 16 minutes. In contrast, sparse
graphs could be solved uniformly very quickly: Instances of size 5 000 could still
be solved within 80 seconds and instances of size 10 000 within 7 minutes, with
a standard deviation for the running time of less than 2 %. Very little branching
is required for sparse instances, with most being solved by data reduction alone,
and the largest search tree observed in the experiments having 528 nodes. Thus,
our approach is very promising for sparse instances up to moderate size, while
for denser instances probably a fallback to heuristic algorithms is required to
compensate for the outliers.

The presence of extreme outliers for some parameters makes it difficult to get
a clear picture based only on combining statistics such as averages. Therefore,
we show measurements for several concrete instances in Table 3.2. For edge
probability 0.1 and 0.15, respectively, we select an instance that takes very long,
and additionally present two arbitrary instances with similar parameters. For
sparse graphs, no such outliers occurred, so we show three arbitrary instances
of similar size.

The reason for the outliers are the usually but not always effective data
reduction rules. In all instances, we observed an initial reduction phase with
many applications of reduction rules. Most of the random graphs with 75
vertices and edge density 0.15 are almost entirely processed by the reduction

42 3 Data reduction

Table 3.2: Statistics for selected random Clique Cover instances. Here, p is
the edge probability, running time is measured in seconds, |C| is the size of the
clique cover, “search tree” is the number of nodes in the search tree, and “Rule r”
is the number of applications of Rule r. Rule 3.4 was not successfully applied.

n m |C| runtime search tree Rule 3.1 Rule 3.2 Rule 3.5

sparse 1000 6 954 6 180 1.00 1 1 000 6180 0
1000 6 816 6 022 0.96 1 1 000 6022 0
1000 6 861 6 107 0.96 1 1 000 6107 0

p = 0.1 156 1 230 653 20.58 254584 845 180 429 193 39 042
156 1 194 644 0.02 27 194 664 1
156 1 226 646 3285.43 21 889 796 112 527 915 63 709 259 5 313 473

p = 0.15 85 524 273 0.01 1 85 273 0
85 545 272 15.88 132056 705743 382767 25032
85 560 265 1505.94 8725027 47947699 27087827 3295196

rules: Out of 50 examined instances we observe search trees with depth more
than 3 for 8 instances and 24 instances are completely reduced without branching.
However, in rare cases we do encounter instances with an “unreducible core”
to which no reduction rule is applicable. Moreover, with an unreducible core
it is only rarely the case that reduction rules become applicable after the next
branching. Consequently, an unreducible core does cause a significant number
of branchings in the search tree.

Synthetic data. Real instances are not completely random; in particular, in
most sensible applications the clique cover is expected to be much smaller than
that of a random graph. The fixed-parameter result also promises a better
running time for instances where the clique cover is small. To examine this, we
generated random intersection graphs using the Gn,m,p model (see Behrisch and
Taraz [2006] and references therein), where each of n vertices draws each of m
features with probability p (note here m does not denote the number of edges as
elsewhere). We can control the size of a clique cover by choosing m: the size of
the clique cover must be m or slightly lower in case Cx ⊆ Cy for two features x
and y (see Section 3.1 for the notation). By choosing p, we can generate instances
with a desired edge density.

We generated instances with 100 vertices and about 1500 edges (making for
a density of 0.3), and varying number of planted cliques m. Figure 3.5 shows
the resulting running times. In fact, these quite dense instances can be solved
very quickly when the size of the clique cover is small. This makes our exact
algorithm also attractive for the numerous applications where we can expect a

3.1 Data reduction for Clique Cover 43

17 18 19 20 21 22 23 24 25 26
planted cliques

0

500

1000

1500

2000

2500

3000

ru
nn

in
g

tim
e

in
 s

ec
on

ds

(b)

(a)

(c)

(a) Rules 3.3&3.5

(b) Rule 3.5

(c) No rule

17 18 19 20 21 22 23 24 25 26
planted cliques

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

se
ar

ch
 tr

ee
 s

iz
e

(b)

(a)

(a) with Rule 3.4

(b) without Rule 3.4

Figure 3.5: Running Time and search tree size for random intersection graphs of
density 0.3 (average over 20 instances each)

small clique cover as solution—an observation which is in agreement with our
fixed-parameter tractability result.

Effectiveness of Rules 3.4 and 3.5. The prisoner-exit-rule (Rule 3.4) and the
neighborhood-splitting-rule (Rule 3.5) are comparably complicated; Rule 3.4 has
been developed in context with searching for a problem kernel. Do they really
gain any benefit in practice? To examine this question, we repeated the previous
experiment with either Rule 3.4 or Rules 3.4 and 3.5 disabled (see Figure 3.5).
Rule 3.5 does in fact increase the running time, simply because it is rarely ever
applicable in these dense instances. Although Rule 3.4 increases also the running
time as shown in the left-hand diagram of Figure 3.5, we recommend to apply
it. This is justified by the right-hand side of Figure 3.5: The reduction of the
search tree size indicates that—together with a more efficient implementation
of Rule 3.4, the overall complexity can be (asymptotically) improved. Currently,
the implementation does not take advantage of the fact that after branching,
the instance is only minimally changed, but rather calculates everything from
scratch; therefore, we believe that using incremental calculations, the running
time of Rule 3.4 could be substantially reduced.

3.1.4 Outlook

In the experiments (Section 3.1.3), we found that there are often outliers with
exceedingly high running times when compared to “similar” instances (Table 3.2).

44 3 Data reduction

It is an intriguing open question whether there are further data reduction rules
that can cope with the remaining outliers. In parallel, this might also lead to a
better upper bound on the problem kernel size and improved fixed-parameter
tractability for Clique Cover.

An interesting problem variant is to change the optimization objective from
“number of cliques” (#-optimal) to “sum of clique sizes” (Σ-optimal). This objec-
tive has been suggested for the equivalent Compact Letter Display problem
[Gramm et al. 2007b] and plays a role in circuit synthesis [Khomenko 2007];
however, I am not aware of literature dealing with its complexity or exact algo-
rithms. It is easy to find examples that are #-optimal, but not Σ-optimal; however,
the converse does not seem to be true. Therefore, I conjecture that any clique
cover that is Σ-optimal is also #-optimal. This would imply the NP-hardness of
Σ-optimality. The fixed-parameter tractability of Σ-optimality with respect to the
parameter “sum of clique sizes” Σ can be seen by the fact that if there are more
than O(Σ2) edges, the instance is not solvable, thus a trivial kernel exists.

Another variant is Biclique Cover [Orlin 1977]: given a bipartite graph, find
a minimum number of (not necessarily disjoint) complete bipartite subgraphs
that cover all edges. Analogous to Theorem 3.2, Fleischner et al. [2007] derived a
kernel of O(2k) vertices for Biclique Cover. Due to a number of applications
(see e. g. Amilhastre et al. [1998] and references therein), it would be worthwhile
to find data reductions and fixed-parameter algorithms for Biclique Cover

better than those that result from this kernel.

3.2 Data reduction for Balanced Subgraph

In this section, we present data reduction rules for the Balanced Subgraph

problem introduced in Section 2.3.2. We quickly recall the definition. Balanced

Subgraph is defined on signed graphs, that is, graphs where every edge is
annotated with = or 6=. A signed graph is balanced if its vertices can be colored
with two colors such that the relation at each edge holds with respect to the
colors of its endpoints. The Balanced Subgraph problem is then defined as
follows:

Balanced Subgraph

Instance: A signed graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k edge deletions into a
balanced graph?

In this section, we assume that G is a multigraph, which can have multiple
labeled edges between two vertices. This is useful for several applications and
actually makes the reducions easier to formulate.

3.2 Data reduction for Balanced Subgraph 45

The data reduction is based on finding small separators and a novel gadget
construction scheme. It unifies and generalizes a number of previously known
data reductions [Wernicke 2003] and seems applicable to a wider range of
graph problems where a coloring or a subset of the vertices is sought. Our
implementation, which solves the irreducible instances by iterative compression
(see Section 3.2.4) can solve biological real-world instances exactly for which
previously only approximations [DasGupta et al. 2007] were known.

3.2.1 Data reduction scheme

Many data reduction rules have been developed in a problem-specific and ad-hoc
way based on small fixed-size substructures. A typical example is the following
one from Wernicke [2003] for Edge Bipartization, a special case of Balanced

Subgraph (see Section 2.3.2).

Reduction Rule 3.6. Let G = (V ,E) be an Edge Bipartization instance and let
abcd be an induced C4 in G, where the two nonadjacent vertices b and d have degree 2
in G. Then delete b.

This rule is correct because without loss of generality we never need to
delete b or d, since deleting a or c destroys at least as many odd cycles, and
further there is an odd cycle containing b iff there is an odd cycle containing d. In
a similar way, considering structures of a few vertices, Wernicke [2003] presented
several more data reduction rules. Another example is the “vertex folding” rule,
which gets rid of degree-2 vertices in Vertex Cover instances [Chen et al. 2001].

When looking at the correctness proofs of these reduction rules, one notices
that they are often, implicitly or explicitly, based on a separator (that is, a
set of vertices whose deletion separates the graph into at least two connected
components): we have a small number of vertices (e. g. b and d in Rule 3.6) that
are separated by a small separator (e. g. a and c in Rule 3.6) from the rest of the
graph. Our aim is to generalize this kind of data reduction rule.

The idea is to find a small separator S that cuts off a small component C
from the rest of the graph. Then, we replace S and C by a smaller gadget that
exhibits the same behavior. A similar method has been suggested by Polzin and
Vahdati Daneshmand [2006] for the Steiner Tree problem. However, they do
not employ gadgets and have no formal characterization of reducible cases.

Another similar method are crown reduction rules [Abu-Khzam et al. 2004a,
Chor et al. 2004, Abu-Khzam et al. 2007, Prieto Rodrı́guez 2005]. Crown reduc-
tions also work by finding a separator S that cuts off a component C, and impose
additional demands on S and C (for instance for Vertex Cover, C must be an
independent set and there must be a matching between S and C that matches
all vertices of S [Abu-Khzam et al. 2004a]). Crown reductions are then used

46 3 Data reduction

=

=

=
=

=

=

= 6=

6=

6=

6=

6=

6=

S C

(a)

(b)

Figure 3.6: Example for Reduction Scheme 3.1

to prove kernels by showing that either a “crown” (reduction opportunity) can
be found in polynomial time, or the instance is already kernelized. The main
difference to our approach is that we do not assume any particular properties
of S and C, except that they are small.

As is standard with separator-based methods (such as tree-decomposition
based algorithms (see Section 1.3.3)), the behavior is examined by exhaustively
enumerating possible states of the separator and finding exact solutions to the
small component C. For Balanced Subgraph, the states are possible colorings
of the vertices in the separator in an optimal solution. We now present the
scheme more formally.

Reduction Scheme 3.1. Let S be a separator and let C be a small component obtained
by deleting S from the given graph G. Then, determine for each of the (up to symmetry)
2|S|−1 colorings of S the size of an optimal solution for the induced subgraph G[S ∪ C]
and replace in G the subgraph G[S ∪ C] by a gadget that contains the vertices of S and
possibly some new vertices.

The above scheme leaves open some details. Before filling them in, let us
show a simple example.

Example 3.1. In Figure 3.6, the separator S cuts off the vertices in C from the rest of
the graph. Up to symmetry, there are only two possibilities how the vertices in S can
be colored: equal or unequal. If they are colored equal (a), the subgraph G[S ∪ C] is
balanced without edge deletions. Otherwise (b), one edge deletion is required (dashed
line). We can simulate this behavior with a single =-edge between the two vertices in S:
it also incurs a cost of 0 when the two vertices of S are colored equal, and a cost of 1
otherwise. Therefore, we can replace the subgraph G[S∪C] by the gadget shown on the
right.

To fully describe the reduction scheme, four questions have to be answered:

3.2 Data reduction for Balanced Subgraph 47

(a) The instances G[S∪C] have some vertices (those of the separator) pre-colored.
How to solve these already partly colored instances?

(b) There is a combinatorial explosion with the sizes of S and C affecting the
running time. Therefore, how do we restrict the choices of S and C?

(c) How can we efficiently find useful (S,C)-combinations?

(d) If existing, how can we construct a gadget that is smaller than G[S ∪ C] and
correctly “simulates” G[S ∪ C]?

Regarding (a), we reduce the instance to an instance without pre-colored
vertices, and then solve the instance recursively. For this, we merge all vertices
pre-colored black into a single uncolored vertex and all vertices pre-colored
white into a single uncolored vertex. Here, to merge two vertices v and w means
to delete v and w and all incident edges, and add a new vertex x with edges
from x to each vertex that was connected to v or w. We then add m edges
labeled 6= between the two new vertices. Any solution for this instance will then
color the two vertices differently, and we can (possibly by flipping all colors)
reconstruct a solution for the pre-colored instance.

Regarding (b), this can be simply done by imposing a fixed limit. In our im-
plementation, we restrict the size of S to at most 4, mainly because of difficulties
with the gadget construction. The size of C is (somewhat arbitrarily) restricted
by 32; however, due to the structure of our instances, this limit did not play a
role, because all components found were much smaller.

As to (c) and (d), we will answer these questions in the next two subsections.

3.2.2 Efficiently finding separators

To improve running time, we special-case the search for separators of size 0 (that
is, the graph consists of more than one connected component) and separators
of size 1 (that is, articulation points). They can be found in linear time using
depth-first search [Gabow 2000]. For these cases, the gadget construction can
be omitted: the 2-connected components1 can be treated independently, and
optimal colorings of two components can always be merged (possibly by flipping
all colors in one component), since they overlap only in one vertex. Note that
this phase in particular removes all degree-1 vertices.

Separators of size 2 can also be found in linear time [Hopcroft and Tarjan
1973]. However, we did not implement this algorithm, since it is quite compli-
cated and error-prone to implement (several errors in the original publication
have been pointed out [Gutwenger and Mutzel 2000]).

1A set of vertices is 2-connected if there are at least two vertex-disjoint paths between any pair of
vertices from this set.

48 3 Data reduction

Separators of size k for small k can be found efficiently by flow techniques
[Henzinger et al. 2000]. However, after some experiments we settled for the
subsequently described heuristic instead, which is faster and produces no worse
results in our tests. Let N(X) := {u | {u, v} ∈ E ∧ v ∈ X} \ X. For each vertex v,
set C := {v} and iteratively enlarge C by a vertex v ′ that minimizes the size of
S := N(C ∪ {v ′}) until |C| > 32. The size of S can grow and shrink during this
process; we record all combinations of S and C with S 6 4.

To get a heuristic speedup, it is useful to first treat separators that are
easy to deal with, but promise large reductions. Therefore, we sort the (S,C)-
combinations primarily by increasing size of S and secondarily by decreasing size
of C. In our experiments, the finding of separators in the above way altogether
never took more than few seconds for graphs with up to about 700 vertices.

3.2.3 Gadget construction

The goal is to show how the subgraph G[S ∪ C] induced by the separator S and
the small component C can be replaced by a smaller, “equivalent” subgraph
(gadget). A simple case has already been described in Example 3.1. Now,
we describe a general methodology, leading also to theoretically interesting
problems that deserve further investigation.

Let us call a separator of size i simply i-cut. As mentioned before, it is easy to
deal with 0- and 1-cuts. Hence, we focus on larger separators, thereby describing
constructions delivering optimal gadgets in case of 2- and 3-cuts and a heuristic
approach for 4-cuts. We also briefly discuss the mathematical and algorithmic
challenges behind constructing gadgets for i-cuts for general i.

By an optimal gadget we refer to one with a minimum number of vertices
(the alternative setting of minimizing the number of edges might be worth
consideration as well). When speaking of an equivalent gadget which replaces
the subgraph G[S ∪ C], we refer to a subgraph H with the following properties:

1. Gadget H contains all vertices from S and possibly more; in particular,
S forms the “interface” where H is plugged in instead of G[S ∪ C].

2. The original graph G has a solution for Balanced Subgraph of size k iff
the modified graph where H replaces G[S ∪C] has a solution of size k ′ 6
k, where the difference between k ′ and k is determined by the gadget.
Moreover, an optimal solution for G can be reconstructed from an optimal
solution for the modified graph.

3.2 Data reduction for Balanced Subgraph 49

3.2.3.1 Gadget construction for 2-cuts

2-cuts generalize Example 3.1. Up to symmetry, there are only two colorings
of the two separator vertices u and v. In each of these two cases, we compute
recursively an optimal solution for G[S ∪ C], which can be done quickly, since
only small C are considered.

Let ne be the size of an optimal solution for G[S∪C] where u and v have the
same color and let nd be the size of an optimal solution where they have distinct
colors. We perform the following gadget construction, where the gadget consists
solely of vertices from S. If ne > nd, then remove C and all edges within S and
add ne − nd edges labeled 6= between u and v. Otherwise, remove C and all
edges within S and add nd − ne edges labeled = between u and v. Note that
reducing 2-cuts in particular gets rid of all vertices of degree 2.

Lemma 3.7. Let G be the original graph and let G ′ be the graph originating from G

by performing the described gadget replacement. Then G has a solution of size k iff G ′

has a solution of size k− min{ne,nd}.

Proof. Consider first the case ne > nd. From a solution of size k for G, we can
construct a solution of size k− nd for G ′ by using the same coloring restricted
to the remaining vertices and deleting all inconsistent edges. If this solution
colors u and v differently, we save nd edges within G[S ∪ C]; the 6=-edges do
not incur any additional cost. If this solution colors u and v equally, we save ne
edges within G[S ∪ C], but need to delete all ne − nd 6=-edges between u and v,
also resulting in a solution of size k − nd. In the same way, we can construct
from a solution of size k−nd for G ′ a solution of size k for G. The case ne < nd
works in complete analogy.

3.2.3.2 Gadget construction for 3-cuts

The basic approach is the same as for 2-cuts. The gadget construction, however,
becomes more intricate. The idea is to construct the final gadget from atomic
gadgets, which can be added independently until in total they have the desired
effect. To characterize the effect of an atomic gadget, we introduce the concept
of a cost vector. In the case of 3-cuts, up to symmetry, we have four possibilities
to color the vertices from the separator S. For each case, we compute the cost of
an optimal Balanced Subgraph solution of G[S ∪ C]. For a fixed order of the
colorings, these values build the cost vector of the form (c1, c2, c3, c4). The goal
is then to find atomic gadgets such that their corresponding atomic cost vectors
add up to the cost vector associated with G[S ∪ C].

We show that it is sufficient to consider atomic gadgets that, besides S, have
at most one additional vertex. The first type of atomic gadgets are gadgets

50 3 Data reduction

0 011

u

v

w

=====

(a) no extra vertex

0111

u

v

w

=

=

=

=

=

=

=

=

=

=

6= 6=6=6=6=

(b) one extra vertex

Figure 3.7: Examples for atomic gadgets for a size-3 separator {u, v,w}

exclusively made of vertices from S. More specifically, there are six possibilities
to put exactly one edge, either labeled = or 6=, between the three possible vertex
pairings in S. Each of these possibilities yields an atomic gadget. Moreover,
each of these atomic gadgets naturally one-to-one corresponds to a cost vector
with 0/1-entries. For instance, let {u, v,w} form the separator. Then, the atomic
gadget with an =-edge between u and v corresponds to the cost vector (0, 1, 1, 0)
(see Figure 3.7a): If u and v have the same color (once white, once black), then
the insertion of the =-edge does not cause an inconsistency. Thus, we have an
additional solution cost of 0, justifying the two zero-entries in the cost vector.
If u and v have different colors, then the insertion of the =-edge causes an
inconsistency, generating an additional solution cost of 1, justifying the two
one-entries in the cost vector. Generalizing this to the five other possibilities of
putting exactly one labeled edge, we arrive at the following:

Lemma 3.8. By inserting exactly one edge labeled = or 6= between the vertices from S,
we obtain the six atomic cost vectors (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1),
(1, 0, 1, 0), and (1, 1, 0, 0).

All cost vectors in Lemma 3.8 have even parity. Hence, we need a second
type of gadgets to be able to construct cost vectors with odd parity: gadgets that
contain all vertices from S plus a new vertex connected to all vertices from S.
We derive four atomic gadgets of this kind with different cost vectors, namely
the cases that the edges connecting S to the new vertex are labeled (6=, 6=, 6=),
(=, =, 6=), (6=, =, 6=), or (=, 6=, 6=) (an example is shown in Figure 3.7b).

Lemma 3.9. By inserting one new vertex and connecting it to all vertices from S

and assigning various edge labels, we obtain four atomic gadgets corresponding to the
atomic cost vectors (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0).

The four atomic cost vectors from Lemma 3.9 all have odd parity. In this
sense, we now may speak of even or odd cost vectors.

3.2 Data reduction for Balanced Subgraph 51

uu

vv

ww
=

=

=
=

=

=

=
=

=

=

=
=

=

=

=
=

=

=

=
=

=

6=

6=6=

6=6=6=
6=6=

6=

6=

6=6=6=
6=

6=

6=6=
6=
6=
6=

6=

6=6=6=
6=

6=

6=6=
6=
6=
6=

6=

6=

4 333

Figure 3.8: Example for the construction of a gadget with |S| = 3

Now, we can describe the general gadget construction. To do so, first note
that vectors where all entries have the same value x are easy because this means
that the solution for G[S ∪ C] is independent of the coloring of S and hence
one can simply remove C and all edges between vertices of S and decrease the
parameter k by x. This means that if we are given a cost vector (c1, c2, c3, c4), then
without loss of generality we can normalize it by simply subtracting or adding
the vector (1, 1, 1, 1), each time decreasing or increasing the parameter by one.
Now, given a cost vector (c1, c2, c3, c4), the gadget construction task one-to-one
corresponds to finding a way to subtract atomic cost vectors from (c1, c2, c3, c4)
such that one receives the vector (0, 0, 0, 0). If we arrive at a cost vector with at
least two 0-entries that cannot be transformed into (0, 0, 0, 0), then due to the
above reasoning we may also add the vector (1, 1, 1, 1). Altogether, this results in
the following algorithm:

1. Compute the cost vector for given S and C.

2. Normalize the cost vector by subtracting the vector (1, 1, 1, 1) until at least
one entry becomes 0.

3. If the cost vector has odd parity and has more than one 0-entry, then add
(1, 1, 1, 1).

4. If the cost vector has odd parity, then subtract a suitable odd atomic cost
vector (that is, one that does not produce negative entries).

5. While the vector is not (0, 0, 0, 0), repeat:

(a) If the cost vector has three 0-entries, then add (1, 1, 1, 1).

(b) Subtract a suitable even atomic cost vector that decreases the maxi-
mum entry.

52 3 Data reduction

We show an example in Figure 3.8. We start with the induced subgraph
G[S ∪ C], where S = {u, v,w} is the separator. In the middle we show optimal
solutions for the (up to symmetry) four possible colorings of S and mark by
a dashed line the edges that have to be deleted. Cost figures are displayed
below these figures, forming the cost vector (4, 3, 3, 3). Normalization yields
the vector (1, 0, 0, 0). Since this is an odd vector with more than one zero, it
gets padded to (2, 1, 1, 1). This is an odd vector, so we need a gadget using
an extra vertex and three edges (Lemma 3.9). From the three vectors whose
subtraction decreases the maximum element 2, we arbitrarily choose (1, 1, 1, 0),
corresponding to adding from a new vertex a 6=-edge to u, a 6=-edge to v, and
an =-edge to w. The remaining cost vector (1, 0, 0, 1) can be covered by adding
a 6=-edge between u and v, leaving the all-zero vector. The resulting gadget is
shown on the right of Figure 3.8. We have subtracted the all-1 vector twice and
added it once, and therefore the parameter decreases by one.

Theorem 3.3. The above algorithm produces a gadget with the minimum number of
vertices for every pair (S,C) where S is a 3-cut.

Proof. First of all, it is clear from the one-to-one correspondence between atomic
gadgets and atomic cost vectors that by “superimposing” the atomic gadgets cor-
responding to each (possibly multiple times) subtracted atomic cost vector, one
directly arrives at an overall gadget (with possibly multiple edges). Concerning
the usage of the normalization vector (1, 1, 1, 1), we have already argued before
that this does not affect the correctness of the gadget construction. Hence, in
the remainder we focus on showing that the algorithm always terminates with
having generated the vector (0, 0, 0, 0) by subtracting atomic cost vectors and
possibly subtracting or adding (1, 1, 1, 1).

Once subtracting a suitable odd atomic vector, we arrive at a cost vector with
even parity. In the further process, we will always have an even parity and it
suffices to concentrate on the termination of the while-loop of the algorithm.
Since the six atomic cost vectors represent all possible vectors with exactly two
1-entries, as long as we have at least two nonzero-entries in the cost vector, there
is at least one even atomic cost vector which we can subtract. Now, assume
that we have a cost vector with three zero-entries and one nonzero-entry e
(this is the only remaining possibility besides having the all nonzero-entry).
Then, the algorithm adds (1, 1, 1, 1). Now, after this addition we can up to three
times subtract an atomic vector, decreasing the entry e before again all entries
except for e would be zero. Repeatedly proceeding this way, we thus always
can arrive at the vector (0, 0, 0, 0) in a finite number of steps. The construction is
optimal because the gadget has at most one additional vertex (besides S), and
this happens only for odd cost vectors, where it is unavoidable.

3.2 Data reduction for Balanced Subgraph 53

Note that the construction is not necessarily optimal with respect to the
number of edges introduced, nor with respect to the decrease in k. However, in
our experiments these objectives rarely had different optimal solutions.

As a consequence of the considerations so far, we obtain the following result
illustrating the power of our approach.

Corollary 3.2. With the described data reduction scheme, all separators with |S| = 2
and |C| > 1 and all separators with |S| = 3 and |C| > 2 are subject to data reduction.

3.2.3.3 Gadget construction for larger cuts

The gadget construction for 3-cuts already has required quite some machinery.
The case of 4-cuts becomes still much more involved due to the increased
combinatorial complexity. A provably optimal gadget construction as for 3-cuts
currently does not seem practically feasible. Thus, we have chosen a heuristic
approach for finding and constructing gadgets for 4-cuts.

We conjecture that atomic gadgets with at most two vertices in addition to
the four separator vertices suffice. Thus, we generated 26 atomic gadgets with
no extra vertex (corresponding to the choices of labels for the 6 edges within a
4-vertex separator), 24 atomic gadgets with one extra vertex (4 edges connecting
a vertex in the separator to the new vertex), and 29 atomic gadgets with two
extra vertices (8 edges to the new vertices, and one edge connecting the two new
vertices). We then filtered out those that can be obtained by combining cheaper
ones, and arrived after about five minutes of computation time at a set of 2948
atomic gadgets. They are stored in a fixed lookup table.

Once given this toolbox of atomic gadgets, we again try to derive the all-zero
vector in a way analogous to the case of 3-cuts. This procedure is now realized
by an exhaustive branch & bound algorithm. We start with the normalized vector.
Should this fail, the vector (1, 1, 1, 1) is added once and the procedure is repeated.
Each gadget vector is associated with a cost corresponding to its number of extra
vertices; this number is minimized. In fact, it is not too hard to see that this
algorithm produces for 3-cuts, when given the 10 atomic cost vectors, the same
result as the algorithm given for 3-cuts.

The branch & bound algorithm works quite well for cost vectors with small
entries, but can become a bottleneck for vectors with high entries. We examine a
simple heuristic to mitigate this in Section 3.2.4. We close with a description of
challenges for further research that arise in our work with cost vectors. For this,
we describe the scenario in a more abstract way.

Given a set S of n vectors of length l with nonnegative integer components,
let a linear combination be a sum of some vectors of S, where vectors can occur
multiple times (equivalently, have a positive integer scalar factor). Let a basis

54 3 Data reduction

be a set that allows to obtain any vector of length l with nonnegative integer
components as a linear combination. (The terms are chosen in analogy to vector
spaces, but because of the nonnegative integer restriction, we do not have a
vector space here.) We face the following problems:

• How to recognize whether a vector set is a basis?

• Given a basis and a target vector t, how to find a linear combination that
produces t?

• Given a large set of vectors, how can we find a smallest or minimal basis?

In our work, we actually have a small modification of this problem because
as single vector with negative components also the vector (−1, −1, . . . , −1) is
allowed. Also, the vectors come at different costs (number of new vertices), and
we would like to find linear combinations of minimum cost.

This touches a deep and old subject in mathematics (see e. g. Barvinok and
Woods [2003], Sturmfels [1996]). Seemingly, our questions seem to be more
special than what is generally studied there, but this clearly deserves future
theoretical studies.

3.2.4 Implementation and experiments

We applied our data reduction for Balanced Subgraph (Section 3.2) combined
with the improved iterative compression routine (Section 4.5.4) to gene regulatory
networks and randomly generated graphs. Our implementation consists of about
1600 lines of Objective Caml [Leroy et al. 1996] code and about 300 lines of C
code that implements the time critical compression routine of the iterative
compression method. All experiments were run on an AMD Athlon 64 3400+
machine with 2.4 GHz, 512 KB cache, and 1 GB main memory running under the
Debian GNU/Linux 3.1 operating system. The program was compiled with the
Objective Caml 3.08.3 compiler and the GNU gcc 3.3.5 compiler with options
“-O3 -march=athlon”. For the approximation algorithm by DasGupta et al. [2007],
we used MATLAB version 7.0.1.24704 (R14). Our source code is available as free
software from http://theinf1.informatik.uni-jena.de/bsg/.

Besides the data reduction rules described in Section 3.2.1, we additionally
delete self loops and pairs of edges sharing the same end vertices if the edges
have different types. These reductions can be seen as special cases of our data
reduction scheme from Section 3.2.1 with |C| = 0 and |S| = 1 and |S| = 2,
respectively. Furthermore, we only replace a small component by a gadget if
this leads to an improvement; that is, either the number of vertices is reduced,
or, in the case of an equal number of vertices, the number of edges is reduced.

http://theinf1.informatik.uni-jena.de/bsg/

3.2 Data reduction for Balanced Subgraph 55

Table 3.3: Comparison of approximation [DasGupta et al. 2007] and our exact
algorithm. Here, t denotes the running time in minutes. For the approximation
algorithm, “k 6” is the solution size, and “k >” is the lower bound gained from
the approximation guarantee. The approximation algorithm was run with 500
randomizations.

Approximation Exact alg.

Data set n m k > k 6 t k t

EGFR 330 855 196 219 7 210 108
Yeast 690 1082 0 43 77 41 1
Macrophage 678 1582 218 383 44 374 1

Additionally, we tested a heuristic running time improvement to circumvent a
problem with the data reduction based on 4-cuts: For some instances the running
time drastically increased because we encountered a cost vector with entries hav-
ing high values. This increased the number of possible linear combinations and
therefore the running time. An example appeared when the algorithm processed
the regulatory yeast network: it ran into the cost vector (2, 8, 8, 0, 31, 39, 39, 31),
and therefore the instance could not be solved within several hours (whereas it
could be solved without 4-cut reduction within minutes). To take advantage of
4-cut reductions without wasting hours of running time through such (rarely
occurring) cases, based on experimental findings we introduced a new cut-off
parameter. More precisely, we stop the gadget construction if the sum of the
entries of a cost vector is more than 25. We experimentally show in below that
this cut-off value is sufficient for the considered networks.

As a further comparison point, we implemented an integer linear program-
ming (ILP)-based approach, which is a straightforward extension of that for Edge

Bipartization (Section 4.6.3). However, when solved by GNU GLPK [Makhorin
2004], it was consistently outperformed by the iterative compression approach
as soon as the heuristic speedup mentioned in Section 4.5.3 was employed;
therefore, we do not give details on its performance.

Biological Networks. We started our experimental investigations with gene
regulatory networks up to the size of about 700 vertices and more than 7000
edges.

We begin with comparing our algorithm to the randomized approximation
algorithm of DasGupta et al. [2007]. The authors considered the regulatory net-
works of yeast and human epidermal growth factor (EGFR) that are graphically
displayed in Figure 3.9. We additionally examined a macrophage network [Oda

56 3 Data reduction

+

+

-

-

-

-

+

+

-

+

+

+

+

+

+

++

+

+

+

-

-
-

+

+

+

+

++
+

+
+

+
+

++

+
+

+

++

+

+

+

-

-

-

+

-

+

-

+

+

+

+

+

-
+

+

+

+

+
+

++

+++
+

+

-

+
+

-

-

-

+

+

+

+

-

+

+

-

+

+

-
+

+

+

+

-

+

+

+
+

+

+

+
+

+

+

+

+

+
-
-

+

++

+

+

+

+

-
+

+
-

+

+

+

-

+

-

+
+ -

+

+

- +
-

-
+

-

+

+

+

++

+

+

+

+

+

+
-
+

+

+

+

+

+

+

+

-

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

-

- +

+

+

+
+

+

-
+

+

+

+

+

+-

+

-

+ +

+

-

+

+
+ -

-

+

+

-

++

+
++

+

+

+

-

+

+

+ +

+ +

+

+

+ ++

+
+

+

+

+

-

+

+

+

+
+

+

- -

-

- -

+

-

-

-
+

-

+

+

+

++

+

+
- +

+
- +

+
- +

-
+

+

+
-

+
-

+

+
+ +-

+

+
-

+

+

+

+
+

+

+

++

-

++

-

-+

+ -

-

+

+

-

+

+

++

-
-

++

+

+
- ++

-

+

+

+ +

-
-

+
+

+
+

+
-

+

+

+

+

+

-

-

+

+

+

+

+

+

+

+

+

+

+

+

+
+

++ +

+

+

-

-

-

-

+

+

-

+

+

+

+

+

++

+

+

-

-

+
+

-

-

+

+

-
+

+ -

+

-

-

+

-
+

+

+

-

-
+

+

+

+

+

+

+

+

+
-

+

+

+

+

+

+

+-

+

+

+

++

-

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
-+

+
+

+
+

+

+

+
+

+

-

-

+

-

+

-

-

+

+

+

+
+

+

+

+

+

-

+

+
+ ++

+

+

+

+

+

+

+
+

+

-

+
+ +

+

+

+
+

+
+

-

+

++

+

+ +

+

+

+
+

+

+
+

+

++

+

+

++++

+

+

+
+

+ +

+

+
+

+

+

+
+

-

-

+

+

-

+

-

+

-

+

+

+

+

- -

--
-

-

+

-

+

-

-
-

-

-

++
+

+

+

+

+

+

++

-

+

+

+

+

-

+

+

+
+

-
+

+

-
+

-

-

- +

+

+

-

-

+

+

+

+

-- -

+

+

+

+

+
+

+

++

+

+ +
+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

-

+

-

+

+

+

+

+

++

-
-

+

-

+

+

+

+

+
+

+

+

+
-

+

+

-

+
+

+

+ +

-

+

-

+ +

+

+ +

++

+

+

+

++

+

+

+

+

-

-

+

+

+

-
-

-
+

+

+
+

+

-

++
+

+

+

+

+

+

+

-

++

+

+

+

+

+

+

-+
+

+

+
+

+

+
+

+
+

+
+

+

+

-

+

+
+

+

+

-

+

+

-

+

+

+

+

+

+

+

+

-
-

+

+

+

+

+

++

+
+
+

+

+

-

+

-

+

+

-

-

+

+ +

+
+

+
+

+

+

++

+

+

+

-

+
-

-

+
-

-

+

-

++

+

+

+

+

+

-

+

++
+

+

+
+

+

-
-

+-

- -

+ +

+

+
-

+

-
+

+

-

--

+

+

++

+

+

+

-
+

+

+

+

+

+

+

+
++

+

+

+
+

+++
+

+

-

+

+

+

+

+

-+

-

-

+

+
++

+ +
+ +

+ +

+++

+

+

+

-

+

+

+
+

-

+

-

+

-

+

+
+

+

+
+

+

++

+

+

+

++

+

+

++

++

+

-

+

+
+

+

-

+

+
+

+

+

+

+

-

+

+

+
+

--

+

+

-

-

+

+

+ +

+

-

+

-

+

- -

-

-

+
+

+

++

+

+
+

+

+
+

+ +
+

+

+

+

+ +

+

-

+

+

+

+

+

++

- -

+

+
+
+

+

+

+

+
+

+

++ ++

++

++

+

+

+

+

+

+

+
- +

+

-

+

+

+

-

+

+

+

+
+

+
+

++

+

+

+

+

- -

+

+

+

+

++

- -

+

+

- -
- -

+

++

+
+ +

+

+

+

+ +
+

+ +

+
+

+

+

+

-
-

+

+

+

-
-

++

-+

++

+
+

-+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+ +

-

+
+

+

+

++

(a) Yeast

-

+

-

+

+

+

-

+

+

-
+

--
+

- +

-

+

-

+-

-
+

-

+
+

+

+
+

-
+

-

-
+

+

-

+

+

-

+

+

+

-+

-
+

+
+-

+

- ++

+

+

+

-

-

+

+

+

+

-

-

++

-

+

+

- +-- +

-

+

-

-
+

- +

+

++
-

+
+- +

+

-

+
+

+

-

+

+

+

+

+

-+

+
+ -

+

-

+
+

-
++ +

+

+

+

++
-

+

+

-

+

+

-

-

+

+ -

+

+

-+

-
-

+

-
+

+

-
+

-
+

-

+

-
+-

+-

-+

+
-

- +

+

+
-

+
+

- -

+

+
-

+

-

+

+

-

-

+

+ -
+

+

-
+

+
-

+

+-+ -

+
- +

-

+
-

+-
+-+

+-

+

+

-

+

+

+
-

+

+

+

-
-

+

+

-

+

+
-

+

-
+

+
-

+

++

+

-
+ -

+

-
-+

-
-

-
+

+

-

+

+

+
-

+

-

+

+

+

+

-

-
+

-+

-

+

+

-

+
- -

+

+

-
+

+

+

+
-

+

-

+

+

-

+

++
+

-+ +
+ -+

+

+ -

+

+
+

++

++

-

+ -
-

- --
-

+ -

+

+

+

- +
+

+ -

+

+
+

++

-

+

-
-

+

+
-

+

+

+

-
+

+

+

-

+

+

+ -

+

+

+

+

-
+
-
+

-
+

-

+

+

-

+
-

++

-

+

-
+

+

-
+

-

+

-

-+ +

+
-

+
-

+

+
+

+

-
+

+

+

-

+

-

+

+

+-

+

- +

-
+

- -+

+
+

+

+

-
+

+-

+

-+
-

+

+
+

+

+

+

-

+

+

-

+ +-

+
-

+

+

+

-

+

+
-

+

-

+

+

+

-
+

+

+

+

-
+

+

+

-+

-
+

+

+

+

+

+

+

+

+

+
+
+

-+

+
-

+ -

+

+

- +

-

+
-+

+

+

+

+

+

+

+

-

+- +

-+

-

+

-
+

- +

-

+

+

+

+

-

+
+

+-

+ -

+ -

-

+

+
-

-

+

++
-

-

+

+

+

-
+

+
-

+

-

+

-
+

+

-
++

-

-

+
+ +

+

+ +

--
+

-
+

+

+

+
-

-

-+

+

-
+

+

-

+

-

+

+

+

+

+

-

+
+

++

+ -

+

+ -

-
+

+

+

-

+

-
+

+

-
-

-

-

+
+

++

-
-

+
+

+
-

-+

+

+

-+

+

+

+ -

-
+

+

+

-

-
+

+

-+

-

-

+

-
+

+

+

- +

+

+
-

-

+

+

- -

+
+

+

-

+

+
-

+ -

+

+

+
-

+
-

-

+

+

+

-

+

+

-

+

+

+

+

+

-
-

+ +

-

+

-

+

+ -

+
- ++
-

+ -

+
- +-

+

-
+ -

+

-
+

-+

-

+

+

-
-

+
+

-
+

- +

-

+

-

+

+

-

+

-

+
-

+

+
-

+

- +

-

+

+ -

+

-
+

-

+

-

+

-

+

+-

+-
+

-

+

+ -

+
-

+

-
+

+

-

+
+

-

+

+

++

-

+

+

-
-

+

+

+

+ +

+

+

+
-

+

+
+

-

-
+

-
+

+-
+

+

+
+

-+

+
+-

+

-
+

-
+

+

+

+
-

- +

-

+

+
+

+

- +

-
+
-

+

+
+

-

+
+
-

+

+

+

-+

-
+

+

-
+

+
+

++

+

-- -
+++

+

+

-+

-

-

+
+

-

+

-

+
-

+

(b) EGFR

+-

-

+

+

+

+

-+

+

-+

+

-
+

-

-+

-

+

+

-
+

-

+

-

+

+

+
-
+

+

+ -

+

-

+

-

+

+
-

+

-
+

-

- +
-

+

-

+

++

--

- +
+
+

+

-
+

+

++

+

++

-

+

+

- +

++

+

-

+

-

+

+

-
+

+

-

+

-

+

+

+

-

+

+

-
+

-

+

+

-

+

+
-

-
+

-

+- +

-
+

-
+

+
+

-
++

+

-
+

+

+
-+

+
-+
-

+

-

+

-

+

- +

+

-

-+
+

-
-+

+

-

+
+

+

-
+

+

++

+

+
+

+

+

+
-

+

-
+

+

-

+
+

+

+ -

-
+

-

+

-

-
+

-
+

+
-+

+ -

+

-

-+

-

+

+

+
+

-

-

-
+

+
+

-
+

-

+

-+

+

+

+

-+

+

+

-

+

+
-

+

-+
-

+

-

-

+

+

+
-

+ -+
- +-

+

-

+

-

+

-+

-
+

+

-

-

+

-

+

-

-+

+ -
+

+

-
+
-

+
-+

+

+

+

+

+
-

-

+

+

-

+

-
+

-

+
+

--
-

++

-

- +

-
-

-
+

+

-

-
+

+ +

+

-

-

+

-

-

-

+

-

-

-

+

-
-

+-

- +

- -

+

-

-

+

-+

-
+

-

+

+

-
+

+

+

- +
+

+

+

-

-

+

- -

+ -+
+

-

-+
-

+
-

-
-

+

-

+

- +

-

-
-

+
-

-
-

+
-+

+

-
- +

- -
+

-
-

+

+

+

+

+

+

+

+

+

+

+

+

-

+

+

+-
-
+ +

-+ -+

-
+

+
-

-
+

-
+

-+

+
-

+

-

-
- +

-+

-
+

+

+

-

-+

+- +
-

-
+- -+

+

-

-
+

-
+

-+

+

-

-

+

-
+

-
+

- +

-
+

-
+

+

+

+

+

+

+

+

-

+

+

+

+

+ +

+

+

+
+

+
+

+

+

-

+

+

+

+

+

+

+

-

+

+

-

-

+

-

+

-
+

+-
+

-
+

-+
-

+

-

+

-

+

+-
+-

+

+ --

+

+
-

-
++

-

+

+

+

--
+

+
+ +

-+
+

-
+

+

+
-

+
-

+

+
- +

+

+
-

++

-

-

+
-+ --

+
+

-

-
++

-

+

-

+

+
-

- +

+
+

-

+

-
+

+
-

+

++
-
+

-
+

+
-

+

+

-

-
+

+

+

-++-+

-
+

+
-

+

+

-
+

+

+
-

-
+

-

+
- ++

-

+

-

+-

+

-
+

+

+

+
-

+

+

-

+

-

-

+

+

-

+

+

+

-

+

+

-

+

+

-

+

-

+ +

-
+

+

+

-

+
+

-

+
-

-

+
+

+

-

-

- +
+

-
+

+-

+
+

-

-

+
-

+
+

-

+

+

+

+

+

+

-
+

-

+

-

-

+

-
+

+

-+ +

+

+

+

+

+ + +

+

+
-

+

-

+
-

-

-

-
+

+

-

-
-

-+
-

+

-

+

-

-

+

-
-

+

-
+

+

+

+

+
+

-
-

-+

+

-

-
-

+

+
+
+

-

+

+

-
+

+
+

+

+ +

+

+

- +

+
-

+

++

+

++

+

+
+

+

+

+
+

+
-

+

-

+

+

+

+

+
-

+

-+

+

+ +

+
+

-+

+ +

+
+

- -
++

+

+

+

-

+

-

+

-

-

+
-

+ +

-
+

+ -

+
-

+

+

+

+

+

-
++

-

+

-
+

++

+

+

+

-

-

+

--

+
- -

-

+

+

- +
+ -

-

+

-

+
+

--

++-

-

+

+

+

-

-+

+

-

-

+

+

-
+

-
+

-

+

-+ +

-

+
-

+

-

+
-

+ +
-- +

-
+

+
+-

+
-

+
-

+

+

-
-

+

+
-

+
--

+
-
+

+
-

-
+

+

+

-

-+

+

+

+

+

+
+

+

+
+

++
+

+
-

+

-
+

+

+

+

+

+

-

+

-

+
+

+

--

+

-

-

+

--

+

+

+

-+

+

-

+

+ +

+

+

+
+

+

+
+

+
+

+

+

+

+

-

+

-+

+

+

+

+

+

-
-

+
-

+

-

+

+

-

-
+

-
+

-
+

+

- -

+

+

-

-

+

+

-

+

-
+

+
+

+

-

-+

+

+

-
+-
+

-

+-

+

-

+

+
+

+

+
+-

-

+

+

+

-
+

+
+

+

+
-

+

-
+

+ +

++

-

+
-

+

+

+

+
+

-

+

-

+

+

+

+
-

+
-

+
-

+

-
+

-
+-

+

+

+
+

-
+

- -

+
--

- -

+

-

-

+

+

+

+

+

+

-

-

- +

+

+

+

-

+

-+

-

-
+

+

+

- +

+

+

+

-
+

+

+

- ++
-

+
+ ++

-+
+

+-

-

+-

-
+

- +

+

+
+

-

--
+

+ +

+

+

+

+

+ ++-

-

+

+
-

+

-
-

-

-

-
+

+

-
-

-
-

-
+

+

--
-

-

-
+

+
-

- -

-

-

+

+

-

-
-

-

-

+

+

-
- -

-

-
+

- -

-

+

+

+

-

+

+

+

+

+ +

+

-

+-

+-+-

-
+

++

+

+

+
-

+

+

-

+

+

+

+ +

-

-

+

-

+

+

+

-
-

+

-

+

+

+

+ -

-
-

+
+

+

+-

-

+

+

+
+

++

+

+

+

+
+

+
-

++

-

+
+

+

+

-

+

-

- -+

+

+

- +

+

- +

+-

+ +
+

+
-

+

+

-

+

+

+

-
+

-
+

+

+

-

+ ++

+

+

+

+

-

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+
+

+

+

-

+

+-

+

-

- +

-
+

-

+
-

+

+
- +

+

-

-

-

+

-

+

-
+

+

-

-
+

-
+ +

-

+ -

-
+

-
+

+

+
-

+
-

+

+

-

+

++

--

-
++

+

+

+

-
++

+

-

+

+

-

++

-

-

+

+

+

-+
+

+

-

+
-

-
+ +

- +

-+

++

-
-

+

++
-

-
+

+

-

+

-+

+
+

-+ - - +

++
-+

-+ - +
--

+

++

-
-

+

+
+

--
+

+
+

-
-

+

+

+ -

-+

-

+

- +

-

+

-+

+

+

-

-+

+

+-

+

-

+

+
-

+

-

+

+-

-

- +

+
-

-+

-+

- +

-
+

-

+-

+

-

+

+

+

+

+

-

- +

-

+

+

-

-

+

+

+
-

-

+

(c) Macrophage

Figure 3.9: Example gene regulatory networks

et al. 2004]. The yeast network is larger than the EGFR network, but one can
immediately see applicability of data reduction rules in form of many degree-1
and -2 vertices. The results of both algorithms are given in Table 3.3. Apart
from giving an optimal solution instead of an approximative one, we could also
decrease the running time for the yeast and macrophage networks from about
one hour to less than a minute. Note, however, that the running time of the
approximation algorithm could probably be much improved by implementing it
in a more efficiently executed language, or simply by doing fewer randomized
trials at the cost of a possibly worse result. For the macrophage network, we
could compute an optimal solution of size k = 374. This emphasizes the impor-
tance of our data reduction rules, since for such high solution sizes the iterative
compression algorithm (Section 4.5.4) cannot be applied directly. Furthermore,
here it is remarkable that the data reduction breaks up the network into several
smaller components of up to 70 vertices that have to be solved by iterative
compression independently, whereas for the other two networks only one large
component remains after data reduction. As a further comparison point, the
ILP-based approach was not able to solve the three instances even after applying
the data reduction.

To investigate the power of our data reduction rules for different sizes s of
the separator S, we investigated stepwise in terms of s the results for the yeast,
EGFR, and macrophage networks. The results are given in Table 3.4, where

3.2 Data reduction for Balanced Subgraph 57

Table 3.4: Size of the largest component remaining and overall running time t
(including solution by iterative compression) when reducing only separators up
to size c.

Yeast EGFR Macrophage

s n m t n m t n m t

0 690 1080 91 s 329 783 > 15 h 678 1582 > 1 day
1 321 709 77 s 290 727 > 15 h 535 1218 > 1 day
2 173 469 11 s 167 468 > 15 h 140 397 > 1 day
3 155 424 4 s 99 283 > 15 h 113 335 ≈ 1 day
4 ? ? > 5 h 89 259 108 min 70 228 4.5 h
4r 144 405 5.6 s 89 260 97 min 70 228 18 s

setting s to 4r means that we use a cut-off of 25 for the sum of the entries of a
cost vector in the case of cut sets of size 4.

We denote applying our data reduction to a separator of size s by s-reduction.
The yeast network can already be solved with improved iterative compression
and 2-reduction. In contrast, the EGFR network cannot be solved within reason-
able time without also using 3- and 4-reduction. For the macrophage network,
the use of 4-cuts reduces running time severely.

We now investigate 4-reduction with and without cut-off value. For all
networks, we could achieve the best data reduction results by using 4r-reduction:
As mentioned above, for the yeast network the “normal” 4-reduction does not
return any results within 5 hours. In contrast to the other entries for which we
aborted the experiments in Table 3.4, here the running time is caused by the
data reduction itself and not due to the iterative compression routine. Therefore,
we cannot give the size of the reduced graph. Setting the cut-off parameter to
25, we obtained an instance that is more reduced than by applying 3-reduction
alone. The reason that we still cannot achieve a better overall running time is the
running time for the 4r-reduction itself. For the EGFR network, the size of the
largest component barely changes going from 4- to 4r-reduction, indicating that
we do not lose much by the cut-off; in fact, we achieve a better overall running
time for 4r. Applying 4r-reduction instead of 4-reduction to the macrophage
network does not change the size of the remaining largest component, but
decreases the running time from hours to seconds.

Note that we really need the combination of data reduction and the improve-
ments of iterative compression to solve the instances.

58 3 Data reduction

Table 3.5: Reduction effect for random networks. Average over 5 instances for
each column. Here, n is the number of vertices in the original graph, n ′ is the
number of vertices after data reduction, m ′ is the number of edges after data
reduction, and t is the running time in seconds.

n 100 200 300 400 500 600 700 800 900 1000
m 172.6 336.8 492.4 640.2 791.2 970.6 1108.8 1286.6 1435.6 1585.6

n ′ 29 48.8 75 95 119.8 153.2 169.2 193.4 211.6 239.6
m ′ 102.3 165.8 252 324 398.4 518 565.8 672.4 734.6 815.8
t 1 7 6 5.5 6 8.5 8 15.5 18.5 15.5

Further regulatory networks. We also considered four small regulatory net-
works obtained from the Panther pathways database [Mi et al. 2005], consisting
of about 100 vertices and up to 200 edges. With 3-reduction we could compute
optimal solutions ranging from 20 to 28 in split seconds.

Finally, we describe our results for two larger networks that cannot yet be
solved optimally with our method. For the regulatory network for a toll-like
receptor [Oda and Kitano 2006], we could reduce the number of vertices from
688 to 244 and the number of edges from 2208 to 1159 within three minutes. For
the regulatory network of the archaeon Methanosarcina barkeri [Feist et al. 2006],
we were less successful. The number of vertices was decreased from 628 to 500
and the number of edges from 7302 to 6845 in 25 minutes. This could be a hint
that the dense structure of this network is hard to attack by our data reduction.

Random Networks. To further substantiate our experimental results, we gen-
erated a test bed of random graphs with the algorithm described by Volz [2004].
We tried to model the yeast network by choosing the following settings: the
cluster coefficient is 0.016, the distribution of vertex degrees follows power-law
with α = −2.2, and the probability to assign 6= to an edge is 20.5 %.

We generated 5 instances each for graph sizes ranging from 100 to 1000
vertices. The number of edges of the generated instances is slightly more than
1.5 times of the number of vertices. We investigated the power of our data reduc-
tion by computing the number of vertices and edges of the reduced instances.
Table 3.5 shows the average results for instances of each size. Independent of
the instance size, about 75% of the vertices are reduced. Note that this is also
true for the yeast network that we try to model.

The results given in Table 3.5 are received with setting the cut-off parameter
again to 25. Redoing the test with a higher threshold of 50 did in no case change
the number of reduced edges or vertices by more than one, but increased the

3.2 Data reduction for Balanced Subgraph 59

running time for some instances from seconds to several hours.
Considering the size of instances that can be solved optimally by improved

iterative compression after data reduction, here the threshold seems to be at
graphs with about 500 vertices. Three out of the five instances could be optimally
solved in up to 20 hours, where the sizes of the optimal solutions are between
k = 76 and k = 91. Note that the solution sizes are higher than for the yeast
network, which has more than 600 vertices and an optimal solution of size 41.
Because of this, the random instances seem to be somewhat more difficult than
the yeast network itself, which is consistent with observations by DasGupta et al.
[2007].

3.2.5 Outlook

There are numerous avenues for future research. DasGupta et al. [2007] also
introduced a directed version of the Balanced Subgraph problem. The approxi-
mation results are worse than for the undirected case, which is probably why
there is no implementation yet [DasGupta et al. 2007]. Fortunately, the directed
case can be reduced to the Vertex Bipartization problem, which can be solved
in O(3k ·mn) time (Section 4.6). Again, this opens the route for experimental
studies. We conclude with some further research possibilities.

• Edge Bipartization and Balanced Subgraph still lack a problem kernel
with a nontrivial size bound on the problem kernel size. Perhaps our data
reduction scheme can be a first step in this direction.

• Chiang et al. [2007] use the fact that Balanced Subgraph is polynomial-
time solvable on planar graphs to obtain good results for their “nearly-
planar” instances. It would be interesting here to have a fixed-parameter
algorithm where the parameter is the “distance from planarity”. It is
NP-hard to solve Balanced Subgraph for graphs that are planar with
already a single vertex added [Barahona 1980]; however, the number of
edges added, or the minimum number of crossings of a plane drawing
might be a useful parameter.

• The theoretical problems that arise in the construction of optimal gadgets
(Section 3.2.3.3) deserve further investigation.

• In principle, our data reduction scheme is applicable to all graph problems
where a coloring of the vertices is sought. This includes problems where
a subset of the vertices is sought, such as Vertex Cover or Dominating

Set. However, it remains to find appropriate gadget constructions for
problems other than Balanced Subgraph. It seems promising to extend

60 3 Data reduction

our data reduction scheme to practical solutions of other graph problems.
A loosely related approach—also based on graph separation but without
the gadgeteering—has been used for solving Steiner tree problems [Polzin
and Vahdati Daneshmand 2006].

• Estivill-Castro et al. [2006, Section 3.3] also sketch a general approach
to data reduction rules. In particular, they suggest to use the algebraic
Myhill-Nerode machinery adapted to graph theory [Fellows and Langston
1989, Downey and Fellows 1999]. It is possible that this approach can be
adapted to the task of computing gadgets for arbitrary-sized separators.
This might also lead to a formal characterization of graphs for which
our separation-based data reduction scheme is useful. This is clearly an
interesting area of further research.

Chapter 4

Iterative compression

Of the three main techniques we examine, iterative compression is by far the
youngest, appearing first in a work by Reed et al. in 2004. Although not quite as
generally employable as data reduction or search trees, it appears to be applicable
to a wide range of problems, and it has already led to several breakthroughs in
showing fixed-parameter tractability results.

For instance, the Vertex Bipartization problem, that is, the task of finding a
minimum set of vertices whose deletion destroys all odd-length cycles, has been
shown to be fixed-parameter tractable with respect to the number of deleted
vertices by means of iterative compression [Reed et al. 2004]. For years this had
been an important open problem in parameterized complexity [Mahajan and
Raman 1999]. A number of further fixed-parameter results for various feedback
set problems in graphs have been found since [Dehne et al. 2007, Guo et al.
2006, Dom et al. 2006b, Marx 2006]. Finally, iterative compression was used to
settle the fixed-parameter tractability of Directed Feedback Vertex Set [Chen
et al. 2008], which for quite a while was probably the most notorious concrete
open questions in the field of parameterized complexity, already mentioned by
Downey and Fellows [1995].

Structure of the chapter. We survey known results on iterative compression
in Section 4.1. We then illustrate the basic method of iterative compression by
means of the 3-Hitting Set problem in Section 4.2. Next, we show that also
the Cluster Vertex Deletion problem (Section 4.3) and the Feedback Vertex

Set problem in tournaments (Section 4.4) are amenable to iterative compression.
Then, we provide an iterative compression algorithm for Edge Bipartization

(Section 4.5) and present several speedups. These results generalize to the

61

62 4 Iterative compression

Balanced Subgraph problem (Section 4.5.4). Further, they can be adapted to
the variant Vertex Bipartization (Section 4.6).

Since the running time bounds of iterative compression algorithms are typi-
cally moderate compared to other techniques, iterative compression is attractive
for practical implementations; however, no experimental results were known.
We present the first experimental evidence that iterative compression is a worth-
while alternative for solving Balanced Subgraph (Section 3.2.4) and Vertex

Bipartization in practice (Section 4.6.3).

4.1 Known results

All currently known iterative compression algorithms solve graph modification
problems for hereditary graph classes (see Section 1.5 for definitions and general
results on such problems). We discuss later in this section why these problems
are particularly suited for iterative compression. Most of the algorithms solve
feedback set problems in graphs, that is, problems where one wishes to destroy
certain cycles in the graph by deleting at most k vertices or edges (see Festa
et al. [1999] for a survey on feedback set problems). Clearly, these are all graph
modification problems for hereditary graph properties, but since they have an
infinite set of forbidden subgraphs, it is not immediately clear that they are in
FPT.

• Vertex Bipartization: Destroy all odd cycles by deleting a minimum
number of vertices (Reed et al. [2004], Section 4.6).

• Edge Bipartization: Destroy all odd cycles by deleting a minimum num-
ber of edges (Section 4.5).

• Feedback Vertex Set: Destroy all cycles by deleting vertices [Dehne et al.
2007, Guo et al. 2006, Chen et al. 2007a].

• Feedback Vertex Set in tournaments: Destroy all cycles in a tournament
(that is, a directed graph with exactly one directed edge between any two
vertices) by deleting a minimum number of vertices (Section 4.4).

• Chordal Deletion: Destroy all chordless cycles (that is, induced cycles of
length at least 4) by deleting a minimum number of edges [Marx 2006].

• Directed Feedback Vertex Set: Destroy all cycles in a directed graph by
deleting a minimum number of vertices [Chen et al. 2008].

For some further graph problems that are not feedback set problems, iterative
compression has been used. These all have a characterization by a finite set of

4.2 Basic method 63

forbidden subgraphs, and so a simple fixed-parameter search tree algorithm can
be given; however, the iterative compression algorithms have a much smaller
exponential part of the running time.

• Vertex Cover: Destroy all edges by deleting vertices [Guo 2006, Wernicke
2006, Peiselt 2007]. These algorithms mostly served to explore the technique
of iterative compression and are not competitive with search tree techniques
such as those of Chen et al. [2006].

• 1-regular Deletion: Make the graph 1-regular (that is, every vertex has
degree 1) by deleting vertices [Moser 2007]. This can be seen as a variant of
Vertex Cover, since Vertex Cover is equivalent to 0-regular Deletion.

• Cluster Vertex Deletion: Transform a graph into a disjoint union of
cliques by deleting vertices (Section 4.3).

Finally, recently the first application of iterative compression to a problem that
is not a graph problem was given:

• Almost 2-SAT: Remove clauses to make a 2-CNF formula satisfiable
[Razgon and O’Sullivan 2008].

The flexibility of iterative compression is illustrated by the fact that the
Feedback Vertex Set algorithm can be extended to weighted inputs [Chen et al.
2007a] and to enumerate all solutions [Guo et al. 2006].

4.2 Basic method

The central idea of iterative compression is to use structural induction, for
example over the vertices of a graph. Given an instance graph G, we assume
that we already have a means to solve a smaller instance G− v, that is, G with
one vertex deleted. It is usually easy to adapt the solution for G− v to a solution
for G; however, this solution might then not be optimal anymore. This naturally
leads to the concept of a compression routine.

Definition 4.1. A compression routine is an algorithm that, given a problem instance
and a solution, either calculates a smaller solution or proves that the given solution is
of minimum size.

Using this routine, one finds an optimal solution to a problem by inductively
building up the problem structure and compressing intermediate solutions. The
induction can easily be replaced by iteration, which also explains the name of
iterative compression; we will use the iterative presentation in the following.

64 4 Iterative compression

Iterative compression can often lead to fixed-parameter algorithms, where
the parameter is the solution size. The point is that if we manage to bound
the size of any intermediate solution to be compressed by the parameter, and
the compression routine is a fixed-parameter algorithm, then so is the whole
algorithm.

The strength of iterative compression is that it allows to see the problem
from a different angle: The compression routine does not only have the problem
instance as input, but also a nearly-optimal solution, which carries valuable
structural information on the input. Also, it does not need to find an optimal
solution at once, but only any better solution. Therefore, the design of a com-
pression routine can often be simpler than designing a complete fixed-parameter
algorithm.

However, while the mode of use of the compression routine is often straight-
forward, finding the compression routine itself is typically not. It is not even
clear that a compression routine with interesting running time exists even when
we already know a problem to be fixed-parameter tractable. Therefore, the art
lies in designing the compression routine.

Iterative compression for 3-Hitting Set. As introductory example, we use 3-
Hitting Set. To emphasize the similarity to the other problems of this section,
we formulate it as a hypergraph modification problem.

3-Hitting Set

Instance: A hypergraph G = (V ,E) with |e| = 3 for all e ∈ E and an
integer k > 0.
Question: Is there a hitting set X ⊆ V with |X| 6 k, that is, a set of
vertices whose deletion destroys all hyperedges, that is, yields E = ∅?
Here, deleting a vertex implies also completely deleting all hyperedges
that contain this vertex.

3-Hitting Set is NP-hard [Garey and Johnson 1979]. There is a simple
3-approximation (repeatedly take all three vertices of a hyperedge); it has been
conjectured that this approximation factor cannot be improved [Khot and Regev
2008]. Note that the variant 2-Hitting Set is equivalent to the NP-hard Vertex

Cover problem. 3-Hitting Set has applications in the study of phylogenetic
trees [Downey et al. 1999]; further, it generalizes several problems such as
Cluster Vertex Deletion and Feedback Vertex Set in tournaments, for which
we will give specialized, more efficient iterative compression algorithms in Sec-
tion 4.3 and Section 4.4, respectively. 3-Hitting Set can be solved in O(3k ·m)
time by a simple search tree algorithm: choose any hyperedge {v1, v2, v3} ∈ E and
branch into the three cases v1 ∈ X, v2 ∈ X, and v3 in X. By case distinction and
careful analysis, this has been improved in a series of results to O(2.270k +m)

4.2 Basic method 65

IterativeCompression(G = (V ,E))
1 V ′ ← ∅
2 X← ∅
3 for each v ∈ V :
4 V ′ ← V ′ ∪ {v}

5 X← X ∪ {v}

6 X← Compress(G[V ′],X)
7 return X

Figure 4.1: Pseudo-code for iterative compression, using the compression routine
Compress

[Niedermeier and Rossmanith 2003], then O(2.179k +m) [Fernau 2004, 2005],
and finally O(2.076k +m) [Wahlström 2007]. A kernel of size O(k3) is known
[Niedermeier and Rossmanith 2003], which has recently been improved to O(k2)
vertices and O(k3) edges [Abu-Khzam 2007].

The most obvious way to employ a compression routine is to start with an
approximate solution and then use the compression routine until no further
compression is possible. However, since the running time of the compression
routine depends exponentially on the size of the solution to compress, it is faster
to build up the graph vertex-by-vertex while always keeping a minimal solution.
This is illustrated in the pseudo-code in Figure 4.1.

We start with V ′ = ∅ and X = ∅; clearly, X is a minimum hitting set for G[V ′].
In lines 4 and 5, we add one vertex v /∈ V ′ from V to both V ′ and X. Then X
is still a hitting set for G[V ′], although possibly not a minimum one. We can,
however, obtain a minimum one by applying our compression routine. Here, the
compression routine Compress takes a hypergraph G and a hitting set X for G,
and returns a smaller hitting set for G if there is one; otherwise, it returns X
unchanged. Therefore, it is a loop invariant that X is a minimum-size hitting set
for G[V ′]. Since eventually V ′ = V , we obtain an optimal solution for G once the
algorithm returns X.

Note that we defined a compression routine as a function that returns a
smaller solution, but not necessarily a minimum one. This suffices here, because
the hitting set X ∪ {v} to be compressed can be larger by at most one than an
optimal hitting set X ′ for G[V ′ ∪ {v}]; this is because X ′ is also a hitting set
for G[V ′], and cannot be smaller than the minimum hitting set X. We come back
to this property at the end of Section 4.1.

66 4 Iterative compression

X

X′DS

S ′

G

Figure 4.2: Partition of X

Compress(G,X)
1 for each S ⊆ X:
2 D← X \ S

3 if G[S] is a hyperedge-free graph:
4 G ′ ← G[V \D]
5 S ′ ← CompressDisjoint(G ′,S)
6 if |S ′| < |S|:
7 return (X \ S) ∪ S ′
8 return X

Figure 4.3: Pseudo-code for Compress

It remains to describe the compression routine. The basic idea, which is
shared with all other known iterative compression algorithms, is to reduce the
compression problem to a disjoint compression problem:

Definition 4.2. A disjoint compression routine is an algorithm that, given a problem
instance and a solution X, either calculates a smaller solution that is disjoint from X or
proves that this is not possible.

The reason for working with a disjoint compression routine is that it gives us
extra structure to work with: Not only do we know that G \ X is hyperedge-free,
but also that G[X] is hyperedge-free, because otherwise we can immediately
claim that no compression is possible, since we are not allowed to delete vertices
from X.

For the transformation from compression to disjoint compression, consider
a smaller solution X ′ as a modification of the known solution X. It will retain
some vertices D from X and replace the other vertices S with fewer vertices S ′

(Figure 4.2). The idea (see Figure 4.3) is to try by brute force all 2|X| possibilities
to partition X into S and D (line 1). If G[S] still has hyperedges, then there
is no solution disjoint from S, and we can skip this partition (line 3). Since
we decided to keep all vertices of X in the solution except for those in S, we
can immediately get rid of the other vertices (line 4). We have thus gained the
disjointness assumption at a cost of a factor of 2|X| = O(2k) in the running time.
For 3-Hitting Set, it seems difficult to get this assumptions in a cheaper way;
we later show how to achieve an equivalent result for Edge Bipartization by a
simple input transformation (Graph Transformation 4.1), but that does not seem
to be applicable here. It now remains to find in G[V \D] an optimal hitting set
that is disjoint from S, which is done by the function CompressDisjoint.

To implement CompressDisjoint, we examine possible configurations of
hyperedges (Figure 4.4). Configuration (a) is not possible because of the check

4.2 Basic method 67

S (a)

(b) (c)
(d)

Figure 4.4: Hyperedges in disjoint compression for 3-Hitting Set. Black circles
are vertices, white circles connected to three vertices are hyperedges.

in line 3. Configuration (b) is not possible either, because S is a hitting set for G ′.
If we encounter configuration (c), we can immediately delete the single vertex
that is not in S, since there is no other way to get rid of these hyperedges. So
the only remaining possibility is (d): each remaining hyperedge has exactly one
vertex in S and two in V \ S. Since we are not allowed to remove any vertex
in S, we might as well omit them. This leaves us with a number of 2-element
edges, the task still being to remove vertices to get rid of all edges. This is
exactly the Vertex Cover problem. For Vertex Cover, many fast parameterized
algorithms exist, which we can use to solve the remaining instance. We arrive at
the following theorem.

Theorem 4.1. 3-Hitting Set can be solved in O(2.274kkn2) time by using iterative
compression.

Proof. The data reduction in CompressDisjoint (removal of edges with two
vertices in S) can be executed in O(kn) time, if we do it incrementally and
enumerate subsets of X in a way such that at each step only membership of one
vertex changes; this can be done using a Gray code [Knuth 2004, Section 7.2.1.1].
Then, the remaining task is to solve a Vertex Cover instance with at most n
vertices and m edges. Vertex Cover with a cover size of at most k ′ can be solved
in O(1.274k

′
+ k ′n) time [Chen et al. 2006]. We thus can execute Compress in

O(
∑
S⊆X(1.274|S| + |S|n)) time. Using

∑k
i=0

(
k
i

)
ci = (c + 1)k for any c and the

fact that |S| is bounded by k + 1, this gives an O(2.274kkn) time bound. The
compression routine is called at most n times, giving an overall running time of
O(2.274kkn2) as claimed.

Using a kernelization [Niedermeier and Rossmanith 2003] and the fact that
the rounding of the exponential base allows us to omit polynomial factors of k,
we can even claim a running time of O(2.274k +m) (although this borders on
abuse of the Big O notation).

68 4 Iterative compression

The running time of this iterative compression algorithm is already competi-
tive with that of the algorithm of Niedermeier and Rossmanith [2003], which
runs in O(2.270k+m) time; however, it is not as fast as the best known 3-Hitting

Set algorithm by Wahlström [2007] running in O(2.076k+m) time. Still, it might
be a useful approach to solving 3-Hitting Set in practice, in particular since
except for the Vertex Cover subroutine, it is very simple, and high-performance
Vertex Cover implementations have been presented (e. g. Abu-Khzam et al.
[2004a], Felner et al. [2004]).

Furthermore, we can in the same way use iterative compression to solve
4-Hitting Set using a 3-Hitting Set algorithm, or more generally d-Hitting

Set using iterative compression and a (d − 1)-Hitting Set algorithm. If we
use the 3-Hitting Set algorithm by Wahlström [2007], we obtain the following
theorem.

Theorem 4.2. 4-Hitting Set can be solved in O(3.076k +m) time, and 5-Hitting

Set can be solved in O(4.076k +m) time.

These algorithms are faster than the previously fastest known by Fernau
[2005] running in O(3.116k + m) and O(4.079k + m) time, respectively. For
d-Hitting Set with d > 5, this approach does not yield new records anymore;
further, we have an increasing polynomial overhead with growing d.

We now examine how compression routines work for the known algorithms.
They all start with the same opening move that we used for 3-Hitting Set,
namely forcing the new solution to be disjoint from the known one. After that,
however, they widely diverge:

• For Vertex Bipartization and Edge Bipartization, it is possible to reduce
the remaining task to finding a vertex (resp. edge) cut set, which can be
done in polynomial time by maximum flow techniques. We describe this in
detail for Edge Bipartization in Section 4.5.4. The running time is O(2k ·
m2) for Edge Bipartization and O(3k ·mn) for Vertex Bipartization.

• For Feedback Vertex Set, data reduction rules allow to shrink the re-
maining instance so that it can be solved by brute force [Dehne et al. 2007,
Guo et al. 2006] or a search tree [Chen et al. 2007a], the latter yielding
an O(5kkn2) time bound.

• For Feedback Vertex Set in tournaments, data reduction further constrains
the possible solution such that it can be found with a polynomial-time
Longest Increasing Subsequence routine. We describe this algorithm
with a running time bound of O(2k · n2(logn+ k)) in detail in Section 4.4.

• For Chordal Deletion, the graph is reduced until it obtains bounded
treewidth, a property that allows fixed-parameter algorithms [Marx 2006].

4.2 Basic method 69

The running time of the overall algorithm is not stated explicitly and a
simple analysis cannot bound the running time by ck · nO(1) for any c.

• For Directed Feedback Vertex Set, the remaining task is reduced to
a Multicut variant in a directed acyclic graph [Chen et al. 2008]. The
running time is k! 8k · nO(1).

• For Vertex Cover, the remaining task is trivially polynomial-time solvable.
By omitting to consider certain subsets of the known solution, the running
time can be reduced to O(1.443kmn

√
n) [Peiselt 2007].

• For 1-regular Deletion, the instance is reduced until the remaining
instance can be solved by finding a maximum flow [Moser 2007]. The
running time is 2k · nO(1).

• For Cluster Vertex Deletion, after some data reduction the remaining
instance can be solved in polynomial time using matching techniques,
yielding a running time of O(2k · km√n logn).

• For Almost 2-SAT, the problem is reduced to the satisfiability variant
2-SLASAT by iterative compression [Razgon and O’Sullivan 2008]. The
running time is O(15k · km3).

There have been some attempts at classifying problems amenable to iterative
compression. As Guo [2006, Section 2.1] notes, we need an augmentation element,
over which the main loop (Figure 4.1, line 3) iterates. In all known examples,
this is either a vertex or an edge of a graph. For iterative compression to work,
the problem must behave monotonous with respect to adding augmentation
elements, that is, an intermediate solution must not become a smaller by adding
an augmentation element. This is because otherwise we cannot any longer
bound the size of intermediary solutions X by k. As an example, consider the
following NP-hard problem:

Cluster Deletion

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k edge deletions into a cluster
graph, that is, a graph where every connected component is a clique?

A natural choice for augmentation elements is edges. However, the problem
is not monotonous then. To see this, consider as input an n-vertex clique. Before
the last iteration, we have a clique with one edge missing, which requires n− 2
edge deletions. However, when we add the final edge, we need no deletion at all
anymore, so the clearly the size of the intermediary solution cannot be bounded
by k = 0.

70 4 Iterative compression

For vertex deletion problems with vertices as augmentation elements, it
suffices that the graph class is hereditary to get the monotonicity property:
if we add one vertex v to a graph, the optimal solution size cannot become
smaller, since if X is a solution for G + v, then X − v is a solution for G by
the hereditariness, and this solution is not larger. For edge deletion problems
with edges as augmentation elements, we additionally need the graph class to
be monotone, that is, closed under vertex and edge deletions, which is not the
case for cluster graphs. However, iterative compression might still be feasible
for non-hereditary or non-monotone classes by using a different augmentation
element.

4.3 Iterative compression for Cluster Vertex Deletion

In this section, we show how to solve the weighted Cluster Vertex Deletion

problem by iterative compression. This yields the fastest currently known FPT
algorithm for this problem. It also demonstrates that iterative compression
can be successfully employed for problems that are not feedback set problems.
Further, it is one of the first examples where iterative compression is used to
solve a weighted problem (another recent example was given by Chen et al.
[2007a]). We first state the unweighted version.

Cluster Vertex Deletion

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k vertex deletions into a
cluster graph, that is, a graph where every connected component is a
clique?

Cluster Vertex Deletion is motivated by graph-modeled clustering (see
Hüffner et al. [2007c] for a survey on FPT techniques in graph-modeled clus-
tering). The underlying model is that we have a number of samples, some of
which are equivalent (e. g., DNA samples, some of which are from the same
species) and a method to test two samples for equivalence. A graph is formed
where each vertex corresponds to a sample and an edge between two vertices is
added when their samples are tested as equivalent. In the absence of errors, the
resulting graph is a cluster graph, where each connected component corresponds
to an equivalence class of the equivalence relation (e. g., a species). However,
an unknown subset of samples is contaminated and produces unpredictable
comparisons to other samples. A minimum solution for Cluster Vertex Dele-
tion, that is, a minimum set of vertices whose deletion produces a cluster graph,
provides the most parsimonious explanation for the data under this model.
Note that cluster graphs are exactly the graphs with clustering coefficient 1 (the

4.3 Iterative compression for Cluster Vertex Deletion 71

clustering coefficient is defined as the probability that if {u, v} ∈ E and {v,w} ∈ E,
then also {u,w} in E).

Cluster Vertex Deletion can also be seen as the problem of making a
symmetric relation transitive by omitting a minimum number of elements. The
related problem of making an antisymmetric relation transitive by omitting
a minimum number of elements is also known as Feedback Vertex Set in
tournaments; we will also show an iterative compression algorithm for Feedback

Vertex Set in tournaments in Section 4.4, albeit using very different algorithmic
techniques for the compression routine.

In practical clustering applications, we often have additional information
available on the confidence in certain measurements. For example, Rahmann
et al. [2007] advocated to consider weighted Cluster Editing, where a real
number describes the confidence put into the correctness of each edge or non-
edge. In our setting, we can use vertex weights to model how much confidence
we have in a sample to be non-faulty. The task is then to delete a set of vertices
with minimum total weight to obtain a cluster graph:

Weighted Cluster Vertex Deletion

Instance: An undirected graph G = (V ,E), a vertex weight function
ω : V → [1,∞), and a nonnegative number t.
Question: Is there a subset X ⊆ V with

∑
v∈Xω(x) 6 t such that

deleting all vertices in X from G results in a cluster graph?

4.3.1 Known results on Cluster Vertex Deletion

We first consider the unweighted case. The variant Cluster Editing, where the
assumption is that the data has been distorted by adding and deleting edges
instead of vertices, has been studied in several works (e. g., Shamir et al. [2004],
Bansal et al. [2004]). For Cluster Editing, the task is to delete or insert at most
k edges such that the input graph becomes a cluster graph. The search tree
algorithm of Gramm et al. [2005] with a running time bound of O(2.270k + n3)
has been experimentally evaluated [Dehne et al. 2006]. A faster algorithm
running in O(1.920k + n3) time was obtained using computer-generated search
trees [Gramm et al. 2004]. A recent manuscript by Böcker et al. [2007] claims a
running time of O(1.83k+n3) by using a different branching strategy and reports
further experimental results. The best known polynomial-time approximation is
by a factor of 2.5 [Ailon et al. 2005b, van Zuylen and Williamson 2007].

In comparison to Cluster Editing, so far Cluster Vertex Deletion has
been neglected. The class of cluster graphs is hereditary, and thus Cluster

Vertex Deletion is NP-hard and MaxSNP-hard (see Section 2.1). Because of the
hereditariness, it must have a characterization by forbidden subgraphs. In fact,
this well-known characterization is very simple.

72 4 Iterative compression

Lemma 4.1. A graph is a cluster graph iff it does not contain an induced P3, that is,
an induced path of 3 vertices.

Proof. We show both directions by contraposition. If a graph contains a P3
with vertices u, v,w, then the connected component containing u, v, and w is
clearly not a clique. If a graph is not a cluster graph, then there is a connected
component where two vertices u and w are not connected by an edge. Let a
shortest path between u and w be v1 = u, v2, . . . , vc = w. Then v1, v2, v3 forms
a P3.

This characterization leads to a simple polynomial-time factor-3 approxima-
tion: Repeatedly find a P3 and delete all three of its vertices. The characterization
also easily yields an O(3km) time search tree algorithm: Find a P3, and branch
into 3 cases, corresponding to deleting one of the three vertices of the P3. Note
that a P3 can be found in linear time. Gramm et al. [2004] used an elaborate
case distinction found with computer help to improve this search tree algorithm
to O(2.257km) time. The fastest previously known algorithm, however, is ob-
tained by a reduction to the 3-Hitting Set problem introduced in Section 4.2: we
use V as ground set and the set of P3’s as subset collection. In combination with
the currently best known (rather involved) 3-Hitting Set algorithm [Wahlström
2007], this yields a running time of O(2.076k + n3).

Abu-Khzam [2007] showed that 3-Hitting Set has a kernel of O(k2) vertices.
The running time of the 3-Hitting Set kernelization algorithm is the maximum
of O(m) and O(n2.5), where m is the number of hyperedges and n is the
number of vertices, and the kernel is an induced subhypergraph of the original
instance. Therefore, it can be used to find an O(k2)-vertex kernel for Cluster

Vertex Deletion by collecting the set of O(n3) P3’s, applying the 3-Hitting Set

kernelization, and then taking the subgraph induced by the remaining vertices.
The total running time of this kernelization is O(n3). In contrast, for Cluster

Editing, after a series of improvements [Gramm et al. 2005, Protti et al. 2006,
Fellows et al. 2007b], a kernel of only 4k vertices is known [Guo 2007].

We now turn our attention to the weighted case. For both Cluster Editing

and Cluster Vertex Deletion, the simple 3k-size search tree still works, because
we can bound the height of the search tree by k, since every vertex has weight at
least 1. However, more sophisticated branching strategies for the unweighted
case do not necessarily apply. For weighted Cluster Editing, Rahmann et al.
[2007] give experimental results for the 3k-size search tree. Böcker et al. [2007]
improve the running time to (1.83k + n3) and give a problem kernel of O(k2)
vertices, which can be found in O(n3) time. The best known polynomial-time
approximation is by a factor of 4 [Charikar et al. 2005]. For weighted Cluster

Vertex Deletion, the previously best algorithm is obtained by a reduction
to weighted 3-Hitting Set [Fernau 2006a], which yields a running time of

4.3 Iterative compression for Cluster Vertex Deletion 73

CompressCVD(G,X)
1 X ′ ← X

2 for each S ⊆ X:
3 if G[S] is a cluster graph:
4 G ′ ← G \ (X \ S); R← V(G ′ \ S)
5 G ′ ←ReduceRule4.1(G ′)
6 G ′ ←ReduceRule4.2(G ′)
7 G ′ ←ReduceRule4.3(G ′)
8 Classify each vertex u in R according to N(u) ∩ S
9 H← auxiliary graph

10 M← maximum weight matching in H
11 Delete all vertices not in a class corresponding to an edge in M
12 D← vertices deleted in lines 4–7 and 11
13 if ω(D) < ω(X ′):
14 X ′ ← D

15 return X ′

Figure 4.5: Pseudo-code for CompressCVD

2.248k ·nO(1). Abu-Khzam and Fernau [2006] give a kernelization for unweighted
3-Hitting Set that yields O(k3) vertices and runs in linear time. Since all this
kernelization does is to delete vertices that have to be deleted in any case, it can
also be used to kernelize weighted Cluster Vertex Deletion to an O(k3)-vertex
kernel.

4.3.2 Iterative compression algorithm

We now describe an algorithm for weighted Cluster Vertex Deletion which
improves the running time toO(2k·k9+n3). The iterative compression framework
is the same as for 3-Hitting Set (Figure 4.1): we add vertices one by one to both
the graph and the solution set, and keep the solution minimum by using the
compression routine. In the rest of this section, we describe the compression
routine CompressCVD following the pseudo-code in Figure 4.5. The basic
approach is also the same as for 3-Hitting Set: We try by brute force all
possibilities to divide the known solution into two parts, one part to keep and
one part S to exchange by a smaller part (line 2). We discard partitions where S
does not induce a cluster graph (line 3); these cannot lead to a solution, since
we determined that none of the vertices in S would be deleted. Note that since
we are considering a weighted problem, we cannot bail out as soon as we have

74 4 Iterative compression

S

(a) CVD Disjoint Compression instance

S

(b) After Rule 4.1

S

(c) After Rule 4.2

S

(d) After Rule 4.3

Figure 4.6: Data reduction in the disjoint compression routine for Cluster

Vertex Deletion

achieved some compression, since there might be several solutions of smaller
weight; therefore, we store the currently best found solution in X ′. As described
in Section 4.2, it remains to find a disjoint compression routine, formalized as
follows.

CVD Disjoint Compression

Instance: An undirected graph G = (V ,E), a vertex weight function
ω : V → [1,∞), and a subset S ⊆ V such that G[S] and G[V \ S] are
cluster graphs.
Task: Find a set X ′ ⊆ V \ S such that G \ X ′ is a cluster graph and∑
v∈Xω(x) is minimum.

While for 3-Hitting Set, this is done with an exponential-time Vertex Cover

algorithm, here we will be able to solve the task in polynomial time (Figure 4.5
lines 4–14). An example instance is shown in Figure 4.6a. We call a connected
component in a cluster graph a cluster. The instance can now be reduced by a
series of data reduction rules. The results are shown in Figures 4.6b–d.

Reduction Rule 4.1. Delete all vertices in R := V \ S that are adjacent to more than
one cluster in G[S].

Proof of correctness. If a vertex v ∈ R is adjacent to vertices u and w in different

4.3 Iterative compression for Cluster Vertex Deletion 75

S

(a) Classification

S

1

12

2

22

(b) The corresponding assignment problem

S

(c) Final resulting cluster graph

Figure 4.7: Assignment problem in the iterative compression algorithm for
Cluster Vertex Deletion

clusters in S, then uvw induces a P3, which can only be removed by deleting v.

Reduction Rule 4.2. Delete all vertices in R that are adjacent to some, but not all
vertices of a cluster in G[S].

Proof of correctness. If a vertex v ∈ R is adjacent to a vertex u, but not to a
vertex w in a cluster in S, then vuw induces a P3, which can only be removed by
deleting v.

Reduction Rule 4.3. Remove connected components that are cliques.

Proof of correctness. No optimal solution can delete vertices in such components.

After Rules 4.1–4.3 have been applied, the instance is much simplified (Fig-
ure 4.6d). In each cluster in G[R], we can divide the vertices into equivalence
classes according to their neighborhood in S; each class then contains either
vertices adjacent to all vertices of a particular cluster in G[S], or the vertices
adjacent to no vertex in S (see Figure 4.7a). This classification is useful because
of the following lemma.

76 4 Iterative compression

Lemma 4.2. In an optimal CVD compression solution, for each cluster in G[R],
either the vertices of exactly one class are still present, or the whole cluster is deleted.

Proof. Clearly, it is never useful to delete only some, but not all vertices of
a class, since if that led to an optimal solution, we could always re-add the
deleted vertices without introducing new P3’s. Further, if v ∈ R is connected to
some w ∈ S, and u is a vertex from the same cluster as v, but from a different
class, then uvw is a P3; therefore, we cannot keep vertices from two different
classes within a cluster.

Because of Lemma 4.2, the remaining task is an assignment of each cluster
in G[R] to one of its classes (corresponding to the preservation of this class, and
the deletion of all other classes within the cluster) or to nothing (corresponding to
the complete deletion of the cluster). However, we cannot do this independently
for each cluster; we must not choose two classes from different clusters in G[R]
that are connected to the same cluster in G[S], since that would create a P3. This
can be modelled as a bipartite matching problem (also known as assignment
problem) in an auxiliary graph H, where each edge corresponds to a possible
choice (see Cormen et al. [2001] for an introduction or Lovász and Plummer
[1986] for details on matching problems). The graph H is constructed as follows
(see Figure 4.7b, where we assume unit weights for the vertices):

• Add a vertex for every cluster in G[R] (white vertices).

• Add a vertex for every cluster in G[S] (black vertices in S).

• For a cluster CS in G[S] and a cluster CR in G[R], add an edge between the
vertex for CS and the vertex for CR if there is a class in CR connected to CS.
This edge corresponds to choosing this class for CR and is weighted with
the total weight of the vertices in this class.

• Add a vertex for each class in a cluster CR that is not connected to a
cluster in G[S] (black vertices outside S), and connect it to the vertex
representing CR. Again, this edge corresponds to choosing this class
for CR and is weighted with the total weight of the vertices in this class.

Since we only added edges between a black and a white vertex, H is bipartite.
The task is now to find a maximum-weight bipartite matching, that is, a set of edges
of maximum weight where no two edges have an endpoint in common. This
allows any choice for a cluster, as long as no two clusters share edges to the
same cluster in G[S]. The following lemma shows that this is a valid approach:

Lemma 4.3. A maximum-weight bipartite matching in H provides an optimal CVD
compression solution.

4.3 Iterative compression for Cluster Vertex Deletion 77

Proof. Each edge in a matching corresponds to a class in a cluster of G[R]. The
CVD compression solution is to delete all vertices in R but those of the selected
classes. The matching cannot select two classes within the same cluster, since the
corresponding edges have an endpoint in common; similarly, it cannot select two
classes that share a connection to the same cluster in G[S]. Therefore, a matching
yields a feasible solution. By Lemma 4.2, an optimal CVD compression solution
corresponds to an assignment of each cluster to one of its classes or to nothing,
and therefore, it corresponds to a matching. Finally, the weight of a matching
corresponds to the weight of the vertices not deleted from R, and therefore
a maximum-weight matching corresponds to an optimal CVD compression

solution.

Figure 4.7c shows the resulting cluster graph for our example after deleting
the vertex sets corresponding to edges that are not selected by the minimum-
weight matching shown in Figure 4.7b by bold edges. We can now summarize
the findings in the following theorem.

Proposition 4.1. Weighted Cluster Vertex Deletion can be solved in O(2t ·
n2(m+ n logn)) time.

Proof. The correctness of the algorithm has been shown above. It remains to
bound the running time. We can find clusters in S and R in O(m) time by depth-
first search within G[S] and G[R]. Rule 4.1 can then be executed in O(m) time. If
Rule 4.1 has been applied, Rule 4.2 can be executed in O(m) time by examining
the degree of each vertex in R. Finally, we need to find a maximum weight
matching in a bipartite graph with at most n vertices and at mostm edges, which
can be done in O(n(m + n logn)) time [Fredman and Tarjan 1987]. Therefore,
we can solve CVD Compression in the same time. The number of vertices in
an intermediary solution X to be compressed is bounded by t+ 1, because any
such X consists of an optimal solution for a subgraph of G plus a single vertex.
In one compression step, CVD Compression is thus solved O(2t) times, and
there are n compression steps, yielding a total of O(2t ·n2(m+n logn)) time.

For the unweighted case, we can get better running times. For each matching
instance, we can then use an algorithm for integer weighted matching with a
maximum weight of C = n [Gabow and Tarjan 1989], yielding a running time
of O(m

√
n log(nC)) = O(m

√
n logn). Further, as Guo [2006, Section 4.3] points

out, in iterative compression, we can save some iteration rounds by starting
with a large subgraph for which we can still find in polynomial time a solution
of size at most k. The same idea is attributed by Chen et al. [2007a] to Hans
L. Bodlaender (Universiteit Utrecht). We call a set of vertices whose deletion
produces a cluster graph a CVD set. For Cluster Vertex Deletion, we can find

78 4 Iterative compression

a CVD set of size at most 3k by simply repeatedly finding a P3 and then taking
all three of its vertices. We can then start the iteration with G lacking these
at most 3k vertices and an empty CVD set, after which we will need only 3k
iteration rounds. This gives the following theorem.

Theorem 4.3. Unweighted Cluster Vertex Deletion can be solved in O(2k ·
km
√
n logn) time.

Note also that in the unweighted case, we can bail out in line 14 of Figure 4.5
as soon as we have found a CVD set of smaller size, which presumably gives
some speedup in practice. We can further avoid the factor of a polynomial of n
in the exponential term by kernelization.

Theorem 4.4. Unweighted Cluster Vertex Deletion can be solved in O(2k ·
k6 logk+ n3) time.

Proof. In O(n3) time, we apply the kernelization by Abu-Khzam [2007], which
gives us an instance with O(k2) vertices. We then apply Theorem 4.3.

Curiously, we can use this unweighted algorithm as a subroutine to speed up
the weighted case: if we have a solution for an unweighted instance, we can get
an optimal weighted solution by executing the compression routine once. This
works because the compression does only require that the set X to compress is a
CVD set, and does not make any assumptions about its weight.

Theorem 4.5. Weighted Cluster Vertex Deletion can be solved in O(2k ·k9 +n3)
time.

Proof. We first solve the unweighted problem in O(2k · k6 logk+ n3) time using
Theorem 4.4. A single compression takes O(2k · n(m+ n logn)) time. Using the
kernelization by Abu-Khzam and Fernau [2006], we can inO(n3) time first shrink
the instance to O(k3) vertices, giving a time of O(2k(k9 + k6 logk)) = O(2kk9)
for the compression. In total, we arrive at the claimed bound.

Note that the algorithm behind Theorem 4.5 always gives a better bound
than Proposition 4.1: first, because of the minimum weight of 1, the parameter k
is always less or equal to the parameter t, and second, we can more precisely
bound the running time in Theorem 4.5 by O(2k ·min{k9,n(m+ n logn)}) + n3,
because the size of the kernel is bounded by n.

4.3.3 Outlook

The results open up a number of possible lines of research.

4.4 Iterative compression for Feedback Vertex Set in tournaments 79

Clearly, it is desirable to further improve the running time. It seems difficult
to improve the factor of 2k in Proposition 4.1; if for example the solution X
to be compressed already induces a cluster graph, then also any subset of X
induces a cluster graph, and we can omit none in the enumeration (Figure 4.3,
line 1). However, in practice, it is conceivable that X induces a graph that is not a
cluster graph. In that case, we can save some time by directly enumerating only
those subsets that induce cluster graphs. For example, if X induces a set of k
C4’s (induced cycles of length 4), then only 12k of the 24k = 16k subsets induce
cluster graphs, a tremendous speedup. To take the maximum advantage of this,
it would be desirable to have an enumeration algorithm whose running time is
polynomial per subgraph that is generated (Damaschke [2005] provides such
an algorithm for Cluster Editing). It would require some experiments to see
whether this improvement is worthwhile in practice.

A further bottleneck is the matching routine. Unfortunately, it seems difficult
to replace it with a simpler approach, since it is not hard to see that the general
bipartite matching problem can be reduced to the subproblem encountered.
However, a speedup here might be attainable by exploiting the similarity of the
subproblems solved; this worked for Edge Bipartization (Section 4.5.2).

It is further open to improve the trivial factor-3 approximation. Cai et al.
[2001] improved the approximation factor for Feedback Vertex Set in tourna-
ments, which is also characterized by a 3-vertex forbidden subgraph, from 3
to 2.5; perhaps similar techniques are applicable here.

Finally, for practical applications it is desirable to improve the size of the
kernel. Possibly, some ideas of the kernels for Cluster Editing [Protti et al.
2006, Fellows et al. 2007b, Guo 2007] could be adapted.

4.4 Iterative compression for Feedback Vertex Set in
tournaments

In this section, we show how to solve weighted Feedback Vertex Set in tour-
naments using iterative compression, which yields the fastest currently known
algorithm for this problem. This is the first application of iterative compression
to a problem on directed graphs (see also Gutin and Yeo [2007] for a survey on
parameterized problems on directed graphs). The question whether Feedback

Vertex Set on general directed graphs is fixed-parameter tractable had been
famously open for a long time and has only recently been resolved positively,
also using iterative compression [Chen et al. 2008]; however, the given algorithm
incurs a much worse combinatorial explosion with respect to the parameter k
than those specialized to tournaments.

80 4 Iterative compression

The Feedback Vertex Set problem asks for a minimum number of vertices to
delete from a graph to make it acyclic. It was one of the 21 problems for which
NP-hardness was first shown by reduction [Karp 1972]. Due to applications such
as voting systems [Charon and Hudry 2007] and rank aggregation [Ailon et al.
2005a], the class of tournaments has received particular interest. A tournament is
an orientation of a complete undirected graph, or equivalently, it is a directed
graph where between any two distinct vertices there is exactly one arc. Thus,
the central problem of this section is defined as follows:

Feedback Vertex Set in tournaments (FVST)
Instance: A tournament T = (V ,A) and an integer k > 0.
Question: Can T be transformed by up to k vertex deletions into a
directed acyclic graph?

4.4.1 Known results on Feedback Vertex Set in tournaments

FVST is NP-hard [Speckenmeyer 1989]. The following well-known lemma allows
a different characterization of FVST.

Lemma 4.4. A tournament is acyclic iff it contains no triangles, that is, directed cycles
of length 3.

Proof. Clearly, an acyclic graph contains no triangle; it remains to show that a
tournament that contains a cycle also contains a triangle. Consider for a contra-
diction a shortest cycle v1, v2, . . . , vc, v1 with c > 3 in a tournament T = (V ,A).
If (vc, v2) ∈ A, then v2, . . . , vc, v2 is a shorter cycle, which is a contradiction.
Otherwise, (v2, vc) ∈ A, and we have a triangle v1v2vc, which is also a contradic-
tion.

By Lemma 4.4, like with Cluster Vertex Deletion, we can think of FVST as
a special case of 3-Hitting Set: find a set of vertices which hits each triangle.
This easily yields a 3-approximation: while there is a triangle, delete all three
of its vertices. The approximation factor has been improved to 2.5 [Cai et al.
2001]. An approximation-preserving reduction from Vertex Cover to FVST
[Speckenmeyer 1989] together with the inapproximability result for Vertex

Cover [Dinur and Safra 2005] shows that it is NP-hard to approximate FVST
better than by a factor of 1.36.

The approximation hardness results make fixed-parameter algorithms with
the natural parameter k attractive. The hitting set characterization immediately
gives an O(3k)-size search tree. Raman and Saurabh [2006] have given the first
nontrivial result by giving fixed-parameter algorithms for weighted FVST with
real weights > 1 running in O(2.415k · n2.376) time, where k is the total weight of

4.4 Iterative compression for Feedback Vertex Set in tournaments 81

the removed vertices. For the unweighted case of FVST, the previously fastest
parameterized algorithm is obtained by an elaborate 3-Hitting Set algorithm
and runs in O(2.076k + n3) time [Wahlström 2007]. Using Lemma 4.4, in the
same way as for Cluster Vertex Deletion, we can obtain in O(n3) time a
kernel of O(k2) vertices for Feedback Vertex Set in tournaments by using the
kernelization for 3-Hitting Set [Abu-Khzam 2007].

The related problem Feedback Arc Set in tournaments (FAST), where we
ask for a minimum number of arcs to delete to make a tournament acyclic,
has also been considered frequently. Its NP-hardness was open for a long time
and has only recently been proved. Alon [2006] gave a randomized reduction,
which was independently derandomized by Ailon et al. [2005a] and Charbit et al.
[2007]. Also independently, Conitzer [2006] gave a deterministic reduction from
MaxSAT. FAST is easier to approximate than FVST: there is a polynomial-time
approximation scheme (PTAS) [Kenyon-Mathieu and Schudy 2007], meaning
that for any any fixed approximation factor, a polynomial-time approximation
algorithm can be given. Like for FVST, Raman and Saurabh [2006] gave a fixed-
parameter algorithm running in O(2.415k · n2.376) time. It is also easy to show
that FAST has a kernel of O(k2) vertices [Dom et al. 2006b]. Raman et al. [2007]
provided an exact (not parameterized with respect to k) algorithm solving FAST
in O(1.555m) time.

We improve the time bound of exactly solving weighted FVST to O(2k ·
n2(logn+ k)). This also demonstrates the applicability of the elegant iterative
compression method in contrast to the more standard case-distinction based
search tree approaches employed by Raman and Saurabh [2006] and Wahlström
[2007]. Further, this allows us to give an exact (not parameterized) algorithm for
FVST running in O(1.709n) time, answering a question of Woeginger [2008].

4.4.2 Iterative compression algorithm

We use the same overall scheme as for 3-Hitting Set (Figure 4.1); this works
since we are dealing with a vertex deletion problem for a hereditary graph class,
and thus have the desired monotonicity of solution size with respect to adding
vertices.

Compression Routine. To make the task of looking for a smaller feedback
vertex set for a tournament T easier, we would like to restrict our search to
feedback vertex sets that are disjoint from a given one. This is the same approach
as used in Section 4.3 and all other iterative compression algorithms. We can
achieve this in the same way as for 3-Hitting Set (see Figure 4.3): by a brute-
force enumeration of all O(2k) possibilities to partition the given feedback vertex
set X into two vertex sets S and X \ S. For each partition, we then look only for

82 4 Iterative compression

solutions that contain all of X \ S (they can immediately be deleted from the
tournament), but none of S. Further, we can omit all partitions where T [S] is
not cycle-free, since we determined none of the vertices in S would be deleted.
Therefore, all that remains is to deal with the following problem.

FVST Disjoint Compression

Instance: A tournament T = (V ,A) and a subset S ⊆ V such that T [S]
and T [V \ S] are acyclic.
Task: Find a set S ′ ⊆ V \ S with |S ′| < |S| such that T \ S ′ is acyclic.

Up to this point, the algorithm is analogous to the iterative compression
algorithm for undirected Feedback Vertex Set [Dehne et al. 2007, Guo et al.
2006]. The core part of the compression routine, however, is completely different;
in particular, we will be able to solve the remaining task of finding a smaller
feedback vertex set that is disjoint from the given one S in polynomial time,
whereas Dehne et al. [2007] and Guo et al. [2006] still require exponential time.

Consider a FVST Disjoint Compression instance (T ,S). As mentioned,
both T [S] and T [V \ S] are acyclic and thus have a topological sort (note that
the topological sort of a tournament is unique). Then, the topological sort of
a maximum acyclic subtournament of T containing all of S can be thought of
as resulting from inserting a subset of V \ S into the topological sort of S. On
the one hand, the order of the inserted subset must not violate the topological
sort of T [V \ S]. On the other hand, we can achieve by a data reduction rule that
for every v ∈ V \ S, the subtournament T [S ∪ {v}] is acyclic and therefore v has a
“natural” position within the topological sort of S. We then obtain the maximum
acyclic subtournament as the longest common subsequence of the topological
sort of T [V \ S] and V \ S sorted by natural position within S.

We describe this in more detail using the subroutine displayed in Figure 4.8.
First we apply data reduction to the instance: whenever there is a triangle
with two vertices in S, we can only get rid of this triangle by deleting the
third vertex (lines 3–5). After applying this reduction rule exhaustively, for
any v ∈ V \ S the subtournament T [S ∪ {v}] clearly does not contain triangles
anymore and therefore is acyclic by Lemma 4.4. This means that we can insert v
at some point in the topological sort s1, . . . , s|S| of S without introducing back
arcs (that is, arcs pointing from a higher indexed vertex to a lower indexed vertex
in the sort). Since T is a tournament, there is thus some integer p[v] such that
for i < p[v], there is an arc from si to v, and for i > p[v], there is an arc from v

to si (Figure 4.9):

(v, si) ∈ A ⇐⇒ i > p[v]. (4.1)

4.4 Iterative compression for Feedback Vertex Set in tournaments 83

Input: Tournament T = (V ,A) and a feedback vertex set S for T .
Output: A minimum feedback vertex set F for T with F ∩ S = ∅.

1 s1, . . . , s|S| ← topological sort of T [S]
2 R← ∅
3 while there is a triangle u, v,w with u, v ∈ S and w ∈ V \ S:
4 R← R ∪ {w}

5 T ← T −w
6 for each v ∈ V \ S:
7 p[v]← min({i | (v, si) ∈ A} ∪ {|S| + 1})
8 L← topological sort of T [V \ S]
9 P ← V \ S sorted by p, with position in L as tie-breaker

10 Y ← vertices in a longest common subsequence of L and P
11 return R ∪ ((V \ S) \ Y)

Figure 4.8: Algorithm for FVST Disjoint Compression

s1 s2 sp[v]−1 sp[v] sp[v]+1 s|S|

v

· · · · · ·

· · · · · ·

S

V \ S

Figure 4.9: Illustration of equivalence (4.1). For clarity, only some of the arcs
within the acyclic subtournaments T [S] and T [V \ S] are shown.

We calculate p in lines 6–7: when we encounter the first si in the topological
sort of S where (v, si) ∈ A, we can insert v before si; if there is no such si, we
set p[v] to |S| + 1, and (4.1) still holds.

We now construct a sequence P from p (line 9), where vertices from V \S that
are positioned by p between the same two vertices of S are ordered according
to their relative position in the topological sort of T [V \ S]. Clearly, any acyclic
subtournament of T containing all of S must have a topological sort where the
vertices from V \ S occur in the same order as in P. The same holds for the
topological sort L of T [V \ S], which is calculated in line 8. This leads to the
following lemma.

Lemma 4.5. After line 9 of the algorithm in Figure 4.8, T is acyclic iff the sequences L
and P are equal.

84 4 Iterative compression

s1 s2 s3 s4

v1 v2 v3 v4 v5 v6

2 1 3 2 4 3p

s1 s2 s3 s4

2 3 4

v1 v3 v5

S

V \ S

T

Figure 4.10: Example for the subroutine in Figure 4.8. For clarity, only some
of the arcs within the acyclic subtournaments T [S] and T [V \ S] are shown.
Left: Tournament T after data reduction with L = v1, v2, v3, v4, v5, v6 and P =
v2, v1, v4, v3, v6, v5. A longest common subsequence is v1, v3, v5, yielding the
acyclic graph shown on the right.

Proof. “⇒”: Consider the case that for all v,w ∈ V \ S with (v,w) ∈ A we
have p[v] 6 p[w]. Then v occurs in L before w, because L is a topological sort,
and by definition we also have that v occurs before w in P. Therefore, the relative
order of any two vertices is the same in L and P, and L and P are equal.

Thus, if L and P are not equal, then there are v,w ∈ V \ S with (v,w) ∈ A
but p[v] > p[w]. Then by (4.1) we have (w, sp[w]) ∈ A and (v, sp[w]) /∈ A ⇒
(sp[w], v) ∈ A, and T contains the cycle v,w, sp[w].
“⇐”: By Lemma 4.4, it suffices to look for triangles to decide whether T is acyclic.
Since T [S] and T [V \S] are acyclic and we destroyed all triangles with two vertices
in S, there can only be triangles with exactly two vertices in V \ S. If L and P
are equal, then for all v,w ∈ V \ S with (v,w) ∈ A we have p[v] 6 p[w]. Then
by (4.1), there cannot be any si with (w, si) ∈ A and (si, v) ∈ A, and there can
be no triangle in T .

With the same justification, Lemma 4.5 holds for induced subgraphs of T
and the corresponding sequences L and P. Clearly, deleting a vertex v ∈ V \ S

from T affects L and P only insofar as v disappears from L and P. Therefore, the
cheapest way to make T acyclic by vertex deletions can be obtained by finding
the cheapest way to make L and P equal by vertex deletions; this is exactly the
complement of the longest common subsequence of L and P. We then obtain
the desired feedback vertex set for T by adding the vertices of this complement
to those of R, since R contains the vertices that were determined to be in any
feedback vertex set in the reduction step (lines 10–11). Figure 4.10 shows an
example for the execution of the subroutine from Figure 4.8.

4.4 Iterative compression for Feedback Vertex Set in tournaments 85

In summary, the subroutine from Figure 4.8 is correct and can be used to
solve Feedback Vertex Set in tournaments by iterative compression as described
at the beginning of this section.

Theorem 4.6. Using iterative compression, Feedback Vertex Set in tournaments
can be solved in O(2k · n2(logn+ k)) time.

Proof. We have shown how to solve Feedback Vertex Set in tournaments using
iterative compression. It remains to analyze the running time. First we examine
the subroutine from Figure 4.8. Topological sort (line 1) can be easily done
in O(|S|) = O(k) time. Finding triangles in line 3 can be done in O(nk) time: for
every v ∈ V\S, we iterate over the topological sort of S; if we encounter a vertex si
with (v, si) ∈ A and later a vertex sj with (sj, v) ∈ A, we have a triangle as desired.
Line 8 can be done in O(n) time and line 9 in O(n logn) time. Since L and P are
permutations of each other, finding a longest common subsequence reduces to
finding a longest increasing subsequence, which can be done in O(n logn) time
[Fredman 1975]. In summary, the subroutine can be executed in O(n(logn+ k))
time. In the compression routine, the subroutine is called O(2k) times, once for
each partition of X into two subsets. The compression routine itself is called n
times when inductively building up the graph structure. In total, we have a
running time of O(2k · n2(logn+ k)).

We note in passing that by using a more careful analysis and elaborate data
structures for the longest increasing subsequence problem [Hunt and Szymanski
1977], we could replace the logn term by log logn. Further, using the O(k2)-
vertex 3-Hitting Set kernelization [Abu-Khzam 2007], we arrive at the following
running time.

Theorem 4.7. Using iterative compression, Feedback Vertex Set in tournaments
can be solved in O(2k · k5 + n3) time.

We now show how to extend our results to the weighted case with real
weights:

Weighted Feedback Vertex Set in tournaments
Instance: A tournament T = (V ,A), a vertex weight function ω : V →
[1,∞), and a number t > 0.
Question: Is there a subset X ⊆ V with

∑
v∈Xω(x) 6 t such that

deleting all vertices in X from G results in a directed acyclic graph?

Note that for arbitary weights, the problem is not fixed-parameter tractable
unless P = NP, since otherwise we could solve FVST in polynomial time by
scaling down the weights sufficiently.

86 4 Iterative compression

We modify our algorithm only in the last iteration of the iterative compression,
where we have a feedback vertex set X of size at most k + 1 for T . Clearly, we
can still enumerate all O(2k) possibilities of which part S to keep and which
part to omit from X to get a minimum-weight solution X ′. The data reduction
(Figure 4.8 lines 3–5) is also still correct, and Lemma 4.5 holds. Therefore, again,
the cheapest way to make T acyclic by vertex deletions can be obtained by
finding the cheapest way to make L and P equal by vertex deletions; therefore,
we need a minimum-weight common subsequence of L and P. Since L and P are
permutations of each other, this reduces to finding a minimum-weight increasing
subsequence, which in turn reduces to finding a minimum-weight independent
set in a permutation graph. This can be done in O(n log logn) time [Chang and
Wang 1992]. Further, since a weighted optimal solution needs at least as many
vertices as an unweighted optimal solution, and each vertex weighs at least 1,
we have t > k. We arrive at the following result.

Theorem 4.8. Weighted Feedback Vertex Set in tournaments can be solved inO(2t ·
n2(logn+ t)) time.

Woeginger [2008] noted that by combining an algorithm by Schwikowski and
Speckenmeyer [2002] that enumerates all (inclusion-)minimal feedback vertex
sets in a directed graph with polynomial delay with the fact that a tournament
has at most 1.717n minimal feedback vertex sets [Moon 1971], one obtains an
algorithm that solves FVST in O(1.717n) time. He asks whether this bound can
be improved. Raman et al. [2007] pointed out that one can sometimes gain fast
exact algorithms by using an FPT algorithm for small parameter values and
brute force only for large parameter values. This approach can be applied here.
We try all possible parameter values k = 0, . . . ,n; if k 6 λn, we use the 2k ·nO(1)

algorithm of Theorem 4.6, and otherwise, we try by brute force all
(
n
k

)
possible

solutions. The running time of the brute force approach is maximum for λ = 1/2,
since

(
n
n/2

) ≈ 2n; therefore, we can improve the trivial 2n bound if λ > 1/2. The
optimal λ is attained when 2λn =

(
n
λn

)
, which gives (asymptotically) λ ≈ 0.773.

Thus, we can answer Woeginger’s question affirmatively.

Theorem 4.9. Feedback Vertex Set in tournaments can be solved in O(1.709n).

4.4.3 Outlook

Like for Cluster Vertex Deletion, it seems hard to improve the factor of 2k in
Theorem 4.6. It might happen that X already induces an acyclic graph, in which
case we can never bail out early. However, in this or similar cases where we
cannot save much, we have an almost optimal feedback arc set that is acyclic.

4.5 Iterative compression for Edge Bipartization 87

A speedup in the disjoint compression step might also be attainable by
exploiting the similarity of the subproblems solved; this worked for Edge Bipar-
tization (Section 4.5.2).

Of particular interest would be an iterative compression algorithm for Feed-
back Arc Set in tournaments. Since here also we get an O(2.076k +m) time
algorithm by reduction to 3-Hitting Set [Wahlström 2007], we would proba-
bly need a polynomial-time compression routine to improve the running time
bound.

A further area of application might be feedback set problems on bipartite
tournaments. The Feedback Vertex Set problem on bipartite tournaments
is NP-hard and can be approximated within a factor of 3.5 [Cai et al. 2002].
With a reduction to 4-Hitting Set and Theorem 4.2, we get a running time of
O(3.076k+n4); Sasatte [2007] gave an algorithm with running time O(3kn2 +n3)
based on branching. Feedback Arc Set in bipartite tournaments was also
recently shown to be NP-hard [Guo et al. 2007b], and can be approximated within
a factor of 4 [Gupta 2008]; further, an FPT algorithm running in (3.373k ·n6) time
is known [Dom et al. 2006b]. For both problems, it would be interesting to see
whether we can improve the running time using the techniques of this section.

4.5 Iterative compression for Edge Bipartization

In this section, we show how to solve the Edge Bipartization problem, which
was introduced in Section 2.3.1, by iterative compression. Unlike for Clus-
ter Vertex Deletion and Feedback Vertex Set in tournaments, where fixed-
parameter tractability was already known from the finite forbidden subgraph
characterization and thus the existence of a simple search tree algorithm, this
is the only known FPT algorithm for Edge Bipartization. We can also obtain
fixed-parameter tractability by a reduction from Vertex Bipartization [Wer-
nicke 2003]; however, the reduction results in a running time of O(3k · k3m2n),
while our algorithm runs in O(2k ·m2) time.

Our Edge Bipartization algorithm can be generalized to solve the Balanced

Subgraph problem (Section 4.5.4). As we demonstrate in Section 3.2.4 by
experiments, the resulting algorithm is quite fast and even competitive with
polynomial-time approximations, while still providing optimal results.

The different characterizations of bipartite graphs (Lemma 1.1) lead to the
following equivalent reformulations of Edge Bipartization:

1. Can we find a partition of V into V1 and V2 such that the number of
edges within V1 and within V2 together is at most k (that is, |E(G[V1])| +
|E(G[V2])| 6 k)?

88 4 Iterative compression

IterativeCompressionEB(G = (V ,E))
1 E ′ ← ∅
2 X← ∅
3 for each e ∈ E:
4 E ′ ← E ′ ∪ {e}

5 if X is not a bipartization set for (V ,E ′):
6 X← X ∪ {e}

7 X← CompressEB((V ,E ′),X)
8 return X

Figure 4.11: Pseudo-code for iterative compression for Edge Bipartization

2. Can we find a coloring of V with two colors such that at most k edges are
between vertices of the same color?

3. Can we find a set E ′ of at most k edges such that each odd cycle contains
at least one edge in E ′?

We will use all of these interchangeably.
A large number of results is known on Edge Bipartization; these are

surveyed in Section 2.3.1.

4.5.1 Iterative compression algorithm

For Cluster Vertex Deletion and Feedback Vertex Set in tournaments, the
task is to delete a set of vertices to achieve a certain property. Here, in contrast, we
want to delete edges. The iterative compression approach can be easily adapted
to this, though: we simply add edges one-by-one, while keeping the solution set
minimum using the compression routine, as illustrated in the pseudo-code in
Figure 4.11.

Here, the loop invariant is that X is a minimum edge bipartization set
for (V ,E ′). We start with E ′ = ∅; since (V ,E ′) then consists only of isolated
vertices, X = ∅ is a minimum edge bipartization set. In line 4, we add one
edge e /∈ E ′ from E to E ′. If we are lucky, then X is still a bipartization set
for the grown instance. Otherwise, we add e to X (line 6). Then X is again an
edge bipartization set for (V ,E ′), although possibly not a minimum one. The
compression routine CompressEB takes a graph G and an edge bipartization
set X for G, and returns a smaller edge bipartization set for G if there is one;
otherwise, it returns X unchanged. Therefore, after compression, our loop

4.5 Iterative compression for Edge Bipartization 89

Figure 4.12: Illustration of Graph Transformation 4.1. Dashed edges are edges in
the edge bipartization set.

invariant still holds. Since eventually (V ,E ′) = G, we obtain an optimal solution.
It remains to derive the compression routine CompressEB.

The following lemma provides some central insight into the structure of a
minimal edge bipartization set.

Lemma 4.6. Given a graph G = (V ,E) and an inclusion-minimal edge bipartization
set X for G, the following two properties hold:

1. For every odd-length cycle C in G, |E(C) ∩ X| is odd.

2. For every even-length cycle C in G, |E(C) ∩ X| is even.

Proof. For each edge e = {u, v} ∈ X, note that u and v are on the same side of the
bipartite graph G \ X, since otherwise we would not need e to be in X, and X
would not be minimal. Consider a cycle C in G. The edges in E(C) \ X are all
between the two sides of G \ X, while the edges in E(C) ∩ X are between vertices
of the same side as argued above. In order for C to be a cycle, however, this
implies that |E(C) \X| is even. Since |E(C)| = |E(C) \X| + |E(C)∩X|, we conclude
that |E(C)| and |E(C) ∩ X| have the same parity.

As for Cluster Vertex Deletion and Feedback Vertex Set in tournaments,
it is helpful to assume that an edge bipartization set that is smaller than a given
edge bipartization set X is disjoint from X. For the mentioned two problems,
we achieved this by a brute force case enumeration. Here, in contrast, we can
assume this property without loss of generality by applying a simple input
transformation (see Figure 4.12): we subdivide each edge that was part of
the edge bipartization set by two vertices, and the middle segment of each
subdivided edge into the new edge bipartization set. More formally:

Graph Transformation 4.1. Given a graph G = (V ,E) and an edge bipartization
set X, construct G ′ = (V ′,E ′) with V ′ := V ∪ {e1, e2 | e ∈ X} and E ′ := E \ X ∪
{{v, e1}, {e1, e2}, {e2,w} | e = {v,w} ∈ X}. Let further X ′ := {{e1, e2} | e ∈ X}.

Lemma 4.7. After Graph Transformation 4.1, the transformed graph has an edge bi-
partization set with i edges iff the original graph has an edge bipartization set with

90 4 Iterative compression

(a) Two-coloring of G \X (b) Two-coloring of G \ Y (c) Comparison coloring

Figure 4.13: Comparing disjoint edge bipartization sets

i edges. Moreover, for each minimal edge bipartization set X for the transformed graph
there is an edge bipartization set of the same size that is disjoint from X.

Proof. The first point is easy to see, since the transformation preserves the parities
of the lengths of all cycles. Regarding the second point, if we have a bipartization
set Y for the transformed graph that also contains edges from X, we can obtain
an edge bipartization set of the same size by replacing every edge in Y ∩ X by
any of its two adjacent edges.

Thus, we have achieved the desired disjointness property in polynomial
time, whereas for Cluster Vertex Deletion and Feedback Vertex Set in
tournaments, this was the source of the exponential running time. Since we
cannot expect overall polynomial time for this NP-hard problem, the compression
routine will be exponential-time, in contrast to the other two problems, where it
was polynomial.

The idea for the compression routine is to compare the two-colorings in-
duced by the known bipartization set X (Figure 4.13a) and the (yet unknown)
compressed solution Y (Figure 4.13b) and mark a vertex black when the two
colorings coincide, or white when they differ (Figure 4.13c). The key observation
is then that the two bipartization sets together form an edge cut between the
black and the white vertices, that is, removing them destroys all paths from a
black to a white vertex.

The following simple definition is the only remaining prerequisite for the cen-
tral lemma for the Edge Bipartization compression routine, which formalizes

4.5 Iterative compression for Edge Bipartization 91

this observation.

Definition 4.3. Let G = (V ,E) be a graph and X ⊆ E. Then, V(X) denotes the
set
⋃

{u,v}∈X{u, v} of their endpoints. A mapping Φ : V(X) → {#, } is called valid
partition of V(X) if for each {u, v} ∈ X, we have Φ(u) 6= Φ(v).

Lemma 4.8. Consider a graph G = (V ,E) and a minimal edge bipartization set X
for G. For a set of edges Y ⊆ E with X ∩ Y = ∅, the following are equivalent:

(1) Y is an edge bipartization set for G.

(2) There is a valid partition Φ of V(X) such that Y is an edge cut in G \ X between
#Φ := Φ−1(#) and Φ := Φ−1().

Proof. (2) ⇒ (1): Consider any odd-length cycle C in G. It suffices to show
that E(C) ∩ Y 6= ∅. Let s := |E(C) ∩ X|. By Property (1) in Lemma 4.6, s is
odd. Let the edges in E(C) ∩ X be {{u0, v0}, {u1, v1}, . . . , {us−1, vs−1}} such that
vertices vi and u(i+1) mod s are connected by a path in C \ X. Since Φ is a valid
partition of V(X), we have Φ(ui) 6= Φ(vi) for all 0 6 i < s. With s being odd,
this implies that there is a pair vi,u(i+1) mod s such that Φ(vi) 6= Φ(u(i+1) mod s).
Since the removal of Y destroys all paths in G\X between #Φ and Φ, we obtain
that E(C) ∩ Y 6= ∅.

(1) ⇒ (2): Let CX : V → {#, } be a two-coloring of the bipartite graph G \ X

and CY : V → {#, } a two-coloring of the bipartite graph G \ Y. Define

Φ : V → {#, }, v 7→
{
if CX(v) = CY(v),
 otherwise.

(4.2)

We show that Φ|V(X) (that is, Φ with domain restricted to V(X)) is a valid
partition with the desired property (see Figure 4.13c for an example).

First we show that Φ|V(X) is a valid partition. Consider any edge {u, v} ∈ X.
There must be at least one even-length path in G\X from u to v; otherwise, {u, v}
would be redundant as X would not be minimal. Therefore, CX(u) = CX(v).
In G \ Y, the vertices u and v are connected by an edge, and therefore CY(u) 6=
CY(v). It follows that Φ(u) 6= Φ(v).

Since both CX and CY change in value when going from a vertex to its
neighbor in G \ (X ∪ Y), the value of Φ is constant along any path in G \ (X ∪ Y).
Therefore, there can be no path from any u ∈ #Φ to any v ∈ Φ in G \ (X ∪ Y),
that is, Y is an edge cut between #Φ and Φ in G \ X.

Figure 4.14 shows how to make use of Lemma 4.8 to obtain the compression
routine that, given a graph and a (with respect to set inclusion) minimal edge

92 4 Iterative compression

CompressEB(G,X)
1 G← EdgeExpand(G,X)
2 for each valid partition Φ of V(X):
3 Y ←MinCut(G,#Φ, Φ)
4 if |Y| < |X|:
5 return Y
6 return X

Figure 4.14: Pseudo-code for CompressEB

(a) (b)

Figure 4.15: A valid partition leading to a compressed solution (black and white:
value of valid partition; grey: not in domain of valid partition).

bipartization set X of size k, either computes a smaller edge bipartization set Y
in O(2k · km) time or proves that no such Y exists. First, we apply the input
transformation from Figure 4.12, which allows us to assume the prerequisite of
Lemma 4.8 that Y ∩ X = ∅ (line 1). We then enumerate all 2k valid partitions Φ
of V(X) (line 2) and determine a minimum-size edge cut between #Φ and Φ
(line 3) until we find an edge cut Y of size k − 1 (line 4). This is illustrated
in Figure 4.15: In Figure 4.15a, we have a graph with an edge bipartization
set X (dashed lines) and a particular valid partition for V(X). A smaller edge
bipartization set is obtained as minimum-size edge cut between the black and
white vertices (Figure 4.15b), which is a polynomial-time task. By Lemma 4.8, Y
is an edge bipartization set; furthermore, if no such Y is found, we know that k

4.5 Iterative compression for Edge Bipartization 93

is of minimum size.

Theorem 4.10. Edge Bipartization can be solved in O(2k · km2) time.

Proof. The correctness of the algorithm comprising IterativeCompressionEB
and CompressEB has been argued for. It remains to analyze the running
time. The argument X of CompressEB has size at most k + 1, so there are at
most 2k+1 = O(2k) valid partitions to check in each call. Each of the MinCut

instances can individually be solved in O(km) time with the Edmonds–Karp
algorithm [Dinic 1970, Edmonds and Karp 1972] that goes through at most
k + 1 rounds, each time finding a shortest flow augmenting path by breadth-
first search in O(m) time. In IterativeCompressionEB, there are m calls to
CompressEB, so in total we obtain the claimed running time.

Like for Cluster Vertex Deletion (Theorem 4.3), we can use an approxi-
mation to reduce the number of iterations. Guo [2006] suggests to start with
a spanning tree, which improves the number of rounds from m to m − n.
Other possibilities are to use the approximation by Agarwal et al. [2005], which
yields O(

√
logn) rounds, or the approximation by Avidor and Langberg [2007],

which yields O(k logk) rounds. However, all of these introduce an additional
polynomial cost for the approximation. It depends on the concrete parameters
which of these approaches is the fastest.

4.5.2 Exploiting subproblem similarity

In this section, we show how to save a factor of k in the running time claimed in
Theorem 4.10 by exploiting the similarity of the minimum cut subproblems to
be solved. To be able to describe the improvement, we first need to go into the
details of the MinCut algorithm used in CompressEB (Figure 4.14).

Network flow. Each minimum cut subproblem is solved using network flow.
We briefly recall the basics of network flow (for a more detailed introduction,
see e. g. Cormen et al. [2001] or the monograph on network flows by Ahuja et al.
[1993]). A flow network is a directed graph F = (V ,A) in which each arc (u, v) ∈ A
has a capacity c(u, v) > 0 (for convenience, c(u, v) := 0 for (u, v) /∈ A), and
that has two distinguished vertices, the source s and the sink t. A flow is a
function f : V × V → Q with the following properties:

94 4 Iterative compression

∀u, v ∈ V : f(u, v) 6 c(u, v) (capacity constraint) (4.3)
∀u, v ∈ V : f(u, v) = −f(v,u) (skew symmetry) (4.4)

∀u ∈ V \ {s, t} :
∑
v∈V

f(u, v) = 0 (flow conservation). (4.5)

The value of a flow f is defined as

|f| :=
∑
v∈V

f(s, v). (4.6)

A maximum flow is simply a flow of maximum value. The well-known
max-flow min-cut theorem [Elias et al. 1956, Fulkerson and Ford 1956] tells us
that in a directed graph, the size of a minimum cut is equal to the value of
a maximum flow and that moreover we can retrieve a minimum cut from a
maximum flow. To apply this to the task at hand (finding MinCut(G,#Φ, Φ)
in line 3 of Figure 4.14), we first convert the undirected graph to a directed
graph by replacing each undirected edge {u, v} with two arcs (u, v) and (v,u).
By the max-flow min-cut theorem, for every minimum cut there is a maximum
flow where the arcs of the cut have positive flow. Therefore, not both of (u, v)
and (v,u) can be part of a minimum cut, since that would imply a violation of
the skew symmetry in the corresponding maximum flow network. Thus, there
is a simple bijection between minimum cuts of the directed and the undirected
graph. Further, in our setting we have more than one source and more than one
target. Therefore, we use the standard technique of adding an extra vertex s
with arcs to each start vertex (vertex in #Φ) and an extra vertex t with arcs from
each target vertex (vertex in Φ) to t. All arcs in the flow network have unit
capacity. We now have a flow network whose maximum flow will allow us to
find MinCut(G,#Φ, Φ).

To find the maximum flow, we use the Edmonds–Karp algorithm [Dinic 1970,
Edmonds and Karp 1972], which is a special case of the Ford–Fulkerson method
[Fulkerson and Ford 1956]. This is not the fastest maximum flow algorithm in
general, but it is fast when the value of the flow is small, as it is the case here
where the value of the maximum flow is bounded by k := |#Φ| = | Φ|.

The Ford–Fulkerson method works with the residual network, which consists
of the arcs that can admit more flow, that is, arcs (u, v) for which f(u, v) < c(u, v).
Note that in particular if there is flow from u to v, then f(v,u) is negative
and (v,u) is part of the residual network. The method works by repeatedly
finding an augmenting path, which is a path from s to t in the residual network.
It then increases the flow along each arc of the path by the maximum residual
capacity (that is, the maximum value of c(u, v) − f(u, v) for an arc (u, v) of

4.5 Iterative compression for Edge Bipartization 95

v1

v2

(a)

v1

v2

(b)

Figure 4.16: Example for reusing flow networks

the path), which will give a flow consistent with (4.3)–(4.5) and a higher flow
value. In our case, the increase is always by at least 1, since initially all residual
capacities are 1, and they stay integral after increasing the flow. Therefore,
we need at most k flow augmentations. It remains to specify how to find an
augmenting path. We use breadth-first search in O(m) time, which yields the
Edmonds–Karp algorithm. Therefore, each subproblem takes O(km) time.

Reusing flows. The idea is now not to discard the flow of a subproblem, but
to “recycle” it for the next subproblem. Many subproblems are very similar;
consider for example two valid partitions that only differ in the assignment of
one vertex pair u,u ′. The corresponding flow networks differ in only two arcs:
in one (call it F1) u is connected to s, and in the other (F2) u is connected to t;
the equivalent holds with respect to u ′. As we show now, if we already have a
maximum flow for F1, we can calculate a maximum flow for F2 with a constant
number of augmentation operations.

In a first step, we need to drain the flow along the arc (s,u). Note that there is
always flow along this arc, since otherwise the flow value of F1 is below k := |X|

and we would have successfully returned in line 5 of Figure 4.14. For this, we
find a “diminuting path” from u to t, that is, a path that uses only arcs (v,w)
that have positive flow f(v,w). Because of flow conservation, such a path must
always exist. We then clear the flow along the path and the edge (s,u). By the
same arguments as those for an augmenting path, this yields a valid flow. We
can then safely delete (s,u) and insert (u, t). If the diminuting path happened to
pass through u ′, we already got rid of the flow along the edge (u ′, t); otherwise,
we drain it with an analog diminution operation. Finally, by finding one or two
augmenting paths, we can obtain a maximum flow for F2.

As an example, consider Figure 4.16. In Figure 4.16a, we have a maximum
flow for a particular valid partition. The flow can be easily seen to be maximum,
since there is no augmenting path. We now wish to calculate a maximum flow

96 4 Iterative compression

for a modified valid partition, where v1 and v2 switch their assignment. For
this, we first find a diminuting path from v2 to v1 (Figure 4.16b, bold lines)
and decrease the flow along the path. Next, we try to increase the flow again
by finding an augmenting path between the black and the white vertices. In
this case, no such augmenting path can be found; therefore, the flow value is
below |X| and we can retrieve the smaller bipartization set as minimum cut
(crossed edges).

Both finding a diminuting and an augmenting path can be done in O(m) time
by breadth-first search, meaning the update of the allocation of the endpoints of
a single edge in X to # or can be done in O(m) time.

We would now like to order the subproblems such that there is a minimal
amount of change between successive subproblems. In fact, we can order the
subproblems such there is only a single change between successive subproblems
by using a Gray code (see Knuth [2004, Section 7.2.1.1] for the history of Gray
codes). A Gray code is a binary numeral system where two successive values
differ in only one digit. For example, the numbers 0 to 7 in a 3-bit Gray code are
000, 001, 011, 010, 110, 111, 101, and 100. We use a k-bit Gray code and associate
each edge in X with one bit position. For an edge {u, v} ∈ A, we associate “u start
vertex, v target vertex” with 0 and “v start vertex, u target vertex” with 1. If we
now enumerate the 2k subproblems in the order of the Gray code, then there will
always be only one allocation of an edge changing, meaning that we can solve
each subproblem (but the first) in O(m) time, yielding the following theorem.

Theorem 4.11. Edge Bipartization can be solved in O(2k ·m2) time.

4.5.3 Heuristic speedup

In this section, we show how sometimes we can reduce the number of valid
partitions we have to enumerate. Recall that to ensure solution disjointness, we
subdivided each edge in X into 3 segments (Graph Transformation 4.1). The
idea now is to choose one of the two end segments into the solution instead
of the middle segment. The proof of Lemma 4.7 still holds with this change.
However, it can happen then that two edges in the solution set X have the same
endpoint. This can be exploited. Consider the example in Figure 4.17 (left). We
have |X| = 3, and therefore we would normally need to enumerate 2|X| = 8 valid
partitions. If we choose an end segment instead of the middle segment, we can
obtain a graph as in Figure 4.17 (right). Here, up to symmetry only a single
valid partition is possible (black and white vertices), which immediately gives
us the smaller solution (crossed edges) as minimum cut between the black and
the white vertices.

The graph induced by the edges in X after the thus modified transformation

4.5 Iterative compression for Edge Bipartization 97

Figure 4.17: Example for the reduction in the number of valid partitions to
enumerate

is always a disjoint union of stars (a star is a graph where every vertex but one
has degree 1). This is because only one endpoint of an edge in X can be incident
on another edge of X, since one endpoint is always a degree-2 vertex incident
only on a newly inserted edge. We quantify the gain in the following lemma.

Lemma 4.9. When the edges in X induce s 6 k stars, we need to examine only 2s

valid partitions.

Proof. There are only two assignments for the center vertex of a star, which
determines the assignments of all the other vertices in the star.

To obtain the maximum gain from this, we have to choose carefully which
of the two end segments of a subdivided edge we want to take into the new X.
The goal is to minimize the number of stars that result. We can think of this as
marking one of the endpoints of each edge in X such that the total number of
marked vertices is minimized. This is exactly the well-known Vertex Cover

problem in the subgraph induced by X. While Vertex Cover is NP-hard, in
our experiments (detailed in Section 3.2.4) the resulting instances are small and
sparse (e. g., 80 vertices and 80 edges), and can be easily solved by a simple
branching strategy: choose an edge, and include either one endpoint or the other
endpoint in the cover. Even if the resulting instances were too large to solve
them exactly, we could solve them heuristically and still gain, although possibly
not as much as when solving them optimally.

Clearly, Lemma 4.9 is only a heuristic improvement; when the edges of X
before the transformation have no endpoints in common, we cannot gain any-
thing. However, since already e. g. 5 pairs of edges each having one endpoint in
common yield a speedup of a factor of 25 = 32, the gain can be quite large in
practice. In a Balanced Subgraph instance (see Section 3.2.4) where without
the heuristic one would have checked 274 valid partitions of the endpoints of
the edges in X, due to the trick only 234 valid partitions had to be considered.
Thus, only due to the trick iterative compression became feasible, saving a factor

98 4 Iterative compression

of 240 ≈ 1012 in the running time. As expected, the trick works particularly well
in dense graphs.

4.5.4 Generalization to Balanced Subgraph

The Balanced Subgraph problem, introduced in Section 2.3.2, is a generalization
of Edge Bipartization. We quickly recall the definition. Balanced Subgraph is
defined on signed graphs, that is, graphs where every edge is annotated with =
or 6=. A signed graph is balanced if its vertices can be colored with two colors such
that the relation at each edge holds with respect to the colors of its endpoints.
The Balanced Subgraph problem is then defined as follows:

Balanced Subgraph

Instance: A signed graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k edge deletions into a
balanced graph?

In several applications, one may assume that only a small fraction of the
graph edges has to be omitted; for example, it has been observed that many
biochemical networks are close to being balanced [Sontag 2007b]. Therefore,
it is attractive to use the number of edges that need to be deleted to obtain a
balanced graph as a parameter.

We have shown that there is a simple reduction from Balanced Subgraph

to Edge Bipartization (Proposition 2.1). Combining this with the iterative
compression algorithm for Edge Bipartization (Theorem 4.11) gives us the fol-
lowing theorem, which establishes the fixed-parameter tractability of Balanced

Subgraph.

Theorem 4.12. Balanced Subgraph can be solved in O(2k ·m2) time.

Theorem 4.12 improves an O(n2L · (nm)3) time exact algorithm by DasGupta
et al. [2007, Remark 1], where L is the number of 6=-edges (since clearly k 6 L).

It turns out that we do not actually need the reduction, which might double
the size of the instance, but rather can do with a small modification to the
algorithm itself. The reason is that Lemma 4.8 still holds if we replace “edge
bipartization set” by “balancing set”, where a balancing set is a set of edges
whose deletion makes a graph balanced. Intuitively, the reason is that for the
edge cut between #Φ and Φ to exist, it does not matter whether we applied
the reduction that subdivides edges.

Lemma 4.10. Consider a graph G = (V ,E) and a minimal balancing set X for G. For
a set of edges Y ⊆ E with X ∩ Y = ∅, the following are equivalent:

(1) Y is a balancing set for G.

4.5 Iterative compression for Edge Bipartization 99

(2) There is a valid partition Φ of V(X) such that Y is an edge cut in G \ X between
#Φ := Φ−1(#) and Φ := Φ−1().

Proof. Consider the following statements for the graph G ′ obtained by Graph
Transformation 2.1 from G and the sets X ′ and Y ′ obtained from X and Y,
respectively, by replacing e = {v,w} ∈ E= with {v, e}.

(3) Y ′ is a balancing set for G ′.

(4) There is a valid partition Φ of V(X ′) such that Y ′ is an edge cut in G ′ \ X
between #Φ := Φ−1(#) and Φ := Φ−1().

Clearly, (1) ⇐⇒ (3). By Lemma 4.8, (3) ⇐⇒ (4). Finally, it is not hard to see
that (4) ⇐⇒ (2).

Because of Lemma 4.10, surprisingly, we can use CompressEB completely
unchanged for Balanced Subgraph; in particular, it can ignore edge signs. The
single change to the overall algorithm required is in line 5 of Figure 4.11: To
ensure inclusion minimality of the set X to be compressed, we need to check
whether X is a balancing set instead of a bipartization set.

This means that in practice, there is basically no overhead involved in solving
Balanced Subgraph instead of Edge Bipartization. Further, the speedups by
exploiting subproblem similarity (Section 4.5.2) and by exploiting neighboring
vertices in the solution set (Section 4.5.3) can still be applied unchanged.

The iterative compression for Balanced Subgraph was implemented and
evaluated together with data reduction rules for Balanced Subgraph as shown
in Section 3.2. This combination was used successfully to solve instances with
up to 678 vertices and 1582 edges. We refer to Section 3.2.4 for details.

4.5.5 Outlook

There are several ways in which the results of this section can be expanded.

Algorithm modifications. At the core of our iterative compression algorithm,
a large number of cut problems in almost identical networks needs to be solved.
It is tempting to simplify the graph before doing this, thereby achieving at
least a heuristic speedup. Misiołek and Chen [2006] presented several data
reduction rules for minimum cut problems; however, these are rather weak,
because they could not afford a large polynomial running time. Since we are
solving exponentially many related instances, we could invest much more time
into data reduction.

In Section 4.3, we showed that the iterative compression algorithm for Clus-
ter Vertex Deletion can be used to also solve weighted instances. It would be

100 4 Iterative compression

nice if this also holds for Edge Bipartization. Further, iterative compression
algorithms for some other problems have been extended to enumerate all solu-
tions, instead of finding just one [Guo et al. 2006, Chen et al. 2007a]. This is also
an interesting goal for Edge Bipartization.

For the Vertex Bipartization problem in planar graphs, Fiorini et al. [2005]
gave a fixed-parameter algorithm that runs in linear time for fixed k, at the cost
of a much worse combinatorial explosion with respect to k compared to the
iterative compression approach presented in Section 4.6. It is open to obtain a
similar result for Edge Bipartization.

Related problems. Sontag [2007a] suggested to examine the following directed
variant of Balanced Subgraph. The motivation is the same as for the examina-
tion of Balanced Subgraph, namely, to model stability in dynamic networks of
biological origin [DasGupta et al. 2007, Sontag 2007b].

Directed Balanced Subgraph

Instance: A directed signed graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k edge deletions into a graph
without negative cycles?

Here, a negative cycle is a directed cycle with an odd number of negative
signs. Using an analog of Proposition 2.1, by inserting an extra vertex into
=-edges, we can get rid of the signs and obtain the equivalent Directed Edge

Bipartization problem.

Directed Edge Bipartization

Instance: A directed signed graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k edge deletions into a graph
without odd-length cycles?

Although in addition to its application, this problem seems quite natural,
I was not able to find any reference in the literature. By a reduction from the
undirected case, it is easy to see that Directed Edge Bipartization is NP-hard.
With a general result by Raman and Sikdar [2007], the parametric dual of this
question (that is, the question whether a directed graph contains an odd-cycle-
free subgraph of size at least k) is W[1]-hard. The parameterized complexity of
Directed Edge Bipartization is open, though. Iterative compression seems
like a good candidate in tackling this problem, since it was helpful for showing
fixed-parameter tractability of the related problems Edge Bipartization (Sec-
tion 4.5) and Directed Feedback Vertex Set [Chen et al. 2008] (which can be
parameter-preserving reduced to and from Directed Feedback Edge Set).

4.6 Iterative compression for Vertex Bipartization 101

4.6 Iterative compression for Vertex Bipartization

In this section, we show how to solve the Vertex Bipartization problem, in-
troduced in Section 2.3.3, by iterative compression. Vertex Bipartization was
the first problem for which iterative compression was applied [Reed et al. 2004].
Based on new structural insights, we give a simplified and more intuitive exposi-
tion and proof of this result, and slightly improve the worst-case time complexity.
This also allows to establish a heuristic improvement that in particular speeds
up the search on dense graphs. Our implementation can solve all problems
from a testbed from computational biology within minutes, whereas established
methods are only able to solve about half of the problems within reasonable
time (Section 4.6.3). We recall the definition of Vertex Bipartization and refer
to Section 2.3.3 for previous results and applications.

Vertex Bipartization

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Can G be transformed by up to k vertex deletions into a
bipartite graph?

We call a set of vertices whose deletion makes a graph bipartite an odd cycle
cover (the name is justified by Lemma 1.1).

4.6.1 Iterative compression algorithm

In this section we give a novel, more intuitive presentation of the algorithm for
Vertex Bipartization by Reed et al. [2004]. As opposed to their proof, our
presentation does not employ case distinction or contradiction, and gives a better
intuition of why the algorithm actually works. This also allows to establish
several improvements in Section 4.6.2.2 and Section 4.6.2.3. Our presentation
follows the same lines as that for Edge Bipartization (Section 4.5).

We use the same approach as for our introductory example 3-Hitting Set

(Section 4.2): The graph is built up vertex-by-vertex, and an optimal solution
is held current by compression; the pseudo-code in Figure 4.1 can be used
unchanged.

For the compression routine itself, we again use the reduction of the com-
pression task to a disjoint compression task: we enumerate all possibilities how
a smaller solution X ′ might reuse vertices of the known solution X (Figure 4.3).
This gives us the following property, at a price of a factor of O(2k) in the running
time.

Property 4.1. X ′ is disjoint from X, that is, X ∩ X ′ = ∅.

102 4 Iterative compression

Figure 4.18: Input transformation for Compress-OCC. The grey vertices are the
elements of the vertex bipartization set X.

This is a notable difference to Edge Bipartization, where we could achieve
the equivalent of Property 4.1 by a simple input transformation (Graph Transfor-
mation 4.1).

We then impose some additional useful properties on the instance.

Property 4.2. No two vertices from X are neighbors, that is, ∀u, v ∈ X : u /∈ N(v).

Property 4.3. No vertex in a smaller odd cycle cover X ′ is neighbor of a vertex in X,
that is, N(X ′) ∩ X = ∅.

Properties 4.2 and 4.3 can be obtained by a simple input transformation:
subdivide each edge adjacent to a vertex in X by a new vertex (see Figure 4.18).
This is done successively, that is, edges connecting two vertices from X are
subdivided by two vertices. This transformation preserves the parity of the
length of any cycle C, since for each vertex in C that is in X, two new vertices
are inserted into the edges of C. Therefore, after this transformation, X is still
an odd cycle cover, and any odd cycle cover for the transformed graph can
easily be converted to an odd cycle cover of the same size for the original
graph. The transformation allows us to assume without loss of generality that
no vertex v ∈ X ′ is neighbor of a vertex in X (Property 4.3). This is because any
vertex v in an odd cycle cover X ′ that is neighbor of a vertex in X must be one of
the newly inserted degree-2 vertices, and can be replaced by the neighbor of v
that is not in X, leading to a solution of the same size.

The task is thus boiled down to the following.

VB Disjoint Compression

Instance: An undirected graph G = (V ,E) and a vertex bipartization
set X with Property 4.2 for G.
Task: Find a vertex bipartization set X ′ with |X ′| < |X| and Properties 4.1
and 4.3 or prove that this is not possible.

The key to solving VB Disjoint Compression is to compare the two two-
colorings of G induced by X and the (yet unknown) X ′ (see Figure 4.19): some
vertices will have the same color in both colorings, and others will get different

4.6 Iterative compression for Vertex Bipartization 103

(a) (b) (c)

v1
v2 v3

Figure 4.19: Comparing disjoint odd cycle covers: (a) a graph G with an odd
cycle cover X (grey vertices); a two-coloring CX of G \ X is marked with black and
white vertices; (b) another odd cycle cover X ′ of G with Properties 4.1–4.3, and a
corresponding two-coloring CX′ ; (c) the comparison function Φ.

colors. More precisely, let CX and CX′ be fixed two-colorings of G \X and G \X ′,
respectively, and define the comparison function

Φ : V \ (X ∪ X ′)→ {#, } : v 7→
{
if CX(v) = CX′(v);
 if CX(v) 6= CX′(v).

(4.7)

The decisive property of Φ is given in the following lemma and illustrated in
Figure 4.19c.

Lemma 4.11. In the setting of VB Disjoint Compression, the set X∪X ′ is a vertex
cut between the vertex sets #Φ := Φ−1(#) and Φ := Φ−1().

Proof. Consider an edge {v,w} ∈ E with v,w ∈ V \ (X ∪ X ′). Since CX and CX′

are two-colorings, we have CX(v) 6= CX(w) and CX′(v) 6= CX′(w). Thus, Φ(v) =
Φ(w), that is, Φ is constant along any edge that has no endpoint in X ∪ X ′.
Consequently, there can be no path between two vertices with different values
of Φ that does not contain a vertex from X or X ′.

Lemma 4.11 naturally suggests obtaining X ′ from a vertex cut, which is a
polynomial-time task. However, we do not know the value of Φ yet, since it
depends on X ′. But as we will see, it suffices to guess a small part of Φ by brute
force.

For this, consider the value of Φ for the neighbors of some vertex v ∈ X.
Because of Properties 4.2 and 4.3, no neighbor of v is in X or in X ′, so Φ
is defined for all neighbors of v. Further, since neither v (by Property 4.1)

104 4 Iterative compression

nor its neighbors are in X ′, the value of CX′ is equal for all of v’s neighbors.
Therefore, there are only two possibilities: for all w ∈ N(v) : Φ(w) = CX′(w),
or for all w ∈ N(v) : Φ(w) 6= CX′(w). Figure 4.19c shows an example: for all
neighbors w of v1 and v2, we have Φ(w) = CX(w), and for all neighbors w of v3,
we have Φ(w) 6= CX(w).

This motivates the following definition.

Definition 4.4. Consider a graph G and an odd cycle cover X for G, with CX being a
fixed two-coloring of G \ X. Then a coloring Ψ : N(X) → {#, } is called valid when
for all v ∈ X either ∀w ∈ N(v) : Ψ(w) = CX(w) or ∀w ∈ N(v) : Ψ(w) 6= CX(w).

Thus, there are 2|X| valid colorings. We can now state the central lemma of
this section, which is analogous to Lemma 4.8 for Edge Bipartization.

Lemma 4.12. In the setting of VB Disjoint Compression, for a vertex set X ′ ⊆ V ,
the following are equivalent:

(1) X ′ is an odd cycle cover for G.

(2) There is a valid coloring Ψ of N(X) such that X ′ is a vertex cut between #Ψ :=
Ψ−1(#) and Ψ := Ψ−1() in G \ X.

Proof. (2) ⇒ (1): Consider a vertex set C that induces an odd cycle in G. It
suffices to show that C∩X ′ 6= ∅. Since X is an odd cycle cover, there is at least one
vertex from X in C. For at least one vertex v ∈ C ∩ X, its two cycle neighbors vl
and vr on C have different colors in CX, that is, CX(vl) 6= CX(vr); otherwise, we
could two-color the odd cycle C, since no two vertices from X are neighbors by
Property 4.2. By the definition of a valid coloring, this implies Ψ(vl) 6= Ψ(vr).
Since X ′ is a vertex cut in G\X between the differently colored vertices vl and vr,
there must be some v ′ ∈ X ′ with v ′ ∈ C.

(1)⇒ (2): As argued above, Ψ := Φ|N(X) (that is, Φ restricted to the neighbors
of vertices from X) is a valid coloring, and by Lemma 4.11 X ′ is a vertex cut
between #Ψ and Ψ in G \ X.

With Lemma 4.12, it is now clear that we can solve VB Disjoint Compression

by trying all 2|X| valid colorings Ψ and determining a minimum vertex cut be-
tween #Ψ and Ψ. We now have everything in place to present the compression
routine.

Compress-OCC(G0,X0)
1 subdivide edges around each v ∈ X0
2 for each X ⊆ X0:
3 G← G0 \ (X0 \ X)

4.6 Iterative compression for Vertex Bipartization 105

(a) (b) (c)

Figure 4.20: Illustration of the algorithm for solving VB Disjoint Compression

(Compress-OCC): (a) Graph G with odd cycle cover X (grey vertices); (b) G \ X

with a valid coloring Ψ (black and white vertices); (c) a vertex cut X ′ (dashed vertices)
between the black and the white vertices is an odd cycle cover for G.

4 for each valid coloring Ψ of N(X):
5 if there is a vertex cut D in G \ X between #Ψ and Ψ with |D| < |X|:
6 return (X0 \ X) ∪D
7 return X0

We now explain Compress-OCC in detail. Given is a graph G0 with an
odd cycle cover X0. First we ensure Properties 4.2 and 4.3 by a simple input
transformation (line 1; see Figure 4.18). We then examine every subset X of
the known odd cycle cover X0 (line 2). For each X, we look for smaller odd
cycle covers for G that can be constructed by replacing the vertices of X in X0
by fewer new vertices from V \ X (clearly, for any smaller odd cycle cover, such
an X must exist). Since we thereby decided to retain the vertices in X0 \ X in
our odd cycle cover, we examine the graph G = G0 \ (X0 \ X) (an example is
shown in Figure 4.20a). After line 3, we have Properties 4.2 and 4.1 for G and X.
If we now find an odd cycle cover D for G with |D| < |X|, we are done, since
then (X0 \ X) ∪ D is an odd cycle cover smaller than X0 for G0. For this, we
try all valid colorings for N(X) (Figure 4.20b). By Lemma 4.12, there is some
valid coloring where a smaller odd cycle cover forms a vertex cut between #Φ
and Φ in G \ X; and moreover, any such cut is an odd cycle cover. Therefore, if
we find a vertex cut D between #Φ and Φ that is smaller than X, we are done
(Figure 4.20c); conversely, if no valid coloring is successful, it is not possible to
compress X.

106 4 Iterative compression

Running Time. Reed et al. [2004] state the running time of their algorithm
as O(4k · kmn); a slightly more careful analysis reveals it as O(3k · kmn). For
this, note that in effect the two loops in lines 2 and 4 of Compress-OCC iterate
over all possible assignments of each v ∈ X0 to three roles:

• either v ∈ X0 \ X,

• or Ψ(w) = CX(w) for all neighbors w of v,

• or Ψ(w) 6= CX(w) for all neighbors w of v.

Therefore, we solve 3k minimum vertex cut problems, and since we can solve one
minimum vertex cut problem in O(km) time by the Edmonds–Karp algorithm
[Dinic 1970, Edmonds and Karp 1972], the running time for one invocation of
Compress-OCC isO(3k ·km). As the iterative compression main loop (Figure 4.1)
calls Compress-OCC n times, we arrive at an overall running time of O(3k ·kmn).

Theorem 4.13. Vertex Bipartization can be solved in O(3k · kmn) time.

4.6.2 Algorithmic improvements

We now present several improvements over the algorithm by Reed et al. [2004].
We start with two simple improvements that save a constant factor in the running
time. In Section 4.6.2.2 we then show how to save a factor of k in the running
time by exploiting the similarity of the subproblems solved. Finally, in Sec-
tion 4.6.2.3 we present an improvement exploiting the structure of the subgraph
induced by the bipartization set. This improvement gave the most pronounced
speedups in our experiments presented in Section 4.6.3.

4.6.2.1 Simple improvements

It is easy to see that for each valid coloring Ψ there is a symmetric coloring where
the value is inverted at each vertex, leading to the same vertex cuts. Therefore
we can arbitrarily fix the allocation of the neighbors of one vertex, saving a factor
of 2 in the running time.

The next improvement is justified by the following lemma.

Lemma 4.13. Consider a graph G = (V ,E), a vertex v ∈ V , and a minimum-size
odd cycle cover X for G \ {v} with |X| = k. Then no odd cycle cover of size k for G
contains v.

Proof. If X ′ is an odd cycle cover of size k for G, then X ′ \ {v} is an odd cycle
cover of size k− 1 for G[V \ {v}], contradicting that |X| is of minimum size.

4.6 Iterative compression for Vertex Bipartization 107

With Lemma 4.13 it is clear that the vertex v we add to X in line 5 of the
iterative compression main loop (Figure 4.1) cannot be part of a smaller odd
cycle cover, and we can omit the case v /∈ X in Compress-OCC, saving a third of
the cases.

4.6.2.2 Exploiting subproblem similarity

In the “inner loop” of Compress-OCC (line 5), we need to find a minimum
size vertex cut between two vertex sets in a graph. This is a classic application
for maximum flow techniques: The well-known max-flow min-cut theorem
[Cormen et al. 2001] tells us that the size of a minimum edge cut is equal to
the maximum flow. Since we are interested in vertex cuts, we create a new,
directed graph G ′ for our input graph G = (V ,E): for each vertex v ∈ V , create
two vertices vin and vout and a directed edge (vin, vout). For each edge {v,w} ∈ E,
we add two directed edges (vout,win) and (wout, vin). It is not hard to see that a
maximum flow in G ′ between Y ′1 :=

⋃
y∈Y1

yin and Y ′2 :=
⋃
y∈Y2

yout corresponds
to a maximum set of vertex disjoint paths between Y1 and Y2. Furthermore, an
edge cut D between Y ′1 and Y ′2 is of the form

⋃
v∈V {(vin, vout)}, and

⋃
(vin,vout)∈D{v}

is a vertex cut between Y1 and Y2 in G.
Since we know that the cut is relatively small (less than or equal to k), we

employ the Edmonds–Karp algorithm [Dinic 1970, Edmonds and Karp 1972].
This algorithm repeatedly finds a shortest augmenting path in the flow network
and increases the flow along it, until no further increase is possible. We assume
in the rest of this section that the reader is familiar with this algorithm.

The idea is then, similar to the trick for Edge Bipartization in Section 4.5.2,
that the flow problems solved in Compress-OCC are “similar” in such a way
that we can “recycle” the flow networks for each problem. For this, after
line 3 of Compress-OCC, we merge all white neighbors of each v ∈ X into a
single vertex v1, and all black neighbors of each v ∈ X into a single vertex v2.
Clearly, this does not change the minimum cut found in line 5. Then, each flow
problem corresponds to one assignment of the vertices in X to the three roles
“v1 source, v2 target”, “v2 source, v1 target”, and “not present” (v /∈ X). Using a
so-called (3,k)-ary Gray code [Guan 1998], we can enumerate these assignments
in such a way that adjacent assignments differ in only one element. For each of
these (but the first one), one can solve the flow problem by adapting the previous
flow. One or both of the following actions is needed:

• If the vertex v whose assignment was changed was present previously,
drain the flow along the path with end point v1 and the path with end
point v2 (note that they might be identical). Here, “drain the flow” means
to find an augmenting path in the flow network (as opposed to the residual
network), and zero the flow along this path.

108 4 Iterative compression

• If v is present in the updated assignment, find an augmenting path from v1
to v2 or from v2 to v1, depending on the current role of v.

Since each of these operations can be done in O(m) time, we can perform
the update in O(m) time, as opposed to O(km) time for solving a flow problem
from scratch. This improves the overall worst case running time to O(3k ·mn).
We call this algorithm OCC-Gray.

Theorem 4.14. Vertex Bipartization can be solved in O(3k ·mn) time.

4.6.2.3 Filtering of valid colorings

Lemma 4.12 tells us that for Disjoint Compression, there is a valid coloring
for N(X) such that we will find a cut leading to a smaller odd cycle cover.
Therefore, simply trying all valid colorings will be successful. However, a more
careful examination allows to omit some valid colorings from consideration.
For this, consider two vertices c,d ∈ X that are connected by an edge. After
the input transformation, they are connected by a path containing two fresh
vertices vc and vd. If we now have a valid coloring that assigns different values
to vc and vd, it is not possible to find a vertex cut that disconnects them, since
they are directly connected by an edge. Therefore, any valid coloring that is to
be successful must assign them the same colors.

For notational convenience, we now identify a valid coloring Ψ with a color-
ing CΨ of the vertices in X. We identify the choice ∀w ∈ N(v) : Ψ(w) = CX(w)
with painting v white and the choice ∀w ∈ N(v) : Ψ(w) 6= CX(w) with painting v
black. Then, the above observation imposes CΨ(v) 6= CΨ(w) for all {v,w} ∈ E.
This means that CΨ is a two-coloring of G[X]. If G[X] is not bipartite, we can
immediately give up trying to find a smaller odd cycle cover; otherwise, we
only have to try all two-colorings of G[X] (there can be more than one if G[X] is
disconnected). This leads to the following algorithm.

Compress-OCC-Enum2Col(G0,X0)
1 subdivide edges around each v ∈ X
2 for each bipartite subgraph B of G[X]:
3 for each two-coloring CΨ of B:
4 if there is a vertex cut D in G \ X between #Ψ and Ψ with |D| < |X|:
5 return (X0 \ X) ∪D
6 return X0

The worst case for Compress-OCC-Enum2Col is that X is an independent set
in G. In this case, every subgraph of G[X] is bipartite and has 2|X| two-colorings.

4.6 Iterative compression for Vertex Bipartization 109

This leads to exactly the same number of flow problems solved as for Compress-
OCC. In the best case, X is a clique, and G[X] has onlyO(|X|2) bipartite subgraphs,
each of which admits (up to symmetry) only one two-coloring.

It is easy to construct a graph where any optimal odd cycle cover is inde-
pendent; therefore the described modification does not lead to an improvement
of the worst-case running time. However, at least in a dense graph, it is “un-
likely” that the odd cycle covers are completely independent, and already a few
edges between vertices of the odd cycle cover can vastly reduce the required
computation.

With a simple branching strategy, one can enumerate all bipartite subgraphs
of a graph and all their two-colorings with constant cost per two-coloring. This
can also be done in such a way that modifications to the flow graph can be done
incrementally, as described in Section 4.6.2.2. The two simple improvements
mentioned at the beginning of this section also can still be applied. We call the
thus modified algorithm OCC-Enum2Col.

It seems plausible that for dense graphs, an odd cycle cover is “more likely”
to be connected, and therefore this heuristic is more profitable. Experiments on
random graphs confirm this (see Section 4.6.3.3). This is of particular interest
because other strategies (such as reduction rules [Wernicke 2003]) seem to have
a harder time with dense graphs than with sparse graphs, making hybrid
algorithms appealing.

4.6.3 Implementation and experiments

Before presenting experimental results on our iterative compression algorithm
for Vertex Bipartization, we describe two conventional approaches, which we
used as a comparison point.

Branch & bound. Wernicke [2003] presented an algorithm for Vertex Biparti-
zation based on branch & bound. A branching decision simply tries for some
vertex v the two cases that v is in the odd cycle cover or not. The improvement
over the trivial 2n algorithm comes from the use of good lower and upper bounds
and from data reduction rules. Wernicke [2003] presented some experimental
results on real-world data.

Integer linear program. Integer linear programs (ILPs) are frequently used in
practice to solve hard problems. The reason is that it is often easy to model the
problems as ILP, and that powerful solvers are available, which profit from years
of research and engineering experience. We refer to the literature [Schrijver 1998,
Cormen et al. 2001] for details.

110 4 Iterative compression

Vertex Bipartization can be formulated as an ILP as follows:

c1, . . . , cn : binary variables (cover)
s1, . . . , sn : binary variables (side)

minimize
n∑
i=1

ci

s. t. ∀{v,w} ∈ E : (sv 6= sw) ∨ (cv = 1) ∨ (cw = 1)

where the constraint can be expressed in canonical ILP form as

s. t. ∀{v,w} ∈ E : sv + sw + (cv + cw) > 1
∀{v,w} ∈ E : sv + sw − (cv + cw) 6 1.

Here, a 1 in cv models that v is part of the odd cycle cover. The variables sv
model the side of the bipartite graph that remains when deleting the vertices
from the odd cycle cover. The first set of constraints enforces that for an edge
either one endpoint has color 1, or the other has color 1, or one of them is in
the cover. In effect, it forbids that both endpoints have color 0 while none of
them is in the cover. Analogously, the second set of constraints forbids that both
endpoints have color 1 while none is in the cover.

We first evaluated the conventional approaches. The ILP performed quite
well; when solved by GNU GLPK [Makhorin 2004], it consistently outperformed
the highly problem-specific branch-and-bound approach by Wernicke [2003] on
our test data, sometimes by several orders of magnitude. Therefore, we use the
ILP as the comparison point for the performance of our algorithms and do not
give details on the branch-and-bound approach.1

Implementation Details. The program is written in the C programming lan-
guage and consists of about 1400 lines of code. The source and the test data are
available from http://theinf1.informatik.uni-jena.de/occ/.

Data structures. Over 90% of the time is spent in finding an augmenting path
within the flow network; all that this requires from a graph data structure is
enumerating the neighbors of a given vertex. The only other frequent operation

1We recently found that more sophisticated mathematical programming approaches have been
suggested [Fouilhoux and Ridha Mahjoub 2006]. It would be interesting to extend our comparison
to these.

http://theinf1.informatik.uni-jena.de/occ/

4.6 Iterative compression for Vertex Bipartization 111

is “enabling” or “disabling” vertices as determined by the Gray code (see Sec-
tion 4.6.2.2). In particular, it is not necessary to quickly add or remove edges, or
query whether two vertices are neighbors. Therefore, we chose a very simple
data structure, where the graph is represented by an array of neighbor lists, with
a null pointer denoting a disabled vertex.

Since the flow simply models a set of vertex-disjoint paths, it is not necessary
to store a complete n×n-matrix of flows; it suffices to store the flow predecessor
and successor for each node, reducing memory usage to O(n).

Experimental Setup. We tested our implementation on various inputs. The
testing machine is an AMD Athlon 64 3700+ with 2.2 GHz, 1 MB cache, and 1 GB
main memory, running under the Debian GNU/Linux 3.1 operating system.
The source was compiled with the GNU gcc 3.3.4 compiler with option “-O3”.
Memory requirements are around 3 MB for the iterative compression based
algorithms and up to 500 MB for the ILP.

4.6.3.1 Minimum Site Removal

The first test set originates from computational biology (see Section 2.3.3). The
instances were constructed by Wernicke [2003] from data of the human genome
as a means to solve the so-called Minimum Site Removal problem. We examine
these instances to learn about the performance of our algorithms on real-world
instances, in particular those modeling a data correction task (the graph should
be bipartite, but is distorted, and a most parsimonious reconstruction is sought).
The results are shown in Table 4.1.

Runs were cancelled after 2 hours without result. We show only the instance
of median size for each value of |X|. The column “ILP” gives the running time
of the ILP given at the beginning of Section 4.6.3 when solved by GNU GLPK
[Makhorin 2004]. The column “Reed” gives the running time of Reed et al.’s
algorithm without any of the algorithmic improvements from Section 4.6.2
except for the obvious improvement of omitting symmetric valid partitions. The
columns “OCC-Gray” and “OCC-Enum2Col” give the running time for the
respective algorithms from Sections 4.6.2.2 and 4.6.2.3.

As expected, the running times of the iterative compression algorithms
mainly depend on the size of the odd cycle cover that is to be found. Interestingly,
the ILP also shows this behavior; the probable explanation is that it takes
the branch-and-bound part of the solver longer to establish inferiority of an
assignment of the integer variables to an upper bound found previously. The
observed improvement in the running time from “Reed” to “OCC-Gray” is
slightly lower than the factor of k gained in the worst-case complexity, but
clearly still worthwhile. The heuristic from Section 4.6.2.3 works exceedingly

112 4 Iterative compression

Table 4.1: Running times in seconds for different algorithms for benchmark
instances by Wernicke [2003]

n m density |X| ILP Reed OCC-Gray OCC-Enum2Col

Afr. #31 30 51 11.7 2 0.02 0.00 0.00 0.00
Jap. #19 84 172 4.9 3 0.23 0.00 0.00 0.00
Jap. #24 142 387 3.9 4 1.30 0.00 0.00 0.00
Jap. #11 51 212 16.6 5 0.50 0.00 0.00 0.00
Afr. #10 69 191 8.1 6 3.49 0.00 0.00 0.00
Afr. #36 111 316 5.2 7 16.93 0.01 0.00 0.00
Jap. #18 71 296 11.9 9 73.94 0.09 0.02 0.00
Jap. #17 79 322 10.5 10 100.93 0.27 0.04 0.00
Afr. #11 102 307 6.0 11 3790.99 1.10 0.14 0.02
Afr. #54 89 233 5.9 12 5.13 0.61 0.10
Afr. #34 133 451 5.1 13 9.36 0.98 0.02
Afr. #52 65 231 11.1 14 20.95 2.08 0.02
Afr. #22 167 641 4.6 16 318.95 31.24 0.15
Afr. #48 89 343 8.8 17 1269.01 104.20 0.11
Afr. #50 113 468 7.4 18 5287.68 501.15 0.06
Afr. #19 191 645 3.6 19 1288.85 2.23
Afr. #45 80 386 12.2 20 2774.75 0.23
Afr. #29 276 1058 2.8 21 0.38
Afr. #40 136 620 6.8 22 0.98
Afr. #39 144 692 6.7 23 9.11
Afr. #17 151 633 5.6 25 49.27
Afr. #38 171 862 5.9 26 2.60
Afr. #28 167 854 6.2 27 2.43
Afr. #42 236 1110 4.0 30 78.79
Afr. #41 296 1620 3.7 40 175.14

well and allows to solve even the hardest instances within minutes. In fact, for
almost all instances that the ILP was able to solve at all, the running time was
below the timer resolution of 100 ms.

For both improvements, the savings in running time can be completely
explained by the reduced number of flow augmentations.

4.6.3.2 Synthetic data from computational biology

In this section we examine solving the Minimum Fragment Removal problem
[Panconesi and Sozio 2004] with Vertex Bipartization. The motivation is
similar as in Section 4.6.3.1, except that the goal is to remove the minimum
number of fragments (presumably those that contain read errors) to obtain

4.6 Iterative compression for Vertex Bipartization 113

Table 4.2: Running times in seconds for different algorithms for synthetic Min-
imum Fragment Removal instances [Panconesi and Sozio 2004]. Here, c is a
model parameter. Each entry is an average over 20 instances.

c n m |X| ILP Reed OCC-Gray OCC-Enum2Col

2 25 23 1.4 0.02 0.00 0.00 0.00
3 50 61 3.5 2.00 0.00 0.00 0.00
4 82 116 6.1 224.33 0.05 0.00 0.00
5 112 173 8.3 1.17 0.05 0.02
6 143 253 10.4 39.86 1.64 0.16
7 174 321 11.6 7245.40 254.10 1.10
8 211 431 14.8 627.84 4.54
9 243 561 17.9 181.48
10 289 710 21.0 186.36
11 328 839 23.3 2493.82

consistent data.

We generate synthetic Vertex Bipartization instances using a model sug-
gested by Panconesi and Sozio [2004]. A random binary string h1 of length n
is generated, and h2 is generated as a copy of h1 where a proportion of d bits
is randomly flipped. These strings represent the two copies of the haplotype.
Next, fragments are generated by breaking h1 and h2 each into k pieces by select-
ing k− 1 breakpoints randomly. The fragment generation process is repeated c
times, such that every position in h1 or h2 occurs c times in some fragment.
Finally, each fragment is mutated by flipping each bit with probability p. From
the fragments, the conflict graph is constructed, where the fragments are the
vertices and an edge is drawn between two fragments if they differ at some
position.

Following Panconesi and Sozio [2004], we choose the parameters n = 100,
d = 0.2, k = 20, p = 0.02, and c varying (see Table 4.2).

The results are consistent with those of Section 4.6.3.1. The ILP is outper-
formed by the iterative compression algorithms; for OCC-Gray, we get a speedup
by a factor somewhat below |X| when compared to “Reed”. The speedup from
employing OCC-Enum2Col is very pronounced, but still far below the speedup
observed in Section 4.6.3.1. A plausible explanation is the lower average vertex
degree of the input instances; we examine this further in Section 4.6.3.3. Note
that even with all model parameters constant, running times varied by a factor
of up to several orders of magnitude for all algorithms for different random
instances.

114 4 Iterative compression

60 80 100 120 140 160 180
Vertices

0

20

40

60

80

100

120

140

160

ru
nn

in
g

tim
e

in
 s

ec
on

ds

(b)

(a)

(a) density 0.1

(b) density 0.15

Figure 4.21: Running time of OCC-Enum2Col (Section 4.6.2.3) for random
graphs of different density (n = 300). Each point is the average over at least 30
runs.

4.6.3.3 Random graphs

The previous experiments have established OCC-Enum2Col as best performing
algorithm. Therefore, we now focus on charting its tractability border. We use the
following method to generate random graphs with given number of vertices n,
edges m, and odd cycle cover size at most k: Pre-allocate the roles “black” and
“white” to (n− k)/2 vertices each, and “odd cycle cover” to k vertices; select a
random vertex and add an edge to another random vertex consistent with the
roles until m edges have been added.

In Figure 4.21, we display the running time of OCC-Enum2Col for different
sizes of the odd cycle cover and different graph densities for graphs with 300
vertices. Note that the actual optimal odd cycle cover can be smaller than the
one “implanted” by our model; the figure refers to the actual odd cycle cover
size k.

At an average degree of 3, the growth in the measurements closely matches
the one predicted by the worst-case complexity O(3k). For the average degree 16,
the measurements fit a growth of O(2.6k), and for average degree 64, the growth
within the observed range is about O(1.6k). This demonstrates the effectiveness
of OCC-Enum2Col for dense graphs, at least in the range of values of k we
examined.

The best way to improve the presented programs further for practical appli-
cability seems the incorporation of data reduction rules. In particular, Wernicke

4.7 Outlook 115

[2003] reported them to be most effective for sparse graphs. This makes a combi-
nation with OCC-Enum2Col (Section 4.6.2.3) attractive, since in contrast, this
algorithm displays the worst performance for sparse graphs.

4.6.4 Outlook

As an alternative to the inductive mode of building up a solution, the compres-
sion routine can also be employed in a more straight-forward manner by simply
trying to compress an initial heuristic solution (e.g., from Abdullah [1992] or
Wernicke [2003]) until it cannot be compressed anymore. However, this leads to a
much worse combinatorial explosion: even if there was a factor-c approximation,
the running time would be O(4ck) · nO(1).

Fernau [2006b] suggests to solve Vertex Bipartization by first using a
branching algorithm to get rid of triangles (C3’s), and then using the fact that
the remaining instance requires with high probability at most one more vertex
deletion to become bipartite. This would allow to solve Vertex Bipartization as
fast as 3-Hitting Set, that is, in 2.076k ·nO(1) time. Unfortunately, the probability
argument only holds over an equal distribution of graphs; for example, it might
be wrong for most sparse graphs. Still, it might be interesting to see whether
in practice the remaining instances actually have a very small parameter and
can thus be solved quickly. Also, a 3-Hitting Set kernelization [Abu-Khzam
2007] might be able to remove some vertices upfront in instances with very many
triangles.

It would also be interesting to see whether the quest for better data reduction
leads to a problem kernel, as it was recently achieved for the related problem
Feedback Vertex Set [Burrage et al. 2006, Bodlaender 2007].

At the Dagstuhl Seminar 07281 (Structure Theory and FPT Algorithmics for
Graphs, Digraphs and Hypergraphs, 2007), Henning Fernau (Universität Trier)
suggested to examine the parameterization of 3-Coloring by the size of the
smallest color partition. Since deleting any color class from a 3-coloring leaves
a bipartite graph, we can reformulate this problem as follows: find a vertex
bipartization set X of size at most k such that X is an independent set. Clearly,
this problem is similar to Vertex Bipartization, and similar techniques might
apply.

4.7 Outlook

Up to now, the iterative compression framework has been confined to the setting
of graph modification problems for hereditary graph classes. Therefore, one of
the most interesting challenges is to find an application that lies outside this area.

116 4 Iterative compression

Dealing with graph modification problems for non-hereditary graph classes
would probably require a more sophisticated induction than simply adding
vertex-by-vertex or edge-by-edge. A possibility is to introduce annotations. For
example, it has been suggested to try to find an iterative compression algorithm
for Cluster Editing with “don’t care” edges, that is, edges which may be edited
at zero cost [Bodlaender et al. 2006]. We can then use induction by initially
having all vertex pairs as “don’t care”, and then converting them one-by-one to
their actual state (edge or non-edge).

An even more interesting challenge is to leave the realm of graph problems
completely. For example, recently it has been shown that there is an iterative
compression algorithm for Almost 2-SAT, that is, the problem of deleting
the minimum number of clauses from a 2CNF-formula such that it becomes
satisfiable [Razgon and O’Sullivan 2008]. Similar problems might give good
targets for iterative compression.

Chapter 5

Color-coding

The color-coding method was introduced by Alon et al. [1995] as a randomized
method for finding certain small subgraphs of size k in a graph. The method
can be derandomized with running time O(ckm) for some c, implying fixed-
parameter tractability.

Although the method was lauded for its elegance and potential practicability
due to modest running time and no large hidden constants, only recently
have implementations been tried. A main application is to find candidates for
signaling pathways in protein interaction networks, which can be modeled as
a Minimum-Weight Path problem (see Section 2.4). Using color-coding, Scott
et al. [2006] could find candidates for signaling pathways with up to 10 proteins
within a few hours.

In this chapter, we show how to speed up color-coding both from a worst-case
perspective and from a practical viewpoint. Our experiments show a speed-up
of several orders of magnitude compared to the work of Scott et al. [2006]. Some
of the improvement comes from a simple direct modification of the algorithm
(Section 5.3.1); some from the use of heuristic evaluation functions, which help
to avoid the search of large parts of the search space (Section 5.3.2); and some
come from carefully tuned data structures (Section 5.3.3). With the speedups,
for basically all parameter settings relevant to the search for signaling pathways,
results can be obtained within seconds (Section 5.4). This allows the interactive
exploration of such pathways. For this, the graphical user interface Faspad was
implemented (Section 5.5).

In summary, the results of this chapter show that color-coding is a viable
method for a wide range of NP-hard motif search problems, that is, problems
where one is looking for small subgraphs with certain properties.

117

118 5 Color-coding

5.1 Known results

Introducing color-coding, Alon et al. [1995] have shown that finding a simple
path of length k in a graph (Longest Path) can be done with high probability
inO(5.44km) time. The method can be derandomized with running timeO(ckm)
for some (very large) c, implying that this NP-hard problem is fixed-parameter
tractable. They further gave FPT algorithms for finding a k-vertex cycle or a
given subgraph of bounded treewidth.

Although the technique was described as elegant and fundamental for con-
structing FPT algorithms, the field lay dormant for some time, and has only
recently seen a revival. Several authors used color-coding to get improved FPT
results for set packing (given a number of sets, finding a collection of disjoint sets
whose union has maximum size) [Fellows et al. 2004, Koutis 2005] and graph
packing (packing a maximum number of vertex-disjoint copies of a graph into
another graph) [Fellows et al. 2004, Mathieson et al. 2004, Prieto and Sloper 2006,
Liu et al. 2006]. Marx [2005] used color-coding to get FPT results for certain
constraint satisfaction problems. Betzler [2006] showed how to use color-coding
to find a subtree of minimum weight isomorphic to a query tree of k vertices in
randomized O(8.16kkm) time. Dost et al. [2007] extended this setting by taking
vertex matching weights, insertions, and deletions into account. They further
give some details on how to implement color-coding for query graphs with small
treewidth. Fellows et al. [2007a] used color-coding to find in a vertex colored
graph a connected set of vertices whose colors match a specified set of colors.

Alon et al. [1995] describe how to derandomize color-coding using a “k-
perfect family of hash functions” of size ck for some c > 8000. The size of this
family is a factor in the exponential base of the running time. Recently, Chen
et al. [2007b] have improved c to 6.4. Unfortunately, there is also a lower bound
of e [Nilli 1994], implying that a derandomized algorithm cannot have a better
exponential base of the running time than the randomized method.

The color-coding method has also inspired a recent approach called “divide-
and-color”, which is based on divide-and-conquer, and was independently
developed by two groups [Kneis et al. 2006, Chen et al. 2007b]. This method can
solve Longest Path with high probability in O(4kk3.42m) time. In addition to
the thus improved exponential part of the running time, the algorithm can be
derandomized more efficiently [Chen et al. 2007b]. Divide-and-color has further
been applied to the t-Dominating Set problem [Kneis et al. 2007]. Another
color-coding-like technique termed “random separation” has been suggested by
Cai et al. [2006]. This approach seems not quite as generally employable, since it
requires assumptions about the size of the neighborhood of a subgraph sought
for.

Only recently has it been attempted to implement color-coding methods.

5.2 Basic method 119

Raymann [2004] gave an implementation for Longest Path. Unlike later works,
his implementation cannot deal with edge weights. Just finding a path of
length k is a much easier problem than finding a minimum-weight path, since
there are usually many paths of length k in real-world instances. Therefore, it is
hard to compare this implementation to other works. The use of color-coding in
bioinformatics has been initiated by Scott et al. [2006]. They modeled the problem
of finding signaling pathways in protein interaction networks as Minimum-
Weight Path problem (see Section 2.4) and further gave an algorithm for k-
Cardinality Tree (finding a subtree of minimum weight with k edges) running
in 8.16k ·nO(1) time. Shlomi et al. [2006] extend the approach to Pathway Query

(given a pathway, find one that best matches it in the given graph, allowing for
deletions and insertions). A very similar setting was applied by Mayrose et al.
[2007] to find where antibodies dock to proteins. Dost et al. [2007] gave results
for querying tree structures in protein interaction networks. Cappanera and
Scutellà [2007] used color-coding for the Balanced Paths problem, that is, to
find p paths such that the difference in cost between the longest and the shortest
is minimized. Borndörfer et al. [2007] used color-coding to get feasible LP
formulations for line planning problems in public transport. Finally, Björklund
et al. [2007] gave an elegant method how to speed up the dynamic programming
step of color-coding for k-Cardinality Tree from 3k · nO(1) to 2k · nO(1).

Deshpande et al. [2007] independently discovered the trick of increasing the
number of colors used, as it is explained in Section 5.3.1. They also recommend
using 1.3k colors; however, they only derived an upper bound on the exponential
running time of 4.5k, while we show a bound of 4.32k (Theorem 5.3).

5.2 Basic method

The central idea of color-coding is to randomly color each vertex of the graph
with one of several colors and to “hope” that the vertices in the subgraph
searched for obtain a particular color pattern; for example, that each vertex
obtains a different color. Under the assumption that this happens, the task
of finding the subgraph is greatly simplified; in particular, it can be found in
FPT time. Of course, most of the time the target structure will not actually be
colored favorably. Therefore, we have to repeat the process of randomly coloring
and then searching (called trial) many times with a fresh coloring until with
sufficiently high probability at least once our target structure is colored favorably.
Since the number of trials also depends only on k (albeit exponentially), the
complete algorithm runs in FPT time. Figure 5.1 shows pseudo-code for this
algorithm skeleton.

We now present two simple color-coding algorithms for the Longest Path

120 5 Color-coding

Algorithm: ColorCoding(G = (V ,E))
1 repeat a sufficient number of times:
2 for each v ∈ V :
3 color v randomly
4 if Trial(G):
5 return true
6 return false

Figure 5.1: Algorithm skeleton for color-coding

problem. They do not have competitive running times, but rather serve as
introductory examples. To make the presentation simpler, in this chapter, when
we talk about paths, we always mean simple paths, that is, paths that do not
contain a vertex more than once. Further, the length of a path is its number of
vertices (not edges).

Longest Path

Instance: An undirected graph G = (V ,E) and an integer k > 0.
Question: Does G contain a simple path of k vertices?

The difficulty here comes from the demand of simple paths. Without this
requirement, we could just traverse a single edge k− 1 times.

The probably most simple color-coding algorithm for Longest Path is as
follows:

Color-coding Scheme 5.1. For a trial, color each vertex randomly with a number
from 1 to k. The hope is that the vertices of a k-vertex path obtain exactly the colors 1
through k, from start vertex to end vertex.

Assuming we have such a coloring, it is easy to check whether there is a path
of length k: from c = k− 1 down to 1, delete each vertex with color c that is not
connected to a vertex of color c + 1. It is easy to see that after this, there is a
vertex of color 1 left iff there is a path with colors 1 through k.

It remains to state what a sufficient number t of trials is. The following
lemma shows how to calculate the number of trials required to achieve a desired
error probability ε from the success probability of a trial.

Lemma 5.1. If a trial of color-coding succeeds with probability p, then t > − ln ε/p
trials are needed to achieve an error probability of at most ε.

Proof. The algorithm only fails if all trials fail. Thus, to get an error probability
of at most ε, we need

(1 − p)t 6 ε. (5.1)

5.2 Basic method 121

Using 1 + x 6 exp(x), which holds for all x and is a very good approximation
for x of small absolute value, we get

exp(−pt) 6 ε (5.2)
⇐⇒ t > − ln ε/p. (5.3)

We arrive at the following proposition.

Proposition 5.1. Using Color-coding Scheme 5.1, Longest Path can be solved in
O(kk ·m · (− ln ε)) time with error probability at most ε.

Proof. The probability that with a particular coloring we find a path of length k if
there is one is at least p := 1/kk (higher if there is more than one path of length k).
By Lemma Lemma 5.1, t = dkk · (− ln ε)e trials suffice to solve Longest Path

with error probability at most ε. A single trial can be done in linear time.

We have thus already obtained a (randomized) fixed-parameter running time,
albeit with a quite bad combinatorial explosion with respect to k. Note, however,
that the error probability affects the running time only logarithmically. We can
thus afford very small error probabilities at the cost of only a small extra factor in
the running time. For example, demanding the error probability to be as low as
that of a random hardware memory error caused by cosmic rays imposes a factor
of about 4 in a plausible setting (no error-correcting memory; 10−12 errors per bit
per hour [Tezzaron Semiconductor 2004]; computation running for 10 minutes
using 64 MB). Thus, it seems quite unlikely that one would want to use a
derandomized version in practice.

We can improve the running time by hoping for a more likely favorable
coloring, at the cost of a slightly more involved trial routine.

Color-coding Scheme 5.2. For a trial, randomly assign to the vertices of G a permu-
tation of the numbers 1, . . . ,n, such that each permutation is equally likely. The hope is
that the vertices in a k-vertex path v1, v2, . . . , vk will receive increasing values, that is,
we have color(v1) < color(v2) < · · · < color(vk).

The difference to Color-coding Scheme 5.1 is that the colors of the path do
not have to be contiguous, but any increasing sequence will do. Finding paths
of length k that are colored by increasing colors is still much easier than the
general problem. If we are only interested in such paths, we can give each edge a
direction going from the vertex with the lower color to the vertex with the higher
color. This directed graph is clearly acyclic. We thus have to solve the Longest

Path problem in directed acyclic graphs, which can be done in polynomial time
using dynamic programming.

122 5 Color-coding

Since dynamic programming easily allows us to consider weighted problems,
and important applications ask for this, we extend our focus to Minimum-
Weight Path (see Section 2.4 for applications and previous work on Minimum-
Weight Path). Note that vertex weights can be dealt with by a reduction to edge
weights in directed graphs in the same way as for minimum cut (Section 4.6.2.2);
all algorithms in this section are easily adaptable to the directed case.

Minimum-Weight Path

Instance: An undirected graph G = (V ,E) with edges weighted by w :
E→ Q+ and an integer k > 0.
Task: Find a simple path v1, . . . , vk of k vertices with minimum weight,
that is, that minimizes

∑k−1
i=1 w({vi, vi+1}).

For ease of presentation, we only deal with determining the weight of an
optimal solution; we examine some ways to retrieve the path that realizes this
weight in Section 5.3.3. We use the following obvious decomposition.

Observation 5.1. A path with k > 1 vertices that ends in v can be decomposed into a
path of k − 1 vertices that does not contain v and a single edge connecting v to one of
its neighbors.

Observation 5.1 suggests to use a dynamic programming table T [v, l] : v ∈
V , 1 6 l 6 k, which stores for each v ∈ V the weight of a minimum-weight path
that has l vertices and ends in v. We can then use the following recurrence:

T [v, l] = min
u|(u,v)∈E

T [u, l− 1] +w({u, v}). (5.4)

The base case is simply T [v, 1] = 0 for all v ∈ V . After the table has been filled
in, the optimum value can be retrieved as minv∈V T [v,k]. For the recurrence to
be workable, we must be able to fill the table in such an order that accessed
values have already been calculated. This can be ensured if we fill in the table in
the order of a topological sort of G. Further, we must make sure that we do not
access a value corresponding to a path that already contains v. Here, this needs
no further work, because only vertices distinct from v have been considered
before filling in an entry for v.

Example 5.1. Figure 5.2 shows an example. In the trial shown on the right, the random
coloring is a lucky coloring, since for k = 4, the minimum-weight path cbda is colored
with ascending colors. The calculations that lead to the discovery of this optimal path

5.2 Basic method 123

a

a

b

bc c

d

d

e

e

88

7

7
6

6

5
5

4

4
3

3
2

2

Figure 5.2: Example for Color-coding Scheme 5.2 (left: input instance; right:
directed acyclic graph generated in a particular trial, which sorted the vertices
as c < b < d < e < a)

of weight 9 are (other table entries not shown):

T [c, 1] = 0 (5.5)
T [b, 2] = min{T [c, 1] +w((c,b))} = 3 (5.6)
T [d, 3] = min{T [c, 2] +w((c,d)), T [b, 2] +w((b,d))} = 5 (5.7)
T [a, 4] = min{T [b, 3] +w((b,a)), T [d, 3] +w((d,a)), T [e, 3] +w((e,a))} = 9.

(5.8)

Proposition 5.2. Using Color-coding Scheme 5.2, Minimum-Weight Path can be
solved in O(k! · km · (− ln ε)) time with error probability at most ε.

Proof. There are only two colorings of a k-vertex path that are favorable, out
of k! possible. Thus, the trial success probability is p = 2/k!. Since Lemma 5.1
also holds here, t = dk!/2 · (− ln ε)e trials suffice. The dynamic programming
table has kn entries, and amortized over all entries, km lookups of older entries
need to be done.

We now have an exponential part of k! for color-coding. It is possible to
further improve this to 5.44k, again by weakening the demand put on the
coloring. This is the scheme proposed by Alon et al. [1995].

Color-coding Scheme 5.3. For a trial, color each vertex randomly with a number
from 1 to k. The hope is that a minimum-weight path becomes colorful, meaning all of
its vertices obtain different colors.

Here, we will not be able to give a polynomial-time algorithm for a single trial.
Instead, the problem of finding a colorful k-vertex path is solved in modestly
exponential time by dynamic programming, following the path decomposition
Observation 5.1. The extra complication is because we cannot as easily ensure
that when accessing shorter paths to form paths ending in v, they do not already
use v (that is, that the path stays simple). For the general (uncolored) problem,

124 5 Color-coding

a b

c

de

8

7

6

5 4

3

2

Figure 5.3: Example for Color-coding Scheme 5.3

we would need one table entry for each possible combination of vertices in a
path and each end vertex, resulting in a table size of roughly O(nk). When
looking only for a colorful path, however, it suffices to store the set of colors a
path uses: if the color of v does not occur in some path, we can safely append v
without introducing loops. That is, we use a table T [v,S] : v ∈ V ,S ⊆ P({1, . . . ,k}),
where an entry T [v,S] stores the minimum weight of a path that ends in v and
whose vertices have exactly the colors in S. The length of the path does not need
to be stored explicitly; since we look only for colorful paths, it is |S|.

To fill in the table, we can use the following recurrence, analogous to (5.4):

T [v,S] = min
{u,v}∈E

T [u,S− color(v)] +w({u, v}). (5.9)

The base case is easy: for each v ∈ V and c ∈ {1, . . . ,k}, set

T [v, ∅] =∞ (5.10)

T [v, {c}] =

{
0 if color(v) = c∞ otherwise.

(5.11)

Further, if we fill the table in order of increasing size of S, we only need to access
entries already filled in. After the table is filled in completely, we can retrieve
the optimum value as minv∈V ,|S|=k T [v,S].

We give an example of a trial (Figure 5.3). Here, also a lucky coloring is
shown, that colors the optimal path cbda of weight 9 colorful. First, the base
case is handled:

T [a, { }] = 0; T [b, { }] = 0; T [c, { }] = 0; T [d, { }] = 0; T [e, { }] = 0. (5.12)

Then, the dynamic programming recursion is applied, in increasing order

5.2 Basic method 125

of |S| (we show only non-∞ entries):

T [a, { , }] = 4; T [a, { , }] = 8;
T [b, { , }] = 3; T [b, { , }] = 2; T [b, { , }] = 8;
T [c, { , }] = 6; T [c, { , }] = 3;
T [d, { , }] = 6; T [d, { , }] = 4; T [d, { , }] = 2;
T [e, { , }] = 7;
T [a, { , , }] = 10; T [a, { , , }] = 11; T [a, { , , }] = 6;
T [b, { , , }] = 8; T [b, { , , }] = 6;
T [c, { , , }] = 10; T [c, { , , }] = 5; T [c, { , , }] = 11;
T [d, { , , }] = 5; T [d, { , , }] = 10;
T [e, { , , }] = 13; T [e, { , , }] = 9;
T [a, { , , , }] = 9;
T [b, { , , , }] = 13;
T [c, { , , , }] = 9;
T [d, { , , , }] = 15;
T [e, { , , , }] = 12.

The weight of the optimal solution is then retrieved from T [a, { , , , }]
or T [c, { , , , }] (the optimal path will always be found twice, once from start
to end and once from end to start).

Theorem 5.1 (Alon et al. [1995]). Using Color-coding Scheme 5.3, Minimum-
Weight Path can be solved in O(1/

√
k exp(k) · 2k ·m · (− ln ε)) = O(5.44k ·m ·

(− ln ε)) time with error probability at most ε.

Proof. We first need to estimate the probability p that a path is colorful in a trial.
There are kk ways to color a k-vertex path, of which k! are favorable. Thus, using
the asymptotically very close Stirling approximation

k! >
√

2πk
(
k

e

)k
, (5.13)

we get

p =
k!
kk
>

√
2πk

(
k
e

)k
kk

=
√

2πk exp(−k). (5.14)

By Lemma 5.1, we thus need t = d1/(√2πk exp(k) · (− ln ε))e trials.

126 5 Color-coding

To estimate the time needed for a trial, we note that for each of the 2k possible
values of S, there are m terms evaluated as argument of the minimum. The time
for evaluating one term depends on the data structure and machine model: if we
assume that the table is stored in “flat” format and address offset calculations
can be done in constant time, then it can be done in constant time; otherwise (as
stated, e. g., by Alon et al. [1995]) we get an additional factor of k.

5.2.1 Variations of Minimum-Weight Path

A particularly appealing aspect of the color-coding method is that it can be easily
adapted to many practically relevant variations of Minimum-Weight Path. In
particular, extra constraints on the path can be taken into account. For example,
the set of vertices where a path can start and end can be restricted (such as to
force it to start in a membrane protein and end in a transcription factor [Scott
et al. 2006]). This can be done by restricting the base case (5.11) to only set
entries to 0 for vertices in the start set, and by only examining vertices from the
target set in the final loop that retrieves the optimal value. A variant with more
involved extra constraints is presented in Section 5.2.2; another example is given
by Mayrose et al. [2007].

Further, not only a minimum-weight path can be sought after but rather a
collection of low-weight paths. This is useful when modeling scenarios where
more than one path is sought for, or when there is additional information
not modeled in the instance, which requires a number of good candidates for
manual inspection. This can be simply done by storing not just one optimal
path, but a fixed number of paths with the highest score. It seems difficult,
though, to provably find with high probability the set of the b best paths: while
a suboptimal path p will also be colorful in some trial with high probability,
there might be other paths with lower weight that have many vertices in common
with p and are therefore also colorful with high probability, which would make
the dynamic programming not find p.

However, typically, one is not interested in small variations of a single path
anyway; rather, one wants a diverse set of candidates for manual inspection. For
example, Scott et al. [2006] demand that the paths must differ in, say, 30 % of
the vertices. This can be done by not accepting a path if there is already a path
with better score and more than 30 % similarity, and by discarding all paths with
more than 30 % similarity to a newly inserted path. While it still seems hard to
prove anything about this scenario (in particular since the solution is no longer
necessarily unique, even if all weights are distinct), it is quite plausible that it
will with high probability produce optimal solution sets in the sense that no
path could be inserted that would improve the average score.

5.2 Basic method 127

a b c d e

q1 7 5 4 5 1
q2 4 4 7 2 6
q3 8 1 8 4 5
q4 6 6 3 6 4

a b

c

de
1

2

2

3

5 6 8

Figure 5.4: Example for Pathway Query with l = 4 and Nins = Ndel = 1. Query
sequence is q1,q2,q3,q4. Left: vertex match table h. Right: weighted graph G.
The optimal path is P = edcb (bold edges) with matching M : q1 7→ e,q2 7→
d,q3 7→ b,q4 7→ ⊥. The cost of this solution is 2 + 1 + 3 + 1 + 2 + 1 = 10.

5.2.2 Pathway Query

Recently, it has been demonstrated that pathway queries to a network, that is, the
task of finding a pathway in a network that is as similar as possible to a query
pathway, can be handled with color-coding [Shlomi et al. 2006] (see Section 2.4
for details on the motivation). We recall the somewhat involved, but natural
formalization:

Pathway Query

Instance: An undirected graph G = (V ,E) with edges weighted by
w : E→ Q+, a length-l query sequence Q = q1, . . . ,ql, a match weight
function h : {q1, . . . ,ql} × V → Q+, and two nonnegative integers Nins
and Ndel.
Task: Find an alignment, that is, a path P = p1, . . . ,pk in G together
with a mapping M from {q1, . . . ,ql} to {p1, . . . ,pk} ∪ {⊥} such that no
vertex in P has more than one preimage. The alignment must have at
most Nins insertions (that is, vertices in P that have no preimage in Q)
and at most Ndel deletions (that is, vertices in Q that are mapped to ⊥).
Further, the weight of the alignment must be minimal, that is, one must
minimize

l−1∑
i=1

w(pi,pi+1) +
∑

16i6l
M(qi) 6=⊥

h(qi,M(qi)). (5.15)

Figure 5.4 shows an example. Note that Pathway Query is a generalization
of Minimum-Weight Path and becomes equivalent to this problem in the special
case where the match weight function h is unit and Nins = Ndel = 0.

Shlomi et al. [2006] show how to solve Pathway Query by color-coding.
The basic process is the same as for Minimum-Weight Path (Color-coding

128 5 Color-coding

Scheme 5.3): the input graph is randomly colored with k := l+Nins colors and
it is hoped that the optimal path becomes colorful in the process. However, the
dynamic programming recurrence (5.9) from solving Minimum-Weight Path

needs to be adapted in several ways to account for the more general problem
formulation of Pathway Query:

• New dimensions are added to the dynamic programming table to track
the number of deletions θ and the number of matched vertices i.

• The vertex match weights are taken into account.

• New recurrences for the process of insertion and deletion are added.

Thus, a table entry T [v, i, θ,S] contains the minimum weight of a partial align-
ment that matches q1, . . . ,qi, ends at v, contains θ deletions, and uses exactly
the colors in S for the matching targets of q1, . . . ,qi. The precise recurrences are:

T [v, i, θ,S] = min
T [u, i− 1, θ,S− color(v)] +w(u, v) + h(qi,u) {u, v} ∈ E
T [u, i, θ,S− color(v)] +w(u, v) {u, v} ∈ E, |S| − i < Nins

T [v, i− 1, θ− 1,S] θ < Ndel.
(5.16)

The first case corresponds to a match. The number of matched vertices i
is increased, and the costs for the matched edge and the matching of the two
vertices are added. The second case describes an insertion; this can only be done
if the number of already inserted vertices (|S| − i) is not too large. Finally, the
third case describes a deletion.

Theorem 5.2 (Shlomi et al. [2006]). Using Color-coding Scheme 5.3, Pathway

Query can be solved in O(1/
√
k exp(k) · 2k · NinsNdelm · (− ln ε)) = O(5.44k ·

NinsNdelm · (− ln ε)) time with error probability at most ε.

Proof. The analysis is the same as in the proof of Theorem 5.1, except that
any color set S can occur in combination with θ = 0, . . . ,Ndel and with i =
|S| −Nins, . . . , |S|.

Details of the implementation of calculating (5.16) are given in Section 5.3.4.

5.3 Algorithm engineering

This section presents several algorithmic improvements for color-coding that
lead to large savings in time and memory consumption. Whereas most of

5.3 Algorithm engineering 129

the improvements in Sections 5.3.2 and 5.3.4 are of a heuristic nature, the
improvement in Section 5.3.1 makes color-coding also more efficient in a worst-
case scenario. Most of our improvements are applicable to color-coding in
general and not restricted to the Minimum-Weight Path and Pathway Query

problems that our implementation covers.
As is standard practice in dynamic programming, we do not allocate memory

for the complete table and evaluate the recurrence (5.9) recursively; rather, we
work inductively starting from an initial set of entries. This way, we do not need
to allocate memory for the whole table, but can use a sparse data structure where
only entries that were actually calculated are stored; all others are implicitly∞.
This saves both time and memory.

More precisely, based on (5.11), we seed the table with all entries correspond-
ing to a one-vertex path ending at a vertex v:

for each v ∈ V : T [v, color(v)]← 0

Layer i contains the table entries with color sets of cardinality i. Thus, we already
have the first layer. Then, for i = 2, . . . ,k, we generate layer i from layer i− 1:

for each T [v,S] in the (i− 1)-th layer:
for each u | {v,u} ∈ E:
T [v,S+ color(u)]← T [v,S] +w({v,u})

The running time of this implementation is O(
∑k
i=1 2im) = O(2km), and

thus the same as a direct implementation of (5.9).
We can discard a layer after the next layer has been computed to save memory.

However, this requires extra memory to carry along enough information in each
entry to reconstruct a solution; we show in Section 5.3.3 how to do this efficiently.

5.3.1 Increasing the number of colors

Like the improvements in going from Color-coding Scheme 5.1 to Color-coding
Scheme 5.2 and from Color-coding Scheme 5.2 to Color-coding Scheme 5.3,
this improvement comes from a trade-off between the number of trials and the
time required for one trial. The idea is to increase the number of colors used.
More colors means a path is more likely to become colorful, which means fewer
trials. On the other hand, the dynamic programming step of each single trial
takes longer: the table size (and thus the running time) goes from O(2km) to
O(2k+xm) for x extra colors, that is, it doubles for every extra color.

Table 5.1 illustrates the gain from adding more colors. For example, when
adding a single color, it becomes 3.5 times more likely that a path is colorful,
which (by Lemma 5.1) means 3.5 times fewer trials. This well overcompensates

130 5 Color-coding

Table 5.1: Probability p for obtaining a colorful path using k+ x colors (k = 8,
ε = 0.001)

x 0 1 2 3 4 5

p 0.0024 0.0084 0.0181 0.0310 0.0464 0.0636
trials 2875 820 381 223 149 109

the increase by a factor of 2 for the dynamic programming. However, there are
diminishing returns: when going from 4 extra colors to 5 extra colors, we only
gain a factor of about 1.4, not sufficient to compensate the extra time needed for
the dynamic programming. Somewhere in-between is an optimum (in this case,
x = 2).

To determine this optimum, we need to look at the probability px that a path
of length k colored with k+ x colors is colorful. The probability is

px =

(
k+x
k

) · k!
(k+ x)k

=
(k+ x)!
x!(k+ x)k

=

k∏
i=1

i+ x

k+ x
, (5.17)

because there are (k + x)k ways to color k vertices with k + x colors and of
these exactly

(
k+x
k

) · k! use mutually different colors. The optimal x is then the
lowest x where px+1/px drops below 2, because if this value is below 2, going
from x to x+ 1 colors cannot compensate the factor of 2 increase from the larger
dynamic programming table.

It seems hard to determine this point analytically; numerical experiments
show that asymptotically, this happens for x ≈ 0.3k. Using x = 0.3k, the
exponential part of 5.44k in Theorem 5.1 can be improved:

Theorem 5.3. Using Color-coding Scheme 5.3 with 1.3k colors, Minimum-Weight

Path can be solved in O(4.32k ·m · (− ln ε)) time with error probability at most ε.

For the proof, we refer to Wernicke [2006, Theorem 4.3].
Analogously to this theorem for Minimum-Weight Path, the worst-case

running time that is required to solve Pathway Query for a (k −Nins)-vertex
query path can be improved to O(4.32k · NinsNdelm · (− ln ε)) by setting the
number of colors close to 1.3k.

This improvement brings the exponential part of color-coding for Minimum-
Weight Path from 5.44k down to 4.32k, and thus much closer to the 4k of the
divide-and-color method [Kneis et al. 2006, Chen et al. 2007b]. For a practical
implementation, we can expect even more speedup than suggested by the
worst-case estimation. While we could fix the number of colors at the worst-case

5.3 Algorithm engineering 131

6 8 10 12 14 16 18 20 22
number of colors

1

101

102

103

ru
nn

in
g

tim
e

[s
ec

on
ds

]

k=5
k=6
k=7k=8
k=9
k=10

k=11

k=12

Figure 5.5: Running times for finding the 20 minimum-weight paths of different
lengths k in the yeast protein interaction network of Scott et al. [2006]. Increasing
the number of colors yields a speedup of up to two orders of magnitude. No
heuristic evaluation function (Section 5.3.2) was used; the highlighted point of
each curve marks the optimal choice when assuming worst-case trial running
time.

optimum 1.3k, it is most likely beneficial to use even more colors, because various
algorithmic tweaks and the underlying graph structure can keep the dynamic
programming table very sparse, and thus the running time of a single trial stays
substantially below the worst-case estimate. This in turn causes the increase in
running time per trial by choosing more colors to be even more overcompensated
by a decrease in the total number of trials needed, as is exemplified in Figure 5.5
for the case of Minimum-Weight Path. In fact, for a small path length of 8–10
we can choose the number of colors to be the maximum our implementation
allows (that is, 31, due to the data structures explained in Section 5.3.3), and
get by with a very small number of trials (≈15–30). Based on such observations,
our implementation uses an adaptive approach to the number of colors, starting
with the maximum of 31 and decreasing this in case a trial runs out of memory.

A disadvantage of this technique is the increased memory usage: in the worst
case, memory usage increases by a factor of 2x. However, this problem can be
much mitigated using the techniques of the next section.

132 5 Color-coding

|S| edges d edgesd edges (k − |S|) − 2d edges

known path remaining path

start segment middle segment end segmentv

Figure 5.6: Calculation of a lower weight bound for a path with k edges when
already |S| of these edges are given

5.3.2 Heuristic evaluation functions

In a color-coding trial for solving Minimum-Weight Path, every vertex carries
entries for up to 2k+x color sets, each representing a partial colorful path with a
certain weight. As explained at the beginning of Section 5.3, we fill in the table
not recursively, but inductively, starting with the base case entries (5.11), and
expanding entries to form entries in the next layer. Because each entry may get
expanded, over several layers, to an exponentially large collection of new entries,
pruning even a small fraction of them can lead to a significant speedup. The
pruning strategy that we employ makes use of the fact that we are only looking
for one minimum-weight path. As soon as we have found a solution candidate,
we can always remove table entries where the weight of the corresponding
partial path, when completed, is certain to exceed the weight of an already
known length-k path.

Consider an entry T [v,S] corresponding to some partial path. To obtain a
length-k path, we need to append another k − |S| edges. Thus, a trivial lower
bound for the total weight of a length-k path expanded from this entry would
be T [v,S] + (k− |S|)wmin, where wmin is the minimum weight of any edge in the
graph. We improve upon this simple bound by dividing the remaining path
length not into single edges, but rather—as illustrated in Figure 5.6—into three
segments, calculating a lower bound separately for each of them and summing
up these bounds.

The lower bound calculation is prepared in a preprocessing phase by dy-
namic programming on the uncolored graph. There, we determine by dynamic
programming for every vertex v and a range of lengths 1 6 i 6 d the minimum
weight wmin(v, i) of a path of i edges that starts at the vertex v. If the paths
are restricted to end only in a certain set of “goal vertices” (for example, when
the signaling pathway candidates are restricted to end in a transcription factor),
we additionally determine the minimum weight gmin(v, i) of a path of i edges
starting in v and ending in a goal vertex. After this preprocessing, to get a lower
bound for the minimum weight of a path with l < k edges starting in v and
ending in a goal vertex, we can directly look up gmin(v, l) whenever l 6 d. Since

5.3 Algorithm engineering 133

no heuristic

d=1

d=2

d=3

4 6 8 10 12 14 16 18 20
path length

1

101

102

103

104

ru
nn

in
g

tim
e

[s
ec

on
ds

]

Figure 5.7: Running time comparison with heuristic evaluation functions for
different values of d (seeking the 20 lowest-weight paths in the yeast network of
Scott et al. [2006] that differ in at least 30% of participating vertices).

calculating wmin and gmin takes O(nd) time and space in the worst case, we
generally have to choose d < k. We can still get a lower bound if l > d. For
example, if l = c · d for some c > 2, we calculate

wmin(v,d) +
l− 2d
d
·min
u∈V

wmin(u,d) + min
u∈V

gmin(u,d). (5.18)

If d does not evenly divide l, we add a suitable correction term for the
middle segment. If l < 2d, we additionally try all ways of dividing the bound
between wmin(v, l1) and minu∈V gmin(u, l2) for l1 + l2 = l.

Clearly, there is a trade-off between the time invested in the preprocessing
(depending on d) and the time saved in the main algorithm. For the yeast
network of Scott et al. [2006], setting d = 2 seems to be a good choice with an
additional second of preprocessing time. For d = 3, the preprocessing time
increases to 38 seconds, an amount of time that is only recovered when searching
for paths of length at least 19 (see Figure 5.7).

Using lower bounds is only effective once we have already found as many
paths as we are looking for. Therefore, it is important to quickly find some low-
weight paths early in the process. We achieve this “preheating” by prepending
a number of trials with a thinned-out graph, that is, for some 0 < t < 1, we
consider a graph that contains only the tm lightest edges of the input graph.
Trials for a certain value of t are repeated with different random colorings until
the lower bound does not improve any more. By default, t is increased in steps
of 1/10; should we run out of memory, this step size is halved. This allows to
successfully complete trials in the thinned out graphs, making trials feasible on
the original graphs by providing them with powerful bounds for pruning.

134 5 Color-coding

00000111

00110011 00010111

01010011 00110011

1.381

1.201 1.249

1 0 2

0 6 1 5 1 0

Figure 5.8: Representation of color sets at some node u with color 4. Inner nodes
contain the marker bit (leftmost box), the common suffix (branch bit in bold),
and two pointers to children. Leaf nodes contain the marker bit, the color set,
the weight, and the vertices of the path.

5.3.3 Data structures

For each vertex, we need a data structure that maps color sets (keys) to a partial
colorful path together with its weight (value). We represent a color set as a bit
string of fixed length, that is, bit i is set to 1 iff color i is an element of the color
set. This allows to use a Patricia tree, that is, a compact representation of a radix
tree [Cormen et al. 2001] where any node which is an only child is merged with
its parent (see Figure 5.8 for an example). In radix trees, only the leaves carry
key/value pairs, while inner nodes serve for navigation.

Inner nodes of the tree contain a color set. The highest 1-bit of this color set is
the branch bit. For all leaf nodes below an inner node, the bits below the branch
bits are equal to the corresponding bits in this inner node. The left subtree
contains color sets where the branch bit is 0, and the right subtree those where it
is 1. We additionally need a marker bit to distinguish inner nodes and leaves. A
leaf stores the complete color set, the weight of the corresponding partial path,
and the vertices in the order of occurrence on the path (except for the last one,
which is redundant).

The height of the tree is naturally limited by the number of colors, so no
balancing is needed. This data structure allows for very quick insertions and
iterations with a moderate memory overhead of, e.g., 12 bytes per color set on
a 32-bit system. Memory allocation time and space overhead is minimized by
using a memory pool.

The data structure has the additional advantage that it is possible to quickly
skip over color sets containing a certain color by noting that the corresponding
bit is set in the suffix at some inner node.

The storage of the vertices of the partial paths accounts for the bulk of the
memory requirement, because kdlogne bits per stored path are required. We
can save memory here by noting that it suffices to store only the order in which

5.3 Algorithm engineering 135

the colors appear on a path: after completing a color set at some vertex u, the
path can be recovered by running a shortest path algorithm (e.g., Dijkstra’s
algorithm [Cormen et al. 2001]) for the source vertex u while allowing it to
only travel edges that match the color order. This reduces the memory cost per
entry to kdlogke bits, which, for our application, amounts to a saving factor of
about 2–4. Because of the resulting increase in computer cache effectiveness, this
usually also leads to a speedup except when either short path lengths are used
(where memory is not an issue anyway) or when many solution paths are found
and have to be reconstructed.

5.3.4 Improvements for Pathway Query

If we wish to exploit the heuristic cutoffs and the resulting sparseness of the
dynamic programming table when solving an instance of Pathway Query, we
cannot use recurrence (5.16) from Section 5.2.2 directly; rather, the entries must
be built up inductively. For this purpose, the dimension of i is represented
implicitly by working layerwise from i = 1 to l and accessing only the previous
layer. The dimensions of v and θ are represented explicitly as an array, while the
values of S are covered by one Patricia tree (see Section 5.3.3) per combination
of v and θ. The calculation of layer i + 1 from layer i starts by expand each
entry W(v, i, θ,S) with weight wi in layer i by possible matchings or deletions
of a single vertex:

if {u, v} ∈ E∧ color(u) /∈ S : (5.19)
T [u, i+ 1, θ,S ∪ {color(u)}]← wi +w(u, v) + h(qi+1,u) (5.20)

if θ < Ndel : (5.21)
T [v, i+ 1, θ+ 1,S]← wi. (5.22)

The update is skipped if an entry with lower weight is already present. Since
insertions do not increment i, we then have to update the table for layer i +
1 by entries with an arbitrary additional number of insertions. Each entry
W(v, i+ 1, θ,S) with weight wi+1 (including those generated in this process) is
expanded:

if {u, v} ∈ E∧ color(u) /∈ S∧ |S| − (i+ 1) < Nins : (5.23)
T [u, i+ 1, θ,S ∪ {color(u)}]← wi+1 +w(u, v). (5.24)

Fortunately, the Patricia tree structure allows to do the insertion updates in a
straightforward way: a single in-order walk of the tree will do, since any newly
inserted entry contains one more color and will therefore be encountered later
in the walk.

136 5 Color-coding

Table 5.2: Basic properties of the network instances yeast [Scott et al. 2006] and
drosophila [Giot et al. 2003])

n m clustering coeff. avg. degree max. degree

yeast 4 389 14 319 0.067 6.5 237
drosophila 7 009 20 440 0.030 5.8 175

For initialization, all possibilities to delete 0, . . . ,Ndel query vertices and then
match the next with v ∈ V have to be entered into the table. Alignments starting
with insertions are not considered, since they cannot be optimal.

A deletion is not allowed after an insertion, since alignments that only differ
in the order of deletions and insertions between two actual matches will have
the same score, and are not reasonable to differentiate for our application.

To use the heuristic lower bounds that we use for Minimum-Weight Path

(Section 5.3.2) also for Pathway Query, these have to be slightly adapted: First,
possible deletions have to be taken into account when considering the minimum
additional edge that must be incurred. Second, we improve the heuristic by
adding the minimum match weight of all query vertices that are yet to be
matched (also considering possible deletions).

5.4 Implementation and experiments

Method and Results. We have implemented the color-coding technique with
the improvements described in Section 5.3. The source code of the program
is available under the GNU public license (GPL) from http://theinf1.informatik.
uni-jena.de/colorcoding/; it is written in the C++ programming language and
consists of approximately 1500 lines of code. The testing machine is an AMD
3400+ with 2.4 GHz, 512 KB cache, and 1 GB main memory running under the
Debian GNU/Linux 3.1 operating system. The program was compiled with the
GNU g++ 4.2 compiler using the options “-O3 -march=athlon”.

5.4.1 Minimum-Weight Path

The real-world network instances used for speed measurements were the Sac-
charomyces cerevisiae interaction network used by Scott et al. [2006] and the
Drosophila melanogaster interaction network described by Giot et al. [2003]. Due
to the difficulty of obtaining reliable interaction probabilities, other networks
that are currently available are much smaller and thus not suited as bench-
marks. Some properties of these networks, which we will refer to as yeast

http://theinf1.informatik.uni-jena.de/colorcoding/
http://theinf1.informatik.uni-jena.de/colorcoding/

5.4 Implementation and experiments 137

(a)

YEAST, Scott et al. (adjusted)

YEAST, this work

4 6 8 10 12 14 16 18 20 22
path length

1

101

102

103

104

105

ru
nn

in
g

tim
e

[s
ec

on
ds

]

(b)

DROSOPHILA, 20 best paths

DROSOPHILA, 100 best paths

YEAST, 20 best paths

YEAST, 100 best paths

4 6 8 10 12 14 16 18 20 22
path length

1

101

102

103

104

105

ru
nn

in
g

tim
e

[s
ec

on
ds

]

Figure 5.9: Running times for protein interaction networks

and drosophila, are summarized in Table 5.2. The clustering coefficient is the
probability that {u, v} ∈ E for u, v, x ∈ V with {u, x} ∈ E and {x, v} ∈ E. The clus-
tering coefficient measures how much a graph resembles a small-world network.
Small-world networks are networks frequently encountered in a variety of real-
world instances such as social networks or power grids, which are characterized
by some common properties such as the existence of large dense subgraphs,
vertices with high degree, and short connections between pairs of vertices [Watts
and Strogatz 1998]. A graph is considered to be a small-world network if its
clustering coefficient is substantially below the clustering coefficient of a random
network with the same number of vertices and edges, which is the case for both
yeast and drosophila.

To explore the sensitivity of the running time to various graph parameters
(namely, the number of vertices, the clustering coefficient, the degree distribution,
and the distribution of edge weights), the implementation was also run on a
testbed of random graph instances that were generated with the algorithm
described by Volz [2004]. The results of all experiments and details as to the
experimental setting are given in Figures 5.9 and 5.10. Scott et al. [2006] obtained
their running times on a 3.0 GHz Intel Xeon processor with 4 GB main memory
(but only using one CPU); therefore, in Figure 5.9, we divided the running times
they reported by 1.2, based on AMD’s claim that the speed of an AMD 3400+ is
equivalent to an Intel CPU with 3.4 GHz.

Only a few of the most difficult instances hit the predefined 768 MB memory
limit and required additional preheating cycles.

Discussion. Figure 5.9a shows running times for yeast as reported by Scott
et al. [2006] and measured with our implementation. In both cases, paths

138 5 Color-coding

must start at a membrane protein, and end at a transcription factor. Memory
requirements were, e. g., 3 MB for k = 10 and 242 MB for k = 21.

Compared to the running times from Scott et al. [2006], our implementation
is faster by a factor of 10 to 2 000 on yeast (see Figure 5.9a). Scott et al. [2006]
discuss findings for paths up to a length of 10, which they were able to find in
about three hours. These can be found within seconds by our implementation,
allowing for interactive queries and displays (see Section 5.5). The range of
feasible path lengths is more than doubled.

Figure 5.9b shows a comparison of the running times of our implementation
when applied to yeast and drosophila for various path lengths, seeking after
either 20 or 100 minimum-weight paths that mutually differ in at least 30% of
their vertices. There were no restrictions as to the sets of start and end vertices.
The figure shows that the running times for yeast and drosophila are roughly
equal. The only exception is the search for the best 100 paths within yeast,
which not only takes unexpectedly long but also displays step-like structures.
Most likely, these two phenomena can be attributed to the fact that certain path
lengths allow for much fewer well-scoring paths than others in yeast, causing
the lower-bound heuristic (Section 5.3.2) to be less effective. Figure 5.9b also
demonstrates that a major factor in the running time is the number of paths
that is sought after. This is because a larger number of paths worsens the lower
bound of the heuristic which cannot cut off as many partial solutions, and
maintaining the list of paths and checking the “at least 30% of vertices must
differ” criterion becomes more involved.

Figure 5.10 shows the average running time for our color-coding implemen-
tation on random networks, seeking after 20 minimum-weight paths. Unless a
parameter is the variable of a measurement, the following default values are used
(we have empirically found them to result in networks that are quite similar to
yeast): 4 000 vertices; degree distribution is a power law with exponential cutoff,
that is, the fraction pk of vertices with degree k satisfies pk ∼ kα · e−k/1.3 · e−45/k;
the default value for α is −1.6; edge weights are distributed as in yeast; the
clustering coefficient is 0.1. The data shown reports the average running time
over five runs each. Figures 5.10a–c show the dependency on the number of
vertices, the clustering coefficient, and the parameter α of the power law dis-
tribution, respectively. Figure 5.10d shows the dependency on the distribution
of edge weights for three different distributions: A uniform [0, 1]-distribution,
the distribution of yeast, and the distribution of yeast under consideration of
vertex degree.

Figures 5.10a, 5.10b, and 5.10d show that the running time of the color-
coding algorithm appears to be insensitive to the size of the graph (increasing
linearly with increasing graph size) as well as the clustering coefficient and the
distribution of edge weights. The somewhat unexpectedly high running times

5.4 Implementation and experiments 139

(a)
0 2000 4000 6000 8000 10000

number of vertices

10-1

1

101

102

103

ru
nn

in
g

tim
e

in
 s

ec
on

ds

k=5k=10

k=15

(b)
0 0.2 0.4 0.6 0.8 1

clustering coefficient

10-1

1

101

102

103

ru
nn

in
g

tim
e

in
 s

ec
on

ds

k=5
k=10

k=15

(c)
-3 -2 -1 0

value of α

10-1

1

101

102

103

ru
nn

in
g

tim
e

in
 s

ec
on

ds

k=5
k=10

k=15

(d)

uniform distribution

YEAST distribution

YEAST distrib., regarding degree

5 10 15
path length

10-1

1

101

102

103

ru
nn

in
g

tim
e

in
 s

ec
on

ds

Figure 5.10: Dependency of the running time on various parameters

for graphs with less than 500 vertices in Figure 5.10a are explained by the fact
that the number of length-10 and length-15 paths in these networks is very low,
causing the heuristic lower bounds to be rather ineffective (this also explains
why the effect is worse for k = 15 than it is for k = 10).

Figure 5.10c shows that the algorithm is generally faster when the vertex
degrees are unevenly distributed. This comes as no surprise, because for low-
degree vertices, fewer color sets have to be maintained in general and the
heuristic lower bounds are often better. For k = 15, two points in the curve
require further explanation: First, the drop-off in running time for α < −3 is
explained by the random graph “disintegrating” into small components. Second,
the increased running time for −3 6 α 6 −2 is most likely due to a decrease in
the total number of length-15 paths as compared to larger values of α.

5.4.2 Pathway Query

Method and Results. To evaluate the performance of our improved color-
coding for Pathway Query, we conducted experiments similar to those of

140 5 Color-coding

Table 5.3: Running times for path queries in the D. melanogaster network. The
rightmost column gives the percentage of query paths for which a matching
path in the D. melanogaster network could be found.

Path length Avg. Time [s] Max. Time [s] Successful Queries

4 2.24 2.57 98%
5 2.33 3.61 93%
6 3.00 23.02 81%
7 4.52 93.32 52%
8 7.49 225.61 31%
9 11.38 245.78 13%

Shlomi et al. [2006]: The data basis are their protein interaction networks of
S. cerevisiae and D. melanogaster as well as a matrix of protein similarity scores
described by Shlomi et al. [2006]. To obtain query paths of various lengths
l = 4, . . . , 9, we determined the set of the 100 minimum-weight paths of each
length in the S. cerevisiae network, using the constraint that no two paths of the
same length are allowed to overlap by more than 20 % of their vertices. We then
determined the best match for each of these query paths in the D. melanogaster
network, allowing up to 3 insertions and up to 3 deletions. Table 5.3 shows the
obtained running times for these queries.

Discussion. Shlomi et al. [2006] were able to answer path queries for paths of
length 7 on average within 8 minutes on a Pentium 4 with 1.7 GHz. On average,
our implementation solves these within a few seconds and is able to answer
queries even for length l = 9 within reasonable time (longer queries are of
doubtful relevance on this data set, since matches are rarely found). In general,
we found the algorithm to be substantially slowed down if the network contains
no path that matches the query, which explains the large deviations between the
average and maximum required time as the query path length increases.

5.5 Graphical user interface

The improvements of Section 5.3 have sped up color-coding to a point where
basically all relevant queries for signaling pathways in protein interaction net-
works [Scott et al. 2006] can be done within seconds. This makes it attractive to
have a graphical user interface Faspad (Fast Signaling Pathway Detection) based
on our color-coding implementation, which by visualizing pathway candidates

5.5 Graphical user interface 141

Figure 5.11: Two of the pathway candidates found by Faspad in the yeast network
by Scott et al. [2006] are displayed on the left: they correspond to the cell wall
integrity pathway and the filamentous growth pathway known from literature.
The right window shows a path in the Drosophila network (dark nodes) with its
context. Also shown is the options dialog.

allows the user to rapidly evaluate them.

Faspad is available as free software under the GPL license at http://theinf1.
informatik.uni-jena.de/faspad/. The graphical user interface is based on the free
wxWidgets library, which makes it portable to several operating systems; the
web page provide Linux and Windows binaries.

The workflow with Faspad is divided into two main phases: First, a set
of parameters must be specified that describes the paths the user is interested
in. Second, following the actual calculation of pathway candidates, the user
can graphically display them and examine their interactions with each other.
The results can be saved both graphically and in text format. Both workflow
phases are detailed in the following subsections, the interface is exemplified in
Figure 5.11.

The use of Faspad is not limited to protein interaction networks; optionally,
it can search paths that minimize the sum of edge weights in arbitrary networks.

http://theinf1.informatik.uni-jena.de/faspad/
http://theinf1.informatik.uni-jena.de/faspad/

142 5 Color-coding

5.5.1 Search parameters

The user first specifies a file that contains the actual protein interaction network.
The file format that is used by Faspad is a simple text format, which facilitates
the conversion of various data sources to it. Various parameters can be set for a
candidate search:

Path length. Faspad supports path lengths up to 31 proteins. (Considering
that signaling pathways quite rarely consist of more than 15 proteins, this
should not pose any restrictions for practical use.) Depending on the size
and structure of the network, starting at 15–20 the search might become
rather slow.

Number of paths. Typically, one is not only interested in a single “best” path,
but rather wants a set of “good” paths to further examine them. The size
of this set can be specified with a parameter. Requesting more than ∼100
pathway candidates can slow down the search substantialy.

Filter. Looking at a number of paths with the best scores, one will typically find
many small variations of the top scoring path. These are not interesting
for manual examination. Therefore, it is possible to request that paths
must not have more than a certain percentage of their proteins in common.
Using a very low value here while looking for many paths can slow down
the search substantially.

Success probability. The search algorithm that Faspad uses is randomized, that
is, the results are optimal only with a certain probability. This probability
can be specified by the user in order to balance accuracy with running time.
(Increasing the probability slows down the algorithm by a logarithmic
factor.) The default probability is 99.9%; higher values are probably not
useful, but lower values can give moderate running time improvements.

Start and end nodes. Often, it is interesting to restrict the search to candidates
that start and end with certain groups of proteins, e. g., candidates that
start with a membrane protein and end with a transcription factor. Any
such restriction can be specified in Faspad.

With most parameter choices that are relevant in practice, the actual calcula-
tion of pathway candidates takes only a few seconds. The candidates that are
found are displayed in table form.

5.6 Outlook 143

5.5.2 Graphical display

In the most simple form, a single pathway candidate is displayed graphically.
The user can examine the nodes and the edges and their probability. The nodes
are arranged automatically using the dot algorithm provided by the graphviz
graph drawing package [Gansner and North 2000]. The arrangement can be
tweaked in a drag&drop manner. It is also possible to zoom in to examine details
of a complicated network.

Often, one would like to examine whether there are small variations of a
path that “make more sense”, even if their score is not as good, for example due
to measuring errors. For this, it is possible to display also some surrounding
context of the path. For example, one can display all proteins that interact with
the displayed proteins with a probability higher than 70%, or display possible
shortcuts within the path.

In order to compare several pathway candidates found by Faspad, it is
possible to select more than one path for display at the same time. This can be
combined with the context display option.

To make it possible to generate different views on the same data set, or
to compare results for different parameter settings or even different data sets,
several “tabs” can be used, each displaying a combination of paths with a certain
layout. The result list can be saved and restored later.

Finally, the generated paths can be exported in a simple text format. The
path display can be exported as PostScript vector graphics, as .png graphics file,
or in the “dot” format, which is a network layout description format used by
graphviz.

5.6 Outlook

In this chapter, we have shown how color-coding can be used to develop viable
tools for detecting signaling pathways in protein interaction networks. Despite
the hardness of this problem, our tool Faspad can handle most practical tasks
without longer delays. This underlines the utility of color-coding as a tool for
designing FPT algorithms for subgraph isomorphism problems.

We point out some concrete open questions for further research.

• Dost et al. [2007] use a heuristic method to reduce the number of color-
coding trials in querying problems. For this, they exploit that a query vertex
can typically only map to a few graph vertices. Can this improvement be
combined with the reduction in trials by using more colors (Section 5.3.1)?

• Using color-coding, the k-Cardinality Tree problem, which asks for
a subtree of minimum weight with k edges in a graph, can be solved

144 5 Color-coding

in 8.16k · nO(1) time [Scott et al. 2006]. The dynamic programming for a
trial takes 3k ·nO(1) time. Björklund et al. [2007] show how to improve this
to 2k · nO(1) time, resulting in the same 5.44k · nO(1) running time as the
Minimum-Weight Path algorithm. The problem with the latter approach
is that the dynamic programming table uses numbers with n logM bits,
where M is the maximum weight; thus, for example for the yeast network
[Scott et al. 2006], a single table entry would use about 16 KB memory.
Further, the table cannot be made sparse easily. Still, if it was possible
to reduce the memory requirement, this might be a viable approach to
k-Cardinality Tree, which has many applications [Bruglieri et al. 2006].

• The divide-and-color method [Kneis et al. 2006, Chen et al. 2007b] with 4k ·
nO(1) for Minimum-Weight Path provides a better worst-case running
time than that of 4.32k · nO(1) provided by Theorem 5.3. However, as
mentioned in Section 2.4, independent of the actual graph structure, we ac-
tually need Ω(4k) ·nO(1) operations, whereas for color-coding, we typically
calculate only a small fraction of the dynamic programming table. Can
this disadvantage of divide-and-color be mitigated such that it becomes a
viable alternative to color-coding?

• In principle, color-coding needs not be limited to graph problems, but
should be applicable to any problem where a small substructure is sought.
An example might be Longest Common Substring or related problems.

Chapter 6

Outlook

In this chapter, we point out some possible future research directions that are
less directly connected to the problems we considered. We further give some
recommendations for algorithm engineering for parameterized approaches to
NP-hard problems, based on our experiences.

In Chapter 3, we have added two more sections to the success story of data
reduction. The identification of useful parameters and kernelizations can be
a good guideline in the design of data reductions. For example, the extremal
method [Prieto Rodrı́guez 2005] has been used to find several kernelizations, and
it is an interesting open task to experimentally evaluate these.

Chapter 4 and Chapter 5 demonstrate the successful application of two
unconventional techniques (iterative compression and color-coding) that were
designed with the goal of obtaining fixed-parameter algorithms. This clearly
demonstrates the usefulness of the parameterized approach in guiding algorithm
design. It is of course tempting to look for other such techniques that might
have untapped practical potential. One such technique is greedy localization
[Chen et al. 2004, Dehne et al. 2004], which seems to be mostly applicable to
maximization problems that have a “packing” character (finding a large disjoint
collection of objects). The idea is to greedily find an initial solution. If this
solution is large enough, we are done; otherwise, the structure of the solution
can be used for further search. Greedy localization has for example been used to
find an 8k · nO(1) time algorithm for Set Splitting [Dehne et al. 2004].

Further, it is an interesting endeavour to apply some of the new viewpoints
and tools of algorithm engineering to FPT algorithms. This includes more
realistic machine models that for example consider memory hierarchies; further,
“exotic” computation models such as multi-core processing or FPGAs (field-
programmable gate arrays, see Abu-Khzam et al. [2004b] for an application), or

145

146 6 Outlook

even GPUs (graphics processing units) are promising fields.
Another important task is to open up new fields of deployment for fixed-

parameter algorithmics. A particularly well-suited field is bioinformatics (see
Hüffner et al. [2007b] for a survey on the use of FPT in bioinformatics). Here,
a large number of new problem settings are emerging, and many of them are
NP-hard; however, the instances typically have structural properties that can be
exploited by parameterization. Another prospective field is that of computational
social choice, which includes tasks such as voting winner determination or fair
resource allocation (see e. g. Endriss and Lang [2006]); here, few results in the
parameterized context are known (a pioneering work is by Christian et al. [2007]).

We will now try to give some general recommendations on how to go about
applying FPT techniques to NP-hard problems encountered in the real world. In
this, we follow a step-by-step program.

Identification of parameters. The first task is to identify useful parameters.
Usually, there is a “natural” parameter such as the solution size. But it is also
useful to consider other parameters, such as the distance from tractable instances.
The choice of the parameter clearly depends on whether it will be small in the
instances to be expected. At this point, it is useful to determine whether the
problem is fixed-parameter tractable or W[1]-hard (see e. g. Niedermeier [2006]);
a hardness result encourages to look for another parameter.

Implementation of brute-force search. The first thing to do then is to imple-
ment a brute-force search that is as simple as possible. There are several reasons
for this: It gives some first impression on what solutions look like (for example,
can we use their size as parameter?). Also, they are invaluable in shaking out
bugs from later, more sophisticated implementations, in particular if results for
random instances are systematically compared. Possibly the best way to get a
simple brute-force result is an integer linear program (ILP, see e. g. Section 4.6.3);
they sometimes need only a few lines when using a modelling language such
as MathProg [Makhorin 2004], but are often surprisingly effective, due to the
decades of engineering that went into the solvers. The second method of choice
is a simple search tree (Section 1.3.1).

Implementation of data reduction. Since data reduction is valuable in combi-
nation with any other algorithmic technique such as approximation, heuristics,
or fixed-parameter algorithms, and in some cases can even completely solve in-
stances without further effort, it can be considered as essential for the treatment
of NP-hard problems, and should always be the first nontrivial technique to be

147

developed and implemented. When combined with even a naive brute-force
approach, it can often already solve instances of notable size.

Tuned search trees. After this, the easiest speedups typically come from a
more carefully tuned search tree algorithm. Case distinction can help to improve
provable running time bounds, although it has often been reported that a
too complicated branching actually leads to a slowdown. Heuristic branching
priorities can help, as well as admissible heuristic evaluation functions [Felner
et al. 2004]. Further, interleaving with data reduction can lead to a speedup
[Niedermeier and Rossmanith 2000].

More “exotic” techniques. When search trees are not applicable or too slow,
less clear instructions can be given. The best thing to do is to look at other FPT
algorithms and techniques for inspiration: Does induction help, like with itera-
tive compression (Chapter 4)? Does randomization help, like with color-coding
(Chapter 5)? In this way, possibly using some of the more exotic approaches,
it might be possible to come up with a fixed-parameter algorithm. Here, one
should be wary of exponential-space algorithms; they can often fill the memory
within seconds and therefore become unusable in practice.

Heuristics. Some of the largest speedups we experienced in our experiments
came from techniques that can only be considered heuristic in the sense that
they do not improve worst-case time bounds or the kernel size. Therefore, one
should not easily dismiss such heuristics. The general idea of most heuristics is
to recognize early that some branch or some subcase cannot lead to an optimal
solution, and to skip those. Particularly useful is it to dismiss entire classes of
branches or cases without explicitly enumerating them. This kind of heuristics
should always be kept in mind when implementing algorithms.

Programming language. Finally, some words about the programming lan-
guage to use: we recommend to use very high-level programming languages
such as Haskell or Objective Caml. The reason is that these languages allow
for a very rapid development, because of powerful abstractions, and because a
large class of bugs such as buffer overflows are avoided. The drawback is that
execution is typically slower than that of code written in C or C++. However, this
speed difference is usually a small constant factor (e. g., it is the stated goal of the
Objective Caml developers that the produced code is never more than a factor
of 2 slower than compiled C code). In contrast, the speedups gained from more
effective algorithms for NP-hard problems can be tremendous; we regularly
reported speedups of several orders of magnitude in our experiments. Using

148 6 Outlook

a high-level programming language will allow to code more improvements
within the same time, and will thus likely result in faster algorithms. Further,
after an algorithm has stabilized, one can replace “inner loops” by optimized C
routines, as we did for the iterative compression routine for Balanced Subgraph

(Section 3.2.4) and regain pretty much all of the speed.

Bibliography

Abdullah, Ahsan. On graph bipartization. In Proceedings of the 1992 IEEE International
Symposium on Circuits and Systems (ISCAS ’92), volume 4, pages 1847–1850. 1992. Cited
on p. 115.

Abu-Khzam, Faisal N. Kernelization algorithms for d-hitting set problems. In Proceedings
of the 10th Workshop on Algorithms and Data Structures (WADS ’07), volume 4619 of LNCS,
pages 434–445. Springer, 2007. Cited on pp. 65, 72, 78, 81, 85, and 115.

Abu-Khzam, Faisal N., Rebecca L. Collins, Michael R. Fellows, Michael A. Langston,
W. Henry Suters, and Christopher T. Symons. Kernelization algorithms for the vertex
cover problem: Theory and experiments. In Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (ALENEX ’04), pages 62–69. SIAM, 2004a. Cited on pp. 31,
45, and 68.

Abu-Khzam, Faisal N., Michael R. Fellows, Michael A. Langston, and W. Henry Suters.
Crown structures for vertex cover kernelization. Theory of Computing Systems, 41(3):411–
430, 2007. Cited on pp. 31 and 45.

Abu-Khzam, Faisal N. and Henning Fernau. Kernels: Annotated, proper and induced.
In Proceedings of the 2nd International Workshop on Parameterized and Exact Computation
(IWPEC ’06), volume 4169 of LNCS, pages 264–275. Springer, 2006. Cited on pp. 73
and 78.

Abu-Khzam, Faisal N., Michael A. Langston, and Pushkar Shanbhag. Scalable parallel
algorithms for difficult combinatorial problems: A case study in optimization. In
Proceedings of the IASTED International Conference on Parallel and Distributed Computing
and Networks (PDCN ’04), pages 649–654. IASTED/ACTA Press, 2004b. Cited on p. 145.

Abu-Khzam, Faisal N., Michael A. Langston, Pushkar Shanbhag, and Christopher T.
Symons. Scalable parallel algorithms for FPT problems. Algorithmica, 45(3):269–284,
2006. Cited on p. 4.

Agarwal, Amit, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
O(
√

logn) approximation algorithms for min UnCut, min 2CNF deletion, and di-
rected cut problems. In Proceedings of the 37th ACM Symposium on Theory of Computing
(STOC ’05), pages 573–581. ACM, 2005. Cited on pp. 18 and 93.

Agarwal, Pankaj K., Noga Alon, Boris Aronov, and Subhash Suri. Can visibility graphs
be represented compactly? Discrete and Computational Geometry, 12(1):347–365, 1994.
Cited on p. 16.

149

150 Bibliography

Ahuja, Ravindra K., Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993. Cited on p. 93.

Ailon, Nir, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
ranking and clustering. In Proceedings of the 37th ACM Symposium on Theory of Computing
(STOC ’05), pages 684–693. ACM, 2005a. Cited on pp. 80 and 81.

Ailon, Nir, Moses Charikar, and Alantha Newman. Proofs of conjectures in “Aggregat-
ing inconsistent information: Ranking and clustering”. Technical Report TR-719-05,
Department of Computer Science, Princeton University, 2005b. Cited on p. 71.

Alber, Jochen, Nadja Betzler, and Rolf Niedermeier. Experiments on data reduction for
optimal domination in networks. Annals of Operations Research, 146(1):105–117, 2006.
Cited on p. 31.

Alber, Jochen, Frederic Dorn, and Rolf Niedermeier. Experimental evaluation of a tree
decomposition based algorithm for vertex cover on planar graphs. Discrete Applied
Mathematics, 145(2):219–231, 2005. Cited on p. 7.

Alber, Jochen, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction
for dominating set. Journal of the ACM, 51(3):363–384, 2004. Cited on pp. 31 and 34.

Alber, Jochen and Rolf Niedermeier. Improved tree decomposition based algorithms
for domination-like problems. In Proceedings of the 5th Latin American Symposium on
Theoretical Informatics (LATIN ’02), volume 2286 of LNCS, pages 613–628. Springer, 2002.
Cited on p. 7.

Alon, Noga. Ranking tournaments. SIAM Journal on Discrete Mathematics, 20(1):137–142,
2006. Cited on p. 81.

Alon, Noga, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995. Cited on pp. 27, 117, 118, 123, 125, and 126.

Amilhastre, Jérôme, Marie-Catherine Vilarem, and Philippe Janssen. Complexity of
minimum biclique cover and minimum biclique decomposition for bipartite domino-
free graphs. Discrete Applied Mathematics, 86(2–3):125–144, 1998. Cited on p. 44.

Antal, Tibor, Paul L. Krapivsky, and Sidney Redner. Social balance on networks: The
dynamics of friendship and enmity. Physica D: Nonlinear Phenomena, 224(1–2):130–136,
2006. Cited on p. 23.

Asano, Takao and Tomio Hirata. Edge-deletion and edge-contraction problems. In
Proceedings of the 14th ACM Symposium on Theory of Computing (STOC ’82), pages
245–254. ACM, 1982. Cited on p. 14.

Ausiello, Giorgio, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-
Spaccamela, and Marco Protasi. Complexity and Approximation: Combinatorial Opti-
mization Problems and Their Approximability Properties. Springer, 1999. Cited on pp. 1
and 15.

Avidor, Adi and Michael Langberg. The multi-multiway cut problem. Theoretical Computer
Science, 377(1–3):35–42, 2007. Cited on pp. 18 and 93.

Bader, Joel S., Amitabha Chaudhuri, Jonathan M. Rothberg, and John Chant. Gaining
confidence in high-throughput protein interaction networks. Nature Biotechnology,
22(1):78–85, 2003. Cited on p. 26.

Bang-Jensen, Jørgen and Gregory Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, 2002. Cited on p. 11.

Bibliography 151

Bansal, Nikhil, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56(1–3):89–113, 2004. Cited on p. 71.

Barahona, Francisco. On the complexity of max cut. Technical Report 186, IMAG,
Université Joseph Fourier, Grenoble, France, 1980. Cited on pp. 19 and 59.

Barahona, Francisco. On the computational complexity of Ising spin glass models. Journal
of Physics A: Mathematics and General, 15(3241–3253), 1982. Cited on p. 23.

Barahona, Francisco, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An appli-
cation of combinatorial optimization to statistical physics and circuit layout design.
Operations Research, 36(3):493–513, 1988. Cited on p. 20.

Barahona, Francisco, Martin Grötschel, and Ali Ridha Mahjoub. Facets of the bipartite
subgraph polytope. Mathematics of Operations Research, 10:340–358, 1985. Cited on p. 20.

Barahona, Francisco and Ali Ridha Mahjoub. Facets of the balanced (acyclic) induced
subgraph polytope. Mathematical Programming, 45(1–3):21–33, 1989. Cited on p. 24.

Barvinok, Alexander I. and Kevin Woods. Short rational generating functions for lattice
point problems. Journal of the American Mathematical Society, 16(4):957–979, 2003. Cited
on p. 54.

Bast, Holger, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast routing in road
networks with transit nodes. Science, 316(5824):566, 2007. Cited on p. 9.

Behrisch, Michael and Anusch Taraz. Efficiently covering complex networks with cliques
of similar vertices. Theoretical Computer Science, 355(1):37–47, 2006. Cited on pp. 15
and 42.

Bellman, Richard. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM, 9(1):61–63, 1962. Cited on p. 27.

Betzler, Nadja. Steiner Tree Problems in the Analysis of Biological Networks. Diplomarbeit,
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 2006. Cited on pp. 5
and 118.

Bixby, Robert E. Solving real-world linear programs: A decade and more of progress.
Operations Research, 50(1):3–15, 2002. Cited on p. 29.

Björklund, Andreas, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
Möbius: fast subset convolution. In Proceedings of the 39th ACM Symposium on Theory of
Computing (STOC ’07), pages 67–74. ACM, 2007. Cited on pp. 5, 119, and 144.

Böcker, Sebastian, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. PEACE:
Parameterized and exact algorithms for cluster editing, 2007. Manuscript, Lehrstuhl
für Bioinformatik, Friedrich-Schiller-Universität Jena. Cited on pp. 4, 5, 71, and 72.

Bodlaender, Hans L. On linear time minor tests with depth-first search. Journal of
Algorithms, 14(1):1–23, 1993. Cited on p. 27.

Bodlaender, Hans L. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996. Cited on p. 7.

Bodlaender, Hans L. A cubic kernel for feedback vertex set. In Proceedings of the 24th
Annual Symposium on Theoretical Aspects of Computer Science (STACS ’07), volume 4393
of LNCS, pages 320–331. Springer, 2007. Cited on p. 115.

Bodlaender, Hans L., Leizhen Cai, Jianer Chen, Michael R. Fellows, Jan Arne Telle, and
Dániel Marx. Open problems in parameterized and exact computation — IWPEC
2006. Technical Report UU-CS-2006-052, Department of Information and Computing

152 Bibliography

Sciences, Utrecht University, 2006. Cited on p. 116.
Bodlaender, Hans L., Celina M. Herrera de Figueiredo, Marisa Gutierrez, Ton Kloks,

and Rolf Niedermeier. Simple max-cut for split-indifference graphs and graphs with
few P4’s. In Proceedings of the 4th International Workshop on Experimental and Efficient
Algorithms (WEA ’05), volume 3503 of LNCS, pages 87–99. Springer, 2005. Cited on
p. 19.

Bodlaender, Hans L. and Klaus Jansen. On the complexity of the maximum cut problem.
Nordic Journal of Computing, 7(1):14–31, 2000. Cited on p. 19.

Bodlaender, Hans L. and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal, 2007. To appear. Cited on p. 7.

Borndörfer, Ralf, Martin Grötschel, and Marc E. Pfetsch. A column-generation approach
to line planning in public transport. Transportation Science, 41(1):123–132, 2007. Cited
on p. 119.

Boros, Endre and Peter L. Hammer. The max-cut problem and quadratic 0–1 optimization;
polyhedral aspects, relaxations and bounds. Annals of Operations Research, 33(3):151–180,
1991. Cited on p. 24.

Brandstädt, Andreas, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey,
volume 3 of SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999.
Cited on p. 11.

Bron, Coen and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973. Cited on p. 38.

Brosemann, Matthias, Jochen Alber, Falk Hüffner, and Rolf Niedermeier. Matrix ro-
bustness, with an application to power system observability. In Proceedings of the
2nd Algorithms and Complexity in Durham Workshop (ACiD ’06), volume 7 of Texts in
Algorithmics, pages 37–48. College Publications, 2006. Cited on pp. xi and 170.

Bruglieri, Maurizio, Matthias Ehrgott, Horst W. Hamacher, and Francesco Maffioli. An
annotated bibliography of combinatorial optimization problems with fixed cardinality
constraints. Discrete Applied Mathematics, 154(9):1344–1357, 2006. Cited on p. 144.

Burrage, Kevin, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev
Mac, and Frances A. Rosamond. The undirected feedback vertex set problem has a
poly(k) kernel. In Proceedings of the 2nd International Workshop on Parameterized and Exact
Computation (IWPEC ’06), volume 4169 of LNCS, pages 192–202. Springer, 2006. Cited
on p. 115.

Burzyn, Pablo, Flavia Bonomo, and Guillermo Durán. NP-completeness results for edge
modification problems. Discrete Applied Mathematics, 154(13):1824–1844, 2006. Cited on
p. 14.

Cai, Leizhen. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. Cited on p. 14.

Cai, Leizhen, Siu Man Chan, and Siu On Chan. Random separation: A new method for
solving fixed-cardinality optimization problems. In Proceedings of the 2nd International
Workshop on Parameterized and Exact Computation (IWPEC ’06), volume 4169 of LNCS,
pages 239–250. Springer, 2006. Cited on p. 118.

Cai, Liming, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of
parameterized tractability. Annals of Pure and Applied Logic, 84(1):119–138, 1997. Cited

Bibliography 153

on p. 31.
Cai, Liming, Xiuzhen Huang, Chunmei Liu, Frances A. Rosamond, and Yinglei Song.

Parameterized complexity and biopolymer sequence comparison. The Computer Journal,
2007. To appear. Cited on p. 7.

Cai, Liming and David W. Juedes. On the existence of subexponential parameterized
algorithms. Journal of Computer and System Sciences, 64(4):789–807, 2003. Cited on p. 28.

Cai, Mao-Cheng, Xiaotie Deng, and Wenan Zang. An approximation algorithm for
feedback vertex sets in tournaments. SIAM Journal on Computing, 30(6):1993–2007, 2001.
Cited on pp. 79 and 80.

Cai, Mao-Cheng, Xiaotie Deng, and Wenan Zang. A min-max theorem on feedback vertex
sets. Mathematics of Operations Research, 27(2):361–371, 2002. Cited on p. 87.

Cappanera, Paola and Maria Grazia Scutellà. Balanced paths in telecommunication
networks: some computational results. In Proceedings of the 3rd International Network
Optimization Conference (INOC ’07). 2007. Cited on p. 119.

Chang, Maw-Shang and Haiko Müller. On the tree-degree of graphs. In Proceedings of
the 27th International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’01),
volume 2204 of LNCS, pages 44–54. Springer, 2001. Cited on p. 15.

Chang, Maw-Shang and Fu-Hsing Wang. Efficient algorithms for the maximum weight
clique and maximum weight independent set problems on permutation graphs. Infor-
mation Processing Letters, 43(6):293–295, 1992. Cited on p. 86.

Charbit, Pierre, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc set
problem is NP-hard for tournaments. Combinatorics, Probability and Computing, 16:1–4,
2007. Cited on p. 81.

Charikar, Moses, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005. Cited on p. 72.

Charon, Irène and Olivier Hudry. A survey on the linear ordering problem for weighted
or unweighted tournaments. 4OR: A Quarterly Journal of Operations Research, 5(1):5–60,
2007. Cited on p. 80.

Cheetham, James, Frank K. H. A. Dehne, Andrew Rau-Chaplin, Ulrike Stege, and Peter J.
Taillon. Solving large FPT problems on coarse-grained parallel machines. Journal of
Computer and System Sciences, 67(4):691–706, 2003. Cited on p. 4.

Chen, Jianer, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for the feedback vertex set problems. In Proceedings of the 10th Workshop
on Algorithms and Data Structures (WADS ’07), volume 4619 of LNCS, pages 422–433.
Springer, 2007a. Cited on pp. 62, 63, 68, 70, 77, and 100.

Chen, Jianer, Donald K. Friesen, Weijia Jia, and Iyad A. Kanj. Using nondeterminism
to design efficient deterministic algorithms. Algorithmica, 40(2):83–97, 2004. Cited on
p. 145.

Chen, Jianer, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. Journal of Algorithms, 41(2):280–301, 2001. Cited on p. 45.

Chen, Jianer, Iyad A. Kanj, and Ge Xia. Improved parameterized upper bounds for vertex
cover. In Proceedings of the 31st International Symposium on Mathematical Foundations
of Computer Science (MFCS ’06), volume 4162 of LNCS, pages 238–249. Springer, 2006.
Cited on pp. 3, 4, 63, and 67.

154 Bibliography

Chen, Jianer, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. In Proceedings of the 40th ACM
Symposium on Theory of Computing (STOC ’08). ACM, 2008. Cited on pp. 61, 62, 69, 79,
and 100.

Chen, Jianer, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Improved algorithms for
path, matching, and packing problems. In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’07), pages 298–307. ACM-SIAM, 2007b. Cited
on pp. 27, 118, 130, and 144.

Chiang, Charles, Andrew B. Kahng, Subarna Sinha, Xu Xu, and Alexander Z. Zelikovsky.
Fast and efficient bright-field AAPSM conflict detection and correction. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 26(1):115–126, 2007.
Cited on pp. 24 and 59.

Choi, Hyeong-Ah, Kazuo Nakajima, and Chong S. Rim. Graph bipartization and via
minimization. SIAM Journal on Discrete Mathematics, 2(1):38–47, 1989. Cited on pp. 24
and 25.

Chor, Benny, Michael R. Fellows, and David W. Juedes. Linear kernels in linear time, or
how to save k colors in O(n2) steps. In Proceedings of the 30th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG ’04), volume 3353 of LNCS, pages
257–269. Springer, 2004. Cited on p. 45.

Christian, Robin, Mike Fellows, Frances A. Rosamond, and Arkadii Slinko. On complexity
of lobbying in multiple referenda. Review of Economic Design, 11(3):217–224, 2007. Cited
on p. 146.

Conitzer, Vincent. Computing Slater rankings using similarities among candidates. In
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI ’06). AAAI Press,
2006. Cited on p. 81.

Coppersmith, Don and Uzi Vishkin. Solving NP-hard problems in ‘almost trees’: Vertex
cover. Discrete Applied Mathematics, 10(1):27–45, 1985. Cited on p. 6.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein. Introduction to
Algorithms. MIT Press, 2nd edition, 2001. Cited on pp. 5, 76, 93, 107, 109, 134, and 135.

Cornaz, Denis and Ali Ridha Mahjoub. The maximum induced bipartite subgraph
problem with edge weights. SIAM Journal on Discrete Mathematics, 21(3):662–675, 2007.
Cited on p. 24.

Damaschke, Peter. On the fixed-parameter enumerability of cluster editing. In Proceedings
of the 31st International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’05),
volume 3787 of LNCS, pages 283–294. Springer, 2005. Cited on p. 79.

DasGupta, Bhaskar, German Andres Enciso, Eduardo D. Sontag, and Yi Zhang. Algorith-
mic and complexity results for decompositions of biological networks into monotone
subsystems. Biosystems, 90(1):161–178, 2007. Cited on pp. 22, 23, 24, 45, 54, 55, 59, 98,
and 100.

Davis, Martin, George Logemann, and Donald W. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962. Cited on p. 4.

Dehne, Frank K. H. A., Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Kim Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex
set problem. Theory of Computing Systems, 41(3):479–492, 2007. Cited on pp. 61, 62, 68,

Bibliography 155

and 82.
Dehne, Frank K. H. A., Michael R. Fellows, Frances A. Rosamond, and Peter Shaw.

Greedy localization, iterative compression, and modeled crown reductions: New FPT
techniques, an improved algorithm for set splitting, and a novel 2k kernelization for
vertex cover. In Proceedings of the 1st International Workshop on Parameterized and Exact
Computation (IWPEC ’04), volume 3162 of LNCS, pages 271–280. Springer, 2004. Cited
on p. 145.

Dehne, Frank K. H. A., Michael A. Langston, Xuemei Luo, Sylvain Pitre, Peter Shaw,
and Yun Zhang. The cluster editing problem: Implementations and experiments. In
Proceedings of the 2nd International Workshop on Parameterized and Exact Computation
(IWPEC ’06), volume 4169 of LNCS, pages 13–24. Springer, 2006. Cited on pp. 5 and 71.

Deolalikar, Vinay, Malena R. Mesarina, John Recker, and Salil Pradhan. Perturbative time
and frequency allocations for RFID reader networks. In Proceedings of the 2006 Workshop
on Emerging Directions in Embedded and Ubiquitous Computing (EUC ’06), volume 4097 of
LNCS, pages 392–402. Springer, 2006. Cited on p. 25.

Deshpande, Pawan, Regina Barzilay, and David R. Karger. Randomized decoding for
selection-and-ordering problems. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technologies
(NAACL HLT ’07), pages 444–451. Association for Computational Linguistics, 2007.
Cited on pp. 28 and 119.

Dı́az, Josep and Marcin J. Kamiński. Max-cut and max-bisection are NP-hard on unit disk
graphs. Theoretical Computer Science, 377(1–3):271–276, 2007. Cited on p. 19.

Diestel, Reinhard. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
2005. Cited on p. 10.

Dinic, Efim A. Algorithm for solution of a problem of maximum flow in networks with
power estimation (in Russian). Doklady Akademii Nauk SSSR, 194(4), 1970. English
translation in Soviet Mathematics Doklady, 11:1277–1280, 1970. Cited on pp. 93, 94, 106,
and 107.

Dinur, Irit and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–485, 2005. Cited on p. 80.

Dolezal, Oliver, Thomas Hofmeister, and Hanno Lefmann. A comparison of approxi-
mation algorithms for the maxcut-problem. Technical Report CI-57/99, Universität
Dortmund, Informatik 2, 1999. Cited on p. 20.

Dom, Michael, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Extending the tractability
border for closest leaf powers. In Proceedings of the 31st International Workshop on Graph-
Theoretic Concepts in Computer Science (WG ’05), volume 3787 of LNCS, pages 397–408.
Springer, 2005. Cited on pp. xi and 170.

Dom, Michael, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Error compensation in
leaf power problems. Algorithmica, 44(4):363–381, 2006a. Cited on pp. xi and 170.

Dom, Michael, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-
parameter tractability results for feedback set problems in tournaments. In Proceedings
of the 6th Italian Conference on Algorithms and Complexity (CIAC ’06), volume 3998 of
LNCS, pages 320–331. Springer, 2006b. Cited on pp. xii, 61, 81, 87, and 170.

Dom, Michael, Falk Hüffner, and Rolf Niedermeier. Labyrinth und Tiefensuche. In

156 Bibliography

Taschenbuch der Algorithmen. Springer, 2007. To appear. Cited on pp. xi and 170.
Došlić, Tomislav and Damir Vukičević. Computing the bipartite edge frustration of

fullerene graphs. Discrete Applied Mathematics, 155(10):1294–1301, 2007. Cited on p. 20.
Dost, Banu, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded Sharan.

QNet: A tool for querying protein interaction networks. In Proceedings of the 11th Annual
International Conference on Research in Computational Molecular Biology (RECOMB ’07),
volume 4453 of Lecture Notes in Bioinformatics, pages 1–15. Springer, 2007. Cited on
pp. 118, 119, and 143.

Downey, Rodney G. and Michael R. Fellows. Fixed-parameter tractability and com-
pleteness I: Basic results. SIAM Journal on Computing, 24(4):873–921, 1995. Cited on
p. 61.

Downey, Rodney G. and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
Cited on pp. 2, 3, 4, 36, and 60.

Downey, Rodney G., Michael R. Fellows, and Ulrike Stege. Parameterized complexity:
A framework for systematically confronting computational intractability. In Graham,
Ronald L., Jan Kratochvı́l, Jaroslav Nesetril, and Fred S. Roberts, editors, Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future, volume 49 of
DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, pages 49–99.
AMS Press, 1999. Cited on p. 64.

Dreyfus, Stuart E. and Robert A. Wagner. The Steiner problem in graphs. Networks,
1(3):195–207, 1972. Cited on p. 5.

Edmonds, Jack and Richard M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM, 19(2):248–264, 1972. Cited on pp. 93,
94, 106, and 107.

El-Mallah, Ehab S. and Charles J. Colbourn. The complexity of some edge deletion
problems. IEEE Transactions on Circuits and Systems, 35(3):354–362, 1988. Cited on p. 14.

Elias, Peter, Amiel Feinstein, and Claude E. Shannon. A note on the maximum flow
through a network. IEEE Transactions on Information Theory, 2(4):117–119, 1956. Cited
on p. 94.

Endriss, Ulle and Jérôme Lang, editors. Proceedings of the 1st International Workshop on
Computational Social Choice (COMSOC ’06). Universiteit van Amsterdam, 2006. Cited on
p. 146.

Erdős, Paul, Adolph W. Goodman, and Louis Pósa. The representation of a graph by set
intersections. Canadian Journal of Mathematics, 18:106–112, 1966. Cited on p. 15.

Estivill-Castro, Vladimir, Michael R. Fellows, Michael A. Langston, and Frances A.
Rosamond. FPT is P-time extremal structure I. In Proceedings of the 1st Algorithms and
Complexity in Durham Workshop (ACiD ’06), volume 4 of Texts in Algorithmics, pages
1–41. College Publications, 2006. Cited on p. 60.

Feder, Tomás and Rajeev Motwani. Finding large cycles in Hamiltonian graphs. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’05),
pages 166–175. SIAM, 2005. Cited on p. 27.

Feist, Adam M., Johannes C. M. Scholten, Bernhard Ø. Palsson, Fred J. Brockman, and
Trey Ideker. Modeling methanogenesis with a genome-scale metabolic reconstruction
of Methanosarcina barkeri. Molecular Systems Biology, 2:2006.0004, 2006. Cited on p. 58.

Bibliography 157

Fellows, Michael R., Guillaume Fertin, Danny Hermelin, and Stéphane Vialette. Sharp
tractability borderlines for finding connected motifs in vertex-colored graphs. In
Proceedings of the 34th International Colloquium on Automata, Languages and Programming
(ICALP ’07), volume 4596 of LNCS, pages 340–351. Springer, 2007a. Cited on p. 118.

Fellows, Michael R., Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A.
Rosamond, Ulrike Stege, Dimitrios M. Thilikos, and Sue Whitesides. Faster fixed-
parameter tractable algorithms for matching and packing problems. In Proceedings of
the 12th Annual European Symposium on Algorithms (ESA ’04), volume 3221 of LNCS,
pages 311–322. Springer, 2004. Extended version to appear in Algorithmica. Cited on
p. 118.

Fellows, Michael R. and Michael A. Langston. An analogue of the myhill-nerode theorem
and its use in computing finite-basis characterizations. In Proceedings of the 30th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’89), pages 520–525. IEEE,
1989. Cited on p. 60.

Fellows, Michael R., Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient
parameterized preprocessing for cluster editing. In Proceedings of the 16th International
Symposium on Fundamentals of Computation Theory (FCT ’07), volume 4639 of LNCS,
pages 312–321. Springer, 2007b. Cited on pp. 72 and 79.

Felner, Ariel, Richard E. Korf, and Sarit Hanan. Additive pattern database heuristics.
Journal of Artificial Intelligence Research, 21:1–39, 2004. Cited on pp. 68 and 147.

Fernau, Henning. A top-down approach to search-trees: Improved algorithmics for 3-
hitting set. Technical Report 073, Electronic Colloquium on Computational Complexity
(ECCC), 2004. Cited on p. 65.

Fernau, Henning. Parameterized Algorithmics: A Graph-Theoretic Approach. Habilitations-
schrift, Wilhelm-Schickard Institut für Informatik, Universität Tübingen, 2005. Cited
on pp. 65 and 68.

Fernau, Henning. Parameterized algorithms for hitting set: The weighted case. In
Proceedings of the 6th Italian Conference on Algorithms and Complexity (CIAC ’06), volume
3998 of LNCS, pages 332–343. Springer, 2006a. Cited on p. 72.

Fernau, Henning. Speeding up exact algorithms with high probability. In Proceedings
of the 5th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW ’06),
volume 25 of Electronic Notes in Discrete Mathematics, pages 57–59. Elsevier, 2006b. Cited
on p. 115.

Festa, Paola, Panos M. Pardalos, and Mauricio G. C. Resende. Feedback set problems. In
Du, Ding-Zhu and Panos M. Pardalos, editors, Handbook of Combinatorial Optimization,
volume Supplement A, pages 209–259. Kluwer, 1999. Cited on p. 62.

Festa, Paola, Panos M. Pardalos, Mauricio G. C. Resende, and Celso C. Ribeiro. Random-
ized heuristics for the max-cut problem. Optimization Methods and Software, 17(6):1033–
1058, 2002. Cited on p. 20.

Fiorini, Samuel, Nadia Hardy, Bruce Reed, and Adrian Vetta. Planar graph bipartization
in linear time. In Proceedings of the 2nd Brazilian Symposium on Graphs, Algorithms and
Combinatorics (GRACO ’05), volume 19 of Electronic Notes in Discrete Mathematics, pages
265–271. Elsevier, 2005. Extended version to appear in Discrete Applied Mathematics.
Cited on p. 100.

158 Bibliography

Fleischner, Herbert, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering graphs
with few complete bipartite subgraphs. In Proceedings of the 27th International Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS ’07),
volume 4855 of LNCS, pages 340–351. Springer, 2007. Cited on p. 44.

Flum, Jörg and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. Cited on
p. 3.

Fouilhoux, Pierre and Ali Ridha Mahjoub. Polyhedral results for the bipartite induced
subgraph problem. Discrete Applied Mathematics, 154(15):2128–2149, 2006. Cited on
pp. 25 and 110.

Fredman, Michael L. On computing the length of longest increasing subsequences.
Discrete Mathematics, 11(1):29–35, 1975. Cited on p. 85.

Fredman, Michael L. and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987. Cited on
p. 77.

Frieze, Alan M. and Bruce Reed. Covering the edges of a random graph by cliques.
Combinatorica, 15(4):489–497, 1995. Cited on p. 40.

Fuchs, Bernhard, Walter Kern, Daniel Mölle, Stefan Richter, Peter Rossmanith, and Xinhui
Wang. Dynamic programming for minimum Steiner trees. Theory of Computing Systems,
41(3):493–500, 2007. Cited on p. 5.

Fulkerson, Delbert R. and Lester R. Ford, Jr. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956. Cited on p. 94.

Gabow, Harold N. Path-based depth-first search for strong and biconnected components.
Information Processing Letters, 74(3–4):107–114, 2000. Cited on p. 47.

Gabow, Harold N. Finding paths and cycles of superpolylogarithmic length. SIAM Journal
on Computing, 36(6):1648–1671, 2007. Cited on p. 27.

Gabow, Harold N. and Robert E. Tarjan. Faster scaling algorithms for network problems.
SIAM Journal on Computing, 18(5):1013–1036, 1989. Cited on p. 77.

Galluccio, Anna, Martin Loebl, and Jan Vondrák. Optimization via enumeration: a new
algorithm for the max cut problem. Mathematical Programming, 90(2):273–290, 2001.
Cited on p. 19.

Ganley, Joseph L. Computing optimal rectilinear Steiner trees: A survey and experimental
evaluation. Discrete Applied Mathematics, 90(1–3):161–171, 1999. Cited on p. 5.

Gansner, Emden R. and Stephen C. North. An open graph visualization system and its
applications to software engineering. Software: Practice and Experience, 30(11):1203–1233,
2000. Cited on p. 143.

Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979. Cited on pp. 1, 14, 15, 36, and 64.

Garg, Naveen, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in directed and
node weighted graphs. In Proceedings of the 21st International Colloquium on Automata,
Languages and Programming (ICALP ’94), volume 820 of LNCS, pages 487–498. Springer,
1994. Cited on p. 24.

Giot, L., J. S. Bader, C. Brouwer, A. Chaudhuri, et al. A protein interaction map of
Drosophila melanogaster. Science, 302(5651):1727–1736, 2003. Cited on p. 136.

Goemans, Michel X. and David P. Williamson. Improved approximation algorithms for

Bibliography 159

maximum cut and satisfiability problems using semidefinite programming. Journal of
the ACM, 42(6):1115–1145, 1995. Cited on pp. 19 and 22.

Goemans, Michel X. and David P. Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica, 18(1):37–59, 1998. Cited on p. 24.

Gramm, Jens, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Automated generation of
search tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–
347, 2004. Cited on pp. 5, 71, 72, and 170.

Gramm, Jens, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data cluster-
ing: Exact algorithms for clique generation. Theory of Computing Systems, 38(4):373–392,
2005. Cited on pp. 5, 71, 72, and 170.

Gramm, Jens, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction, exact, and
heuristic algorithms for clique cover. In Proceedings of the 8th Workshop on Algorithm
Engineering and Experiments (ALENEX ’06), pages 86–94. SIAM, 2006. Extended version
to appear under the title “Data reduction and exact algorithms for clique cover” in
ACM Journal of Experimental Algorithmics. Cited on p. xi.

Gramm, Jens, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and exact
algorithms for clique cover. ACM Journal of Experimental Algorithmics, 2007a. To appear.
Cited on pp. xii and 170.

Gramm, Jens, Jiong Guo, Falk Hüffner, Rolf Niedermeier, Hans-Peter Piepho, and Ra-
mona Schmid. Algorithms for compact letter displays: Comparison and evaluation.
Computational Statistics & Data Analysis, 52(2):725–736, 2007b. Cited on pp. xi, xii, 15, 40,
44, and 170.

Gramm, Jens, Falk Hüffner, and Rolf Niedermeier. Closest strings, primer design, and
motif search. Presented at 6th Annual International Conference on Computational Molecular
Biology (RECOMB ’02), poster session, 2002. Cited on p. 170.

Greenwell, Don L., Robert L. Hemminger, and Joseph B. Klerlein. Forbidden subgraphs.
In Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and
Computing, pages 389–394. 1973. Cited on p. 14.

Grötschel, Martin, Michael Jünger, and Gerhard Reinelt. Calculating exact ground states
of spin glasses: A polyhedral approach. In Heidelberg Colloquium on Glassy Dynamics,
volume 275 of Lecture Notes in Physics, pages 325–353. Springer, 1987. Cited on p. 20.

Grötschel, Martin and George L. Nemhauser. A polynomial algorithm for the max-cut
problem on graphs without long odd cycles. Mathematical Programming, 29(1):28–40,
1984. Cited on p. 19.

Grötschel, Martin and William R. Pulleyblank. Weakly bipartite graphs and the max-cut
problem. Operations Research Letters, 1(1):23–27, 1981. Cited on p. 19.

Guan, Dah-Jyh. Generalized Gray codes with applications. Proceedings of the National
Science Council, Republic of China (A), 22(6):841–848, 1998. Cited on p. 107.

Guenin, Bertrand. A characterization of weakly bipartite graphs. Journal of Combinatorial
Theory, Series B, 83(1):112–168, 2001. Cited on p. 19.

Guillaume, Jean-Loup and Matthieu Latapy. Bipartite structure of all complex networks.
Information Processing Letters, 90(5):215–221, 2004. Cited on p. 15.

Gülpinar, Nalân, Gregory Gutin, Gautam Mitra, and Alexey Zverovich. Extracting
pure network submatrices in linear programs using signed graphs. Discrete Applied

160 Bibliography

Mathematics, 137(3):359–372, 2004. Cited on p. 25.
Guo, Jiong. Algorithm Design Techniques for Parameterized Graph Modification Problems. Ph.D.

thesis, Institut für Informatik, Friedrich-Schiller-Universität Jena, 2006. Cited on pp. 13,
63, 69, 77, and 93.

Guo, Jiong. A more effective linear kernelization for cluster editing. In Proceedings of the
1st International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental
Methodologies (ESCAPE ’07), volume 4614 of LNCS, pages 36–47. Springer, 2007. Cited
on pp. 72 and 79.

Guo, Jiong, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.
Improved fixed-parameter algorithms for two feedback set problems. In Proceedings of
the 9th Workshop on Algorithms and Data Structures (WADS ’05), volume 3503 of LNCS,
pages 158–168. Springer, 2005. Cited on p. xii.

Guo, Jiong, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and edge
bipartization. Journal of Computer and System Sciences, 72(8):1386–1396, 2006. Cited on
pp. xi, xii, 61, 62, 63, 68, 82, 100, and 170.

Guo, Jiong, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann. Com-
plexity and exact algorithms for vertex multicut in interval and bounded treewidth
graphs. European Journal of Operational Research, 2007a. To appear. Cited on pp. xi
and 170.

Guo, Jiong, Falk Hüffner, Christian Komusiewicz, and Yong Zhang. Improved algorithms
for bicluster editing. In Proceedings of the 5th Annual Conference on Theory and Applications
of Models of Computation (TAMC ’08), volume 4978 of LNCS. Springer, 2008. To appear.
Cited on pp. xi and 170.

Guo, Jiong, Falk Hüffner, and Hannes Moser. Feedback arc set in bipartite tournaments
is NP-complete. Information Processing Letters, 102(2–3):62–65, 2007b. Cited on pp. xi,
87, and 170.

Guo, Jiong, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing
problems: Distance from triviality. In Proceedings of the 1st International Workshop on
Parameterized and Exact Computation (IWPEC ’04), volume 3162 of LNCS, pages 162–173.
Springer, 2004. Cited on pp. xi, 3, and 170.

Guo, Jiong and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
ACM SIGACT News, 38(1):31–45, 2007. Cited on p. 29.

Gupta, Sushmita. Feedback arc set problem in bipartite tournaments. Information Process-
ing Letters, 105(5):150–154, 2008. Cited on p. 87.

Gutin, Gregory and Anders Yeo. Some parameterized problems on digraphs. The
Computer Journal, 2007. To appear. Cited on p. 79.

Gutwenger, Carsten and Petra Mutzel. A linear time implementation of SPQR-trees. In
Proceedings of the 8th International Symposium on Graph Drawing (GD ’00), volume 1984
of LNCS, pages 77–90. Springer, 2000. Cited on p. 47.

Gyárfás, András. A simple lower bound on edge coverings by cliques. Discrete Mathematics,
85(1):103–104, 1990. Cited on p. 35.

Hadlock, Frank O. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4(3):221–225, 1975. Cited on p. 19.

Bibliography 161

Harary, Frank. On the notion of balance of a signed graph. Michigan Mathematical Journal,
2(2):143–146, 1953. Cited on p. 20.

Harary, Frank. On the measurement of structural balance. Behavioral Science, 4(4):316–323,
1959. Cited on p. 22.

Harary, Frank, Meng-Hiot Lim, and Donald C. Wunsch. Signed graphs for portfolio
analysis in risk management. IMA Journal of Management Mathematics, 13(3):201–210,
2002. Cited on p. 23.

Håstad, Johan. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001. Cited on p. 19.

Held, Michael and Richard M. Karp. A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.
Cited on p. 27.

Helwig, Sabine, Falk Hüffner, Ivo Rössling, and Maik Weinard. Algorithm design. In
Algorithm Engineering, LNCS. Springer, 2007. To appear. Cited on pp. xi and 170.

Henzinger, Monika R., Satish Rao, and Harold N. Gabow. Computing vertex connectivity:
New bounds from old techniques. Journal of Algorithms, 43(2):222–250, 2000. Cited on
p. 48.

Hoover, D. N. Complexity of graph covering problems for graphs of low degree. Journal
of Combinatorial Mathematics and Combinatorial Computing, 11:187–208, 1992. Cited on
p. 15.

Hopcroft, John E. and Robert E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, 1973. Cited on p. 47.

Hsu, Wen-Lian and Kuo-Hui Tsai. Linear time algorithms on circular-arc graphs. Informa-
tion Processing Letters, 40(3):123–129, 1991. Cited on p. 15.

Hüffner, Falk. Finding Optimal Solutions to Atomix. Studienarbeit, Wilhelm-Schickard-
Institut für Informatik, Universität Tübingen, 2002. Cited on p. 170.

Hüffner, Falk. Graph Modification Problems and Automated Search Tree Generation. Diplomar-
beit, Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 2003. Cited on
p. 170.

Hüffner, Falk. Algorithm engineering for optimal graph bipartization. In Proceedings of
the 4th International Workshop on Experimental and Efficient Algorithms (WEA ’05), volume
3503 of LNCS, pages 240–252. Springer, 2005. Cited on pp. xii and 170.

Hüffner, Falk. Automated search tree generation. In Encyclopedia of Algorithms. Springer,
2007. To appear. Cited on pp. xi and 170.

Hüffner, Falk, Nadja Betzler, and Rolf Niedermeier. Optimal edge deletions for signed
graph balancing. In Proceedings of the 6th Workshop on Experimental Algorithms (WEA ’07),
volume 4525 of LNCS, pages 297–310. Springer, 2007a. Cited on pp. xii and 170.

Hüffner, Falk, Stefan Edelkamp, Henning Fernau, and Rolf Niedermeier. Finding optimal
solutions to Atomix. In Proceedings of the German Conference on Artificial Intelligence
(KI ’01), volume 2174 of LNCS, pages 229–243. Springer, 2001. Cited on p. 170.

Hüffner, Falk, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-
parameter algorithms for cluster vertex deletion. In Proceedings of the 8th Latin American
Theoretical Informatics Symposium (LATIN ’08), LNCS. Springer, 2008a. To appear. Cited
on pp. xi, xii, and 170.

162 Bibliography

Hüffner, Falk, Rolf Niedermeier, and Sebastian Wernicke. Developing fixed-parameter
algorithms to solve combinatorially explosive biological problems. In Bioinformatics,
Methods in Molecular Biology Series. Humana Press, 2007b. To appear. Cited on pp. xi,
146, and 170.

Hüffner, Falk, Rolf Niedermeier, and Sebastian Wernicke. Fixed-parameter algorithms for
graph-modeled data clustering. In Clustering Challenges in Biological Networks. World
Scientific, 2007c. To appear. Cited on pp. xi, 70, and 170.

Hüffner, Falk, Rolf Niedermeier, and Sebastian Wernicke. Techniques for practical fixed-
parameter algorithms. The Computer Journal, 51(1):7–25, 2008b. Cited on pp. xi, 3,
and 170.

Hüffner, Falk, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for
color-coding to facilitate signaling pathway detection. In Proceedings of the 5th Asia–
Pacific Bioinformatics Conference (APBC ’07), volume 5 of Advances in Bioinformatics and
Computational Biology, pages 277–286. Imperial College Press, 2007d. Extended version
to appear in Algorithmica. Cited on p. xiii.

Hüffner, Falk, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for
color-coding with applications to signaling pathway detection. Algorithmica, 2007e. To
appear. Cited on pp. xiii and 170.

Hüffner, Falk, Sebastian Wernicke, and Thomas Zichner. FASPAD: fast signaling pathway
detection. Bioinformatics, 23(13):1708–1709, 2007f. Cited on pp. xiii and 170.

Hunt, James W. and Thomas G. Szymanski. A fast algorithm for computing longest
common subsequences. Communications of the ACM, 20(5):350–353, 1977. Cited on p. 85.

Ideker, Trey, Vesteinn Thorsson, Jeffrey A. Ranish, Rowan Christmas, Jeremy Buhler,
Jimmy K. Eng, Roger Bumgarner, David R. Goodlett, Ruedi Aebersold, and Leroy
Hood. Integrated genomic and proteomic analyses of a systematically perturbed
metabolic network. Science, 292(5518):929–934, 2001. Cited on p. 26.

Ideker, Trey and Alfonso Valencia. Bioinformatics in the human interactome project.
Bioinformatics, 22(24):2973–2974, 2006. Cited on p. 26.

Kahng, Andrew B., Shailesh Vaya, and Alexander Z. Zelikovsky. New graph bipartizations
for double-exposure, bright field alternating phase-shift mask layout. In Proceedings of
the Asia and South Pacific Design Automation Conference, pages 133–138. 2001. Cited on
pp. 20 and 25.

Karger, David R., Rajeev Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18(1):82–98, 1997. Cited on p. 27.

Karp, Richard M. Reducibility among combinatorial problems. In Miller, Raymond E.
and James W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972. Cited on pp. 18 and 80.

Kellerman, E. Determination of keyword conflict. IBM Technical Disclosure Bulletin,
16(2):544–546, 1973. Cited on pp. 14, 15, 32, and 40.

Kenyon-Mathieu, Claire and Warren Schudy. How to rank with few errors: A PTAS for
weighted feedback arc set on tournaments. In Proceedings of the 39th ACM Symposium
on Theory of Computing (STOC ’07), pages 95–103. ACM, 2007. Cited on p. 81.

Khomenko, Victor. Efficient automatic resolution of encoding conflicts using STG unfold-
ings. In Proceedings of the 7th International Conference on Application of Concurrency to

Bibliography 163

System Design (ACSD ’07), pages 137–146. IEEE, 2007. Cited on pp. 16 and 44.
Khot, Subhash. On the power of unique 2-prover 1-round games. In Proceedings of the

34th ACM Symposium on Theory of Computing (STOC ’02), pages 767–775. ACM, 2002.
Cited on p. 18.

Khot, Subhash, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapprox-
imability results for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing,
37(1):319–357, 2007. Cited on p. 19.

Khot, Subhash and Venkatesh Raman. Parameterized complexity of finding subgraphs
with hereditary properties. Theoretical Computer Science, 289(2):997–1008, 2002. Cited
on pp. 14, 19, and 25.

Khot, Subhash and Oded Regev. Vertex cover might be hard to approximate to within
2 − ε. Journal of Computer and System Sciences, 74(3):335–349, 2008. Cited on p. 64.

Kneis, Joachim, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Algorithms based
on the treewidth of sparse graphs. In Proceedings of the 31st International Workshop on
Graph-Theoretic Concepts in Computer Science (WG ’05), volume 3787 of LNCS, pages
385–396. Springer, 2005. Cited on p. 20.

Kneis, Joachim, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Divide-and-color. In
Proceedings of the 32nd International Workshop on Graph-Theoretic Concepts in Computer
Science (WG ’06), volume 4271 of LNCS, pages 58–67. Springer, 2006. Cited on pp. 27,
118, 130, and 144.

Kneis, Joachim, Daniel Mölle, and Peter Rossmanith. Partial vs. complete domination:
t-dominating set. In Proceedings of the 33rd Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM ’07), volume 4362 of LNCS, pages 367–376.
Springer, 2007. Cited on p. 118.

Knuth, Donald E. The Art of Computer Programming, volume 4. Addison–Wesley, 2004. In
preparation. Cited on pp. 67 and 96.

Koch, Ina. Enumerating all connected maximal common subgraphs in two graphs.
Theoretical Computer Science, 250(1–2):1–30, 2001. Cited on p. 38.

Komusiewicz, Christian, Falk Hüffner, Hannes Moser, and Rolf Niedermeier. Isolation
concepts for enumerating dense subgraphs. In Proceedings of the 13th Annual International
Conference on Computing and Combinatorics (COCOON ’07), volume 4598 of LNCS, pages
140–150. Springer, 2007. Cited on pp. xi and 170.

Kőnig, Dénes. Theorie der endlichen und unendlichen Graphen. Akademische Verlags-
gesellschaft, Leipzig, 1936. English translation: Theory of finite and infinite graphs,
Birkhäuser, 1990. Cited on pp. 11 and 21.

Kou, Lawrence T., Larry J. Stockmeyer, and Chak-Kuen Wong. Covering edges by cliques
with regard to keyword conflicts and intersection graphs. Communications of the ACM,
21(2):135–139, 1978. Cited on pp. 15, 16, 32, and 40.

Koutis, Ioannis. A faster parameterized algorithm for set packing. Information Processing
Letters, 94(1):7–9, 2005. Cited on p. 118.

Leroy, Xavier, Jérôme Vouillon, Damien Doligez, et al. The Objective Caml system.
Available on the web, 1996. http://caml.inria.fr/ocaml/. Cited on pp. 39 and 54.

Lewis, John M. On the complexity of the maximum subgraph problem. In Proceedings
of the 10th ACM Symposium on Theory of Computing (STOC ’78), pages 265–274. ACM,

164 Bibliography

1978. Cited on p. 14.
Lewis, John M. and Mihalis Yannakakis. The node-deletion problem for hereditary

properties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.
Cited on pp. 13 and 24.

Liers, Frauke, Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. Computing exact
ground states of hard Ising spin glass problems by branch-and-cut. In Hartmann,
Alexander K. and Heiko Rieger, editors, New Optimization Algorithms in Physics, pages
47–70. Wiley-VCH, 2004. Cited on p. 20.

Liu, Yang, Songjian Lu, Jianer Chen, and Sing-Hoi Sze. Greedy localization and color-
coding: Improved matching and packing algorithms. In Proceedings of the 2nd Interna-
tional Workshop on Parameterized and Exact Computation (IWPEC ’06), volume 4169 of
LNCS, pages 84–95. Springer, 2006. Cited on p. 118.

Lovász, László and Michael D. Plummer. Matching Theory, volume 29 of Annals of Discrete
Mathematics. North-Holland, Amsterdam, 1986. Cited on p. 76.

Lu, Songjian, Fenghui Zhang, Jianer Chen, and Sing-Hoi Sze. Finding pathway structures
in protein interaction networks. Algorithmica, 48(8):363–374, 2007. Cited on p. 28.

Lund, Carsten and Mihalis Yannakakis. The approximation of maximum subgraph
problems. In Proceedings of the 20th International Colloquium on Automata, Languages and
Programming (ICALP ’93), volume 700 of LNCS, pages 40–51. Springer, 1993. Cited on
pp. 14 and 24.

Lund, Carsten and Mihalis Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, 1994. Cited on p. 15.

Ma, S., Walter D. Wallis, and J. Wu. Clique covering of chordal graphs. Utilitas Mathematica,
36:151–152, 1989. Cited on p. 15.

Mahajan, Meena and Venkatesh Raman. Parameterizing above guaranteed values: MaxSat
and MaxCut. Journal of Algorithms, 31(2):335–354, 1999. Cited on pp. 25 and 61.

Makhorin, Andrew. GNU Linear Programming Kit Reference Manual Version 4.8. Department
of Applied Informatics, Moscow Aviation Institute, 2004. Cited on pp. 55, 110, 111,
and 146.

Marx, Dániel. Parameterized complexity of constraint satisfaction problems. Computational
Complexity, 14(2):153–183, 2005. Cited on p. 118.

Marx, Dániel. Chordal deletion is fixed-parameter tractable. In Proceedings of the 32nd
International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’06), volume
4271 of LNCS, pages 37–48. Springer, 2006. Cited on pp. 61, 62, and 68.

Mathieson, Luke, Elena Prieto, and Peter Shaw. Packing edge disjoint triangles: A
parameterized view. In Proceedings of the 1st International Workshop on Parameterized and
Exact Computation (IWPEC ’04), volume 3162 of LNCS, pages 127–137. Springer, 2004.
Cited on p. 118.

Mayrose, Itay, Tomer Shlomi, Nimrod D. Rubinstein, Jonathan M. Gershoni, Eytan Ruppin,
Roded Sharan, and Tal Pupko. Epitope mapping using combinatorial phage-display
libraries: a graph-based algorithm. Nucleic Acids Research, 35(1):69–78, 2007. Cited on
pp. 119 and 126.

McKee, Terry A. and Fred R. McMorris. Topics in Intersection Graph Theory, volume 2 of
SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999. Cited on p. 15.

Bibliography 165

Mehlhorn, Kurt, Rolf Möhring, Burkhard Monien, Petra Mutzel, Peter Sanders, and
Dorothea Wagner. Beschreibung des DFG-Schwerpunktprogramms zum Thema Algo-
rithm Engineering. Call for proposals of the Deutsche Forschungsgemeinschaft (DFG)
(in German), 2006. Cited on p. 8.

von Mering, Christian, Roland Krause, Berend Snel, Michael Cornell, Stephen G. Oliver,
Stanley Fields, and Peer Bork. Comparative assessment of large-scale data sets of
protein–protein interactions. Nature, 417:399–403, 2002. Cited on p. 26.

Mi, Huaiyu, Betty Lazareva-Ulitsky, Rozina Loo, Anish Kejariwal, Jody Vandergriff, Steven
Rabkin, Nan Guo, Anushya Muruganujan, Olivier Doremieux, Michael J. Campbell,
Hiroaki Kitano, and Paul D. Thomas. The PANTHER database of protein families,
subfamilies, functions and pathways. Nucleic Acids Research, 33(Supplement 1):284–288,
2005. Cited on p. 58.

Michalewicz, Zbigniew and David B. Fogel. How to Solve It: Modern Heuristics. Springer,
2005. Cited on p. 1.

Misiołek, Ewa and Danny Z. Chen. Two flow network simplification algorithms. Informa-
tion Processing Letters, 97(5):197–202, 2006. Cited on p. 99.

Monien, Burkhard. How to find long paths efficiently. Annals of Discrete Mathematics,
25:239–254, 1985. Cited on p. 27.

Moon, John W. On maximal transitive subtournaments. Proceedings of the Edinburgh
Mathematical Society, 17:345–349, 1971. Cited on p. 86.

Moser, Hannes. 2007. Private communication. Cited on pp. 63 and 69.
Mujuni, Egbert and Frances A. Rosamond. Parameterized complexity of the clique parti-

tion problem. In Proceedings of the 14th Computing: The Australasian Theory Symposium
(CATS ’08), volume 77 of Conferences in Research and Practice in Information Technology,
pages 75–78. ACS, 2008. Cited on p. 15.

Niedermeier, Rolf. Invitation to Fixed-Parameter Algorithms. Number 31 in Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, 2006. Cited on
pp. 3 and 146.

Niedermeier, Rolf and Peter Rossmanith. A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters, 73(3–4):125–129, 2000. Cited on
pp. 31, 38, and 147.

Niedermeier, Rolf and Peter Rossmanith. An efficient fixed-parameter algorithm for
3-hitting set. Journal of Discrete Algorithms, 1(1):89–102, 2003. Cited on pp. 65, 67, and 68.

Nilli, Alon. Perfect hashing and probability. Combinatorics, Probability and Computing,
3:407–409, 1994. Cited on p. 118.

O’Boyle, Michael and Elena Stöhr. Compile time barrier synchronization minimization.
IEEE Transactions on Parallel and Distributed Systems, 13(6):529–543, 2002. Cited on p. 16.

Oda, Kanae, Tomomi Kimura, Yukiko Matsuoka, Akira Funahashi, Masaaki Muramatsu,
and Hiroaki Kitano. Molecular interaction map of a macrophage. AfCS Research Reports,
2:14, 2004. Cited on p. 55.

Oda, Kanae and Hiroaki Kitano. A comprehensive map of the toll-like receptor signaling
network. Molecular Systems Biology, 2:2006.0015, 2006. Cited on p. 58.

Okasaki, Chris and Andy Gill. Fast mergeable integer maps. In Proceedings of the ACM
SIGPLAN Workshop on ML, pages 77–86. 1998. Cited on p. 39.

166 Bibliography

Orlin, James B. Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5):406–424, 1977. Cited on pp. 15 and 44.

Orlova, G. I. and Ya. G. Dorfman. Finding the maximum cut in a graph (in Russian).
Tekhnicheskaja Kibernetika, 3:155–159, 1972. English translation in Engineering Cybernetics,
10:502–506, 1972. Cited on p. 19.

Panconesi, Alessandro and Mauro Sozio. Fast hare: A fast heuristic for single individual
SNP haplotype reconstruction. In Proceedings of the 4th International Workshop on
Algorithms in Bioinformatics (WABI ’04), volume 3240 of LNCS, pages 266–277. Springer,
2004. Cited on pp. 25, 112, and 113.

Papadimitriou, Christos H. and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991. Cited
on p. 18.

Peiselt, Thomas. An Iterative Compression Algorithm for Vertex Cover. Studienarbeit, Institut
für Informatik, Friedrich-Schiller-Universität Jena, 2007. Cited on pp. 63 and 69.

Piepho, Hans-Peter. An algorithm for a letter-based representation of all-pairwise com-
parisons. Journal of Computational and Graphical Statistics, 13(2):456–466, 2004. Cited on
pp. 15, 16, 32, and 40.

Plehn, Jürgen and Bernd Voigt. Finding minimally weighted subgraphs. In Proceedings of
the 16th International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’90),
volume 484 of LNCS, pages 18–29. Springer, 1990. Cited on p. 27.

Polzin, Tobias and Siavash Vahdati Daneshmand. Practical partitioning-based methods
for the Steiner problem. In Proceedings of the 4th International Workshop on Experimental
and Efficient Algorithms (WEA ’05), volume 4007 of LNCS, pages 241–252. Springer, 2006.
Cited on pp. 45 and 60.

Ponta, Oriana, Falk Hüffner, and Rolf Niedermeier. Speeding up dynamic programming
for some np-hard graph recoloring problems. In Proceedings of the 5th Annual Conference
on Theory and Applications of Models of Computation (TAMC ’08), volume 4978 of LNCS.
Springer, 2008. To appear. Cited on pp. xi and 170.

Pop, Mihai, Daniel S. Kosack, and Steven L. Salzberg. Hierarchical scaffolding with
Bambus. Genome Research, 14(1):149–159, 2004. Cited on p. 20.

Prieto, Elena and Christian Sloper. Looking at the stars. Theoretical Computer Science,
351(3):437–445, 2006. Cited on p. 118.

Prieto Rodrı́guez, Elena. Systematic Kernelization in FPT Algorithm Design. Ph.D. thesis,
School of Electrical Engineering and Computer Science, The University of Newcastle,
Australia, 2005. Cited on pp. 45 and 145.

Prisner, Erich. Graphs with few cliques. In Proceedings of the 7th Conference on the Theory
and Applications of Graphs, pages 945–956. Wiley, 1995. Cited on p. 38.

Prömel, Hans-Jürgen and Angelika Steger. The Steiner Tree Problem: A Tour Through Graphs,
Algorithms, and Complexity. Advanced Lectures in Mathematics. Vieweg, 2002. Cited on
p. 5.

Protti, Fábio, Maise Dantas da Silva, and Jayme L. Szwarcfiter. Applying modular
decomposition to parameterized bicluster editing. In Proceedings of the 2nd International
Workshop on Parameterized and Exact Computation (IWPEC ’06), volume 4169 of LNCS,
pages 1–12. Springer, 2006. To appear under the title “Applying modular decomposition

Bibliography 167

to parameterized cluster editing problems” in Theory of Computing Systems. Cited on
pp. 72 and 79.

Rahmann, Sven, Tobias Wittkop, Jan Baumbach, Marcel Martin, Anke Truß, and Sebastian
Böcker. Exact and heuristic algorithms for weighted cluster editing. In Proceedings of the
6th International Conference on Computational Systems Bioinformatics (CSB ’07), volume 6
of Computational Systems Bioinformatics, pages 391–401. Imperial College Press, 2007.
Cited on pp. 5, 71, and 72.

Rajagopalan, Subramanian, Sreeranga P. Rajan, Sharad Malik, Sandro Rigo, Guido Araujo,
and Koichiro Takayama. A re-targetable VLIW compiler framework for DSPs with
instruction level parallelism. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 20(11):1319–1328, 2001. Cited on p. 16.

Rajagopalan, Subramanian, Manish Vachharajani, and Sharad Malik. Handling irregular
ILP within conventional VLIW schedulers using artificial resource constraints. In
Proceedings of the 2000 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES ’00), pages 157–164. ACM Press, 2000. Cited on pp. 15
and 16.

Raman, Venkatesh and Saket Saurabh. Parameterized algorithms for feedback set prob-
lems and their duals in tournaments. Theoretical Computer Science, 351(3):446–458, 2006.
Cited on pp. 80 and 81.

Raman, Venkatesh and Saket Saurabh. Improved fixed parameter tractable algorithms
for two “edge” problems: MAXCUT and MAXDAG. Information Processing Letters,
104(2):65–72, 2007. Cited on p. 19.

Raman, Venkatesh, Saket Saurabh, and Somnath Sikdar. Efficient exact algorithms through
enumerating maximal independent sets and other techniques. Theory of Computing
Systems, 41(3):563–587, 2007. Cited on pp. 25, 81, and 86.

Raman, Venkatesh and Somnath Sikdar. Parameterized complexity of the induced
subgraph problem in directed graphs. Information Processing Letters, 104(3):79–85, 2007.
Cited on p. 100.

Raymann, Dominik. Implementation of Alon–Yuster–Zwick’s Color-Coding Algorithm. Di-
plomarbeit, Institut für Theoretische Informatik, ETH Zürich, Switzerland, 2004. Cited
on p. 119.

Razgon, Igor and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Technical
Report arXiv:0801.1300, arxiv.org, 2008. Cited on pp. 63, 69, and 116.

Reed, Bruce, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004. Cited on pp. xii, 19, 24, 61, 62, 101, 105, 106,
and 111.

Rendl, Franz, Giovanni Rinaldi, and Angelika Wiegele. A branch and bound algorithm
for max-cut based on combining semidefinite and polyhedral relaxations. In Proceedings
of the 12th International Conference on Integer Programming and Combinatorial Optimization
(IPCO ’07), volume 4513 of LNCS, pages 295–309. Springer, 2007. Cited on p. 20.

Rizzi, Romeo, Vineet Bafna, Sorin Istrail, and Giuseppe Lancia. Practical algorithms and
fixed-parameter tractability for the single individual SNP haplotyping problem. In
Proceedings of the 2nd International Workshop on Algorithms in Bioinformatics (WABI ’02),
volume 2452 of LNCS, pages 29–43. Springer, 2002. Cited on p. 25.

168 Bibliography

Sasatte, Prashant. Improved FPT algorithm for feedback vertex set problem in bipartite
tournament. Information Processing Letters, 105(3):79–82, 2007. Cited on p. 87.

Schrijver, Alexander. Theory of Linear and Integer Programming. Wiley, 1998. Cited on
p. 109.

Schwikowski, Benno and Ewald Speckenmeyer. On enumerating all minimal solutions
of feedback problems. Discrete Applied Mathematics, 117(1–3):253–265, 2002. Cited on
p. 86.

Scott, Alexander D. and Gregory B. Sorkin. Linear-programming design and analysis of
fast algorithms for Max 2-CSP. Discrete Optimization, 4(3–4):260–287, 2007. Cited on
p. 20.

Scott, Jacob, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient algorithms for
detecting signaling pathways in protein interaction networks. Journal of Computational
Biology, 13(2):133–144, 2006. Cited on pp. 26, 28, 117, 119, 126, 131, 133, 136, 137, 138,
140, 141, and 144.

Scott, Michelle S., Theodore Perkins, Scott Bunnell, François Pepin, David Y. Thomas,
and Michael Hallett. Identifying regulatory subnetworks for a set of genes. Molecu-
lar & Cellular Proteomics, 4(5):683–692, 2005. Cited on p. 5.

Seymour, Paul D. and Robin Thomas. Graph searching and a min-max theorem for
tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993. Cited on p. 7.

Shamir, Ron, Roded Sharan, and Dekel Tsur. Cluster graph modification problems.
Discrete Applied Mathematics, 144(1–2):173–182, 2004. Cited on p. 71.

Sharan, Roded. Graph Modification Problems and their Applications to Genomic Research.
Ph.D. thesis, Sackler Faculty of Exact Sciences, School of Computer Science, Tel-Aviv
University, 2002. Cited on p. 13.

Shlomi, Tomer, Daniel Segal, Eytan Ruppin, and Roded Sharan. QPath: a method for
querying pathways in a protein–protein interaction network. BMC Bioinformatics, 7:199,
2006. Cited on pp. 119, 127, 128, and 140.

Sontag, Eduardo D. 2007a. Private communication. Cited on p. 100.
Sontag, Eduardo D. Monotone and near-monotone biochemical networks. Systems and

Synthetic Biology, 1(2):59–87, 2007b. Cited on pp. 98 and 100.
Speckenmeyer, Ewald. On feedback problems in digraphs. In Proceedings of the 15th

International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’89), volume
411 of LNCS, pages 218–231. Springer, 1989. Cited on p. 80.

Steffen, Martin, Allegra Petti, John Aach, Patrik D’haeseleer, and George Church. Au-
tomated modelling of signal transduction networks. BMC Bioinformatics, 2:34, 2002.
Cited on pp. 26 and 28.

Sturmfels, Bernd. Gröbner Bases and Convex Polytopes, volume 8 of University Lecture Series.
American Mathematical Society, 1996. Cited on p. 54.

Suthram, Silpa, Tomer Shlomi, Eytan Ruppin, Roded Sharan, and Trey Ideker. A direct
comparison of protein interaction confidence assignment schemes. BMC Bioinformatics,
7:360, 2006. Cited on p. 26.

Tezzaron Semiconductor. Soft errors in electronic memory. White paper, 2004. Cited on
p. 121.

Thagard, Paul and Karsten Verbeurgt. Coherence as constraint satisfaction. Cognitive

Bibliography 169

Science, 22(1):1–24, 1998. Cited on p. 22.
Truß, Anke. Parametrisierte Algorithmen für Feedback-Set-Probleme auf Turniergraphen. Di-

plomarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena, 2005. (Parame-
terized algorithms for feedback set problems in tournaments, in German). Cited on
p. xii.

Vassilevska, Virginia, Ryan Williams, and Shan Leung Maverick Woo. Confronting
hardness using a hybrid approach. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’06), pages 1–10. ACM, 2006. Cited on p. 28.

Vazirani, Vijay V. Approximation Algorithms. Springer, 2001. Cited on p. 1.
Volz, Erik. Random networks with tunable degree distribution and clustering. Physical

Review E, 70(5):056115, 2004. Cited on pp. 58 and 137.
Wahlström, Magnus. Algorithms, Measures and Upper Bounds for Satisfiability and Related

Problems. Ph.D. thesis, Department of Computer and Information Science, Linköpings
universitet, Sweden, 2007. Cited on pp. 65, 68, 72, 81, and 87.

Watts, Duncan J. and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998. Cited on p. 137.

Weihe, Karsten. Covering trains by stations or the power of data reduction. In Proceedings
of the 1st Workshop on Algorithms and Experiments (ALEX ’98), pages 1–8. 1998. Cited on
p. 29.

Wernicke, Sebastian. On the Algorithmic Tractability of Single Nucleotide Polymorphism (SNP)
Analysis and Related Problems. Diplomarbeit, Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, 2003. Cited on pp. 19, 45, 87, 109, 110, 111, 112, 114, and 115.

Wernicke, Sebastian. Combinatorial Algorithms to Cope with the Complexity of Biological
Networks. Ph.D. thesis, Institut für Informatik, Friedrich-Schiller-Universität Jena, 2006.
Cited on pp. 63 and 130.

Williams, Ryan. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2–3):357–365, 2005. Cited on p. 19.

Woeginger, Gerhard J. Open problems around exact algorithms. Discrete Applied Mathe-
matics, 156(3):397–405, 2008. Cited on pp. 81 and 86.

Xu, Jinbo, Feng Jiao, and Bonnie Berger. A tree-decomposition approach to protein
structure prediction. In Proceedings of the 4th International Conference on Computational
Systems Bioinformatics (CSB ’05), pages 247–256. IEEE, 2005. Cited on p. 7.

Yannakakis, Mihalis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–309,
1981. Cited on pp. 18 and 24.

Zaslavsky, Thomas. Bibliography of signed and gain graphs. Electronic Journal of Combi-
natorics, DS8, 1998. Updated version available at http://www.math.binghamton.edu/
zaslav/Bsg/. Cited on p. 20.

Zhang, Xiang-Sun, Rui-Sheng Wang, Ling-Yun Wu, and Luonan Chen. Models and
algorithms for haplotyping problem. Current Bioinformatics, 1(1):104–114, 2006. Cited
on p. 25.

Zhuang, Xiaotong and Santosh Pande. Resolving register bank conflicts for a network
processor. In Proceedings of the 12th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’03), pages 269–278. IEEE Press, 2003. Cited on p. 25.

van Zuylen, Anke and David P. Williamson. Deterministic algorithms for rank aggregation

http://www.math.binghamton.edu/zaslav/Bsg/
http://www.math.binghamton.edu/zaslav/Bsg/

170 Bibliography

and other ranking and clustering problems. In Proceedings of the 5th Workshop on
Approximation and Online Algorithms (WAOA ’07), volume 4927 of LNCS. Springer, 2007.
To appear. Cited on p. 71.

Ehrenwörtliche Erklärung

Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät bekannt ist;

• dass ich die Dissertation selbst angefertigt und alle von mir benutzten Hilfs-
mittel, persönliche Mitteilungen sowie Quellen in meiner Arbeit angegeben
habe;

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen
habe und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistun-
gen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem
Inhalt der vorgelegten Dissertation stehen;

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche
oder andere wissenschaftliche Prüfung eingereicht habe;

• dass ich weder die gleiche, eine in wesentlichen Teilen ähnliche, noch eine
andere Abhandlung bereits bei einer anderen Hochschule als Dissertation
eingereicht habe.

Jena, Februar 2008 Falk Hüffner

Lebenslauf

Falk Hüffner
Geboren am 25. Februar 1976 in Oldenburg (Oldenburg)

2005– Doktorand
Friedrich-Schiller-Universität Jena
Lehrstuhl Theoretische Informatik I/Komplexitätstheorie, Prof.
Dr. Rolf Niedermeier

2004–2005 Doktorand
Eberhard-Karls-Universität Tübingen
Emmy-Noether-Nachwuchsgruppe ”Kleine Parameter in schwie-
rigen Problemen“, PD Dr. Rolf Niedermeier

2004 Diplom
Diplomarbeitsthema: ”Graph modification problems and auto-
mated search tree generation“ [Hüffner 2003]
Betreuer: PD Dr. Rolf Niedermeier

1996–2004 Diplom-Studiengang Informatik, Nebenfach Mathematik
Eberhard-Karls-Universität Tübingen

1995–1996 Zivildienst
Institut für Vogelforschung, Wilhelmshaven

1988–1995 Gymnasium
Lothar-Meyer-Gymnasium Varel, Germany
Leistungsfächer: Mathematik und Physik

1986–1988 Orientierungsstufe
Hauptschule/Orientierungsstufe Obenstrohe

1982–1986 Grundschule
Grundschule Altjührden, Germany

Begutachtete Publikationen (bei Veröffentlichungen mit Konferenz- und Zeit-
schriftenversion ist nur die Zeitschriftenversion aufgeführt):

Hüffner et al. [2001], Gramm et al. [2002], Hüffner [2002], Guo et al. [2004],
Gramm et al. [2004], Dom et al. [2005], Gramm et al. [2005], Hüffner [2005],
Brosemann et al. [2006], Dom et al. [2006a,b], Guo et al. [2006], Dom et al. [2007],
Gramm et al. [2007a,b], Guo et al. [2007a,b], Hüffner [2007], Hüffner et al. [2007a],
Helwig et al. [2007], Hüffner et al. [2007c,b,f,e], Komusiewicz et al. [2007], Guo
et al. [2008], Hüffner et al. [2008a,b], Ponta et al. [2008]

Jena, Februar 2008 Falk Hüffner

	Introduction
	NP-hard problems
	Parameterized complexity and fixed-parameter algorithms
	Fundamental fixed-parameter techniques
	Depth-bounded search trees
	Dynamic programming
	Tree decompositions

	Algorithm engineering
	Notation

	Problems
	Graph modification problems
	Clique Cover
	Bipartization and Balanced Subgraph
	Edge Bipartization
	Balanced Subgraph
	Vertex Bipartization

	Minimum-Weight Path

	Data reduction
	Data reduction for Clique Cover
	Data reduction rules
	Search tree algorithm
	Implementation and experiments
	Outlook

	Data reduction for Balanced Subgraph
	Data reduction scheme
	Efficiently finding separators
	Gadget construction
	Implementation and experiments
	Outlook

	Iterative compression
	Known results
	Basic method
	Iterative compression for Cluster Vertex Deletion
	Known results on Cluster Vertex Deletion
	Iterative compression algorithm
	Outlook

	Iterative compression for Feedback Vertex Set in tournaments
	Known results on Feedback Vertex Set in tournaments
	Iterative compression algorithm
	Outlook

	Iterative compression for Edge Bipartization
	Iterative compression algorithm
	Exploiting subproblem similarity
	Heuristic speedup
	Generalization to Balanced Subgraph
	Outlook

	Iterative compression for Vertex Bipartization
	Iterative compression algorithm
	Algorithmic improvements
	Implementation and experiments
	Outlook

	Outlook

	Color-coding
	Known results
	Basic method
	Variations of Minimum-Weight Path
	Pathway Query

	Algorithm engineering
	Increasing the number of colors
	Heuristic evaluation functions
	Data structures
	Improvements for Pathway Query

	Implementation and experiments
	Minimum-Weight Path
	Pathway Query

	Graphical user interface
	Search parameters
	Graphical display

	Outlook

	Outlook

