
Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

Graph-Modeled Data Clustering:

Fixed-Parameter Algorithms for

Clique Generation∗

Jens Gramm† Jiong Guo‡ Falk Hüffner Rolf Niedermeier‡

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,

Sand 13, D-72076 Tübingen, Fed. Rep. of Germany

gramm,guo,hueffner,niedermr@informatik.uni-tuebingen.de

Abstract

We present efficient fixed-parameter algorithms for the NP-complete
edge modification problems Cluster Editing and Cluster Dele-

tion. Here, the goal is to make the fewest changes to the edge set
of an input graph such that the new graph is a vertex-disjoint union
of cliques. Allowing up to k edge additions and deletions (Cluster

Editing), we solve this problem in O(2.27k + |V |3) time; allowing only
up to k edge deletions (Cluster Deletion), we solve this problem
in O(1.77k + |V |3) time. The key ingredients of our algorithms are
two easy to implement bounded search tree algorithms and an efficient
polynomial-time reduction to a problem kernel of size O(k3). This
improves and complements previous work. Finally, we discuss further
improvements on search tree sizes using computer-generated case dis-
tinctions.
Keywords. NP-complete, graph problems, edge modification prob-
lems, data clustering, correlation clustering, fixed-parameter tractabil-
ity, exact algorithms.

∗A preliminary version of this paper was presented at the 5th Italian Conference on
Algorithms and Complexity (CIAC 2003), Springer-Verlag, LNCS 2653, pages 108–119,
held in Rome, Italy, May 28–30, 2003.

†Supported by the Deutsche Forschungsgemeinschaft (DFG), research project “OPAL”
(optimal solutions for hard problems in computational biology), NI 369/2.

‡Supported by the Deutsche Forschungsgemeinschaft (DFG), junior research group
“PIAF” (fixed-parameter algorithms), NI 369/4.

1

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

1 Introduction

Motivation and problem definition. There is a huge variety of clus-
tering algorithms with applications in numerous fields (cf., e.g., [15, 17]).
Here, we focus on problems closely related to algorithms for clustering gene
expression data (cf. [29] for a recent survey) and so-called correlation cluster-
ing (with applications in document clustering and “agnostic learning” [3]).
In this context, Shamir et al. [27] recently studied two NP-complete graph
problems called Cluster Editing and Cluster Deletion.1 These are
based on the notion of a similarity graph whose vertices correspond to data
elements and in which there is an edge between two vertices iff the similarity
of their corresponding elements exceeds a predefined threshold. The goal is
to obtain a cluster graph by as few edge modifications (i.e., edge deletions
and additions) as possible; a cluster graph is a graph in which each of the
connected components is a clique. Thus, we arrive at the edge modification
problem Cluster Editing which is central to our work:

Input: An undirected graph G = (V,E), and a nonnegative in-
teger k.
Question: Can we transform G, by deleting and adding at
most k edges, into a graph that consists of a disjoint union of
cliques?

Cluster Deletion is the special case where edges can only be deleted.
All these problems belong to the class of edge modification problems, see
Natanzon et al. [23] for a recent survey.

Previous work. The most important reference point to our work is the
paper of Shamir et al. [27]. Among other things, they showed that Clus-

ter Editing is NP-complete and that there exists some constant ε > 0
such that it is NP-hard to approximate Cluster Deletion to within a
factor of 1 + ε. The NP-completeness of Cluster Editing, however, can
already be extracted from work of Křivánek and Morávek [20] who studied
more general problems in hierarchical tree clustering. In addition, Shamir
et al. studied cases where the number of clusters (i.e., cliques) is fixed. Be-
fore that, Ben-Dor et al. [4] and Sharan and Shamir [28] investigated closely
related clustering applications in the computational biology context, where
they deal with modified versions of the Cluster Editing problem together

1The third problem Cluster Completion (only edge additions allowed) is easily seen
to be polynomial-time solvable.

2

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

with heuristic polynomial-time solutions. Independently of Shamir et al.’s
work, Bansal et al. [3] initiated the research on “correlation clustering” which
is motivated by document clustering problems from machine learning. It can
be easily seen that an important special case of the general problem—also
studied by Bansal et al.—is identical to Cluster Editing. Bansal et al.
mainly provide approximation results which partially have been improved by
very recent work [6, 8, 11]. Notably, the best known approximation factor for
Cluster Editing is 4 [6]; moreover, it is shown to be APX-hard (meaning
that a polynomial-time approximation scheme (PTAS) is unlikely) [6]. Thus,
there is a strong motivation to search for efficient fixed-parameter algorithms
to solve Cluster Editing. From the more abstract view of graph mod-
ification problems, Leizhen Cai [5] (also cf. [10]) considered the more gen-
eral problem (allowing edge deletions, edge additions, and vertex deletions)
where the “goal graphs” have a “forbidden set characterization” with respect
to “hereditary graph properties” and he showed that this problem is fixed-
parameter tractable (refer to [2, 9, 10, 12, 13] for surveys on parameterized
complexity and algorithms). In particular, Cai’s result implies O(3k · |G|4)
time algorithms for both Cluster Editing and Cluster Deletion where
the forbidden set consists of a P3 (i.e., a vertex-induced path consisting of
three vertices).2 Natanzon et al. [23] give a general constant-factor approx-
imation for deletion and editing problems on bounded-degree graphs with
respect to properties (such as being a cluster graph) that can be character-
ized by a finite set of forbidden induced subgraphs. Kaplan et al. [18] and
Mahajan and Raman [22] considered other special cases of edge modification
problems with particular emphasis on fixed-parameter tractability results.
Khot and Raman [19] recently investigated the parameterized complexity of
vertex deletion problems for finding subgraphs with hereditary properties.

New results. Following a suggestion of Natanzon et al. [23] (who note
that, regarding their NP-hardness results for some edge modification prob-
lems, “. . . studying the parameterized complexity of the NP-hard prob-
lems is also of interest.”), we present significantly improved fixed-parameter
tractability results for Cluster Editing and Cluster Deletion. More
precisely, we show that Cluster Editing is solvable in O(2.27k + |V |3)
worst-case time and that Cluster Deletion is solvable in O(1.77k + |V |3)
worst-case time. This gives simple and efficient exact algorithms for these

2A graph is a cluster graph iff it contains no P3 as a vertex-induced subgraph. This
will also be important for our work. Note that Shamir et al. [27] write “P2-free,” but
according to the graph theory literature it should be called “P3-free.”

3

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

NP-complete problems in case of reasonably small parameter values k (num-
ber of deletions and additions or number of deletions only). In particular,
we present an efficient data reduction by preprocessing, providing a problem
kernel of size O(k3).

Structure of the paper. After providing some basics in Sect. 2, in Sect. 3
we describe a set of efficient data reduction rules that transform a given
Cluster Editing instance into a “reduced graph” with O(k2) vertices and
O(k3) edges. Then, in Sect. 4 and 5, we provide two depth-bounded search
trees for Cluster Editing and Cluster Deletion. In the concluding
Sect. 6, we summarize our findings, indicate opportunities for future work,
and point out how the achieved search tree sizes can further be lowered using
computer-generated case distinctions.

2 Preliminaries and Basic Notation

One of the latest approaches to attack computational intractability is to
study parameterized complexity. For many hard problems, the seemingly
unavoidable combinatorial explosion can be restricted to a “small part” of
the input, the parameter, so that the problems can be solved in polynomial
time when the parameter is fixed. For instance, the NP-complete Vertex

Cover problem can be solved by an algorithm with O(1.3k + kn) running
time [7, 24, 26], where the parameter k is a bound on the maximum size of
the vertex cover set we are looking for and where n is the number of vertices
in the given graph. The parameterized problems that have algorithms of
f(k) · nO(1) time complexity are called fixed-parameter tractable, where f
can be an arbitrary function depending only on k, and n denotes the overall
input size, see [2, 9, 10, 12, 13] for details.

Our bounded search tree algorithms work recursively. The number of
recursions is the number of nodes in the corresponding tree. This number is
governed by homogeneous, linear recurrences with constant coefficients. It
is well-known how to solve them and the asymptotic solution is determined
by the roots of the characteristic polynomial (see, e.g., Kullmann [21] for
more details). If the algorithm solves a problem of “size” s and calls itself
recursively for problems of sizes s− d1, . . . , s− di, then (d1, . . . , di) is called
the branching vector of this recursion. It corresponds to the recurrence

ts = ts−d1
+ · · · + ts−di

where ts denotes the number of leaves in the search tree solving an instance

4

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

of size s and tj = 1 for 0 ≤ j < d with d = max(d1, . . . , di). This recurrence
corresponds to the characteristic polynomial

zd = zd−d1 + · · · + zd−di.

If α is a root of the characteristic polynomial which has maximum absolute
value and is positive, then ts is αs up to a polynomial factor. We call α
the branching number that corresponds to the branching vector (d1, . . . , di).
Moreover, if α is a single root, then ts = O(αs); all branching numbers that
occur in this paper are single roots.

The size of the search tree is therefore O(αk), where k is the parameter
and α is the largest branching number that will occur; in our case, for
Cluster Editing, it will be shown that this branching number is about
2.27 and it belongs to the branching vector (1, 2, 2, 3, 3) in Sect. 4.

We assume familiarity with basic graph-theoretical notations. If x is a
vertex in an undirected graph G = (V,E), then by NG(x) we denote the set
of its neighbors, i.e.,

NG(x) := { v | {x, v} ∈ E }.

With degG(x) we denote the degree of a vertex x ∈ V , i.e. |NG(x)|. We omit
the index G if it is clear from the context. The whole paper only works with
simple graphs without self-loops. By |G| we refer to the size of graph G,
which is determined by the numbers of its vertices and edges.

In our algorithms, we use a table T to store annotations for the edges of
the graph such that T has an entry for every pair of vertices u, v ∈ V which
can be empty or take one of the following values:

“permanent”: In this case, {u, v} ∈ E and the algorithm is not allowed to
delete {u, v} later on; or

“forbidden”: In this case, {u, v} /∈ E and the algorithm is not allowed to
add {u, v} later on.

Note that, whenever the algorithms delete an edge {u, v} from E, we set
T [u, v] to forbidden since it would not make sense to reintroduce previously
deleted edges. In the same way, whenever the algorithms add an edge {u, v}
to E, we set T [u, v] to permanent. In the following, when adding and deleting
edges, we assume that we make these adjustments even when not mentioned
explicitly.

5

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

3 Problem Kernel for Cluster Editing

A reduction rule replaces, in polynomial time, a given Cluster Editing

instance (G, k) consisting of a graph G and a nonnegative integer k by a
“simpler” instance (G′, k′) such that (G, k) is a yes-instance iff (G′, k′) is
a yes-instance, i.e., G can be transformed into disjoint clusters by delet-
ing/adding at most k edges iff G′ can be transformed into disjoint clusters
by deleting/adding at most k′ edges. An instance to which none of a given
set of reduction rules applies is called reduced with respect to these rules. A
parameterized problem such as Cluster Editing (the parameter is k) is
said to have a problem kernel if, after the application of the reduction rules,
the resulting reduced instance has size f(k) for a function f depending only
on k. (See [7] and [1] for two recent examples concerning the graph problems
Vertex Cover and Dominating Set, respectively. There, the achieved
problem kernel sizes are even linear in the parameters.)

We present three reduction rules for Cluster Editing. For each of
them, we discuss its correctness and give the running time which is necessary
to execute the rule. In our rules, we use table T as described in Sect. 2.
Using the reduction rules, we show, at the end of this section, a problem
kernel consisting of at most 2k2 + k vertices and at most 2k3 + k2 edges for
Cluster Editing.

Although the following reduction rules also add edges to the graph, we
consider the resulting instances as simplified. The reason is that for every
added edge, the parameter is decreased by one. In the following rules, it is
implicitly assumed that, when an edge is added or deleted, parameter k is
decreased by one.

In the formulation of our rules, we use the following terminology. Given
a graph G = (V,E) and a vertex pair vi, vj ∈ V , we use common neighbor
of vi and vj to refer to a vertex z ∈ V with {z, vi} ∈ E and {z, vj} ∈ E.
Similarly, a non-common neighbor of vi and vj is a vertex z ∈ V with z 6= vi

and z 6= vj such that either {z, vi} ∈ E or {z, vj} ∈ E but not both.

Rule 1 For every pair of vertices u, v ∈ V :

1. If u and v have more than k common neighbors, then {u, v} has to
belong to E and we set T [u, v] := permanent. If {u, v} is not in E,
we add it to E.

2. If u and v have more than k non-common neighbors, then {u, v}
cannot belong to E and we set T [u, v] := forbidden. If {u, v} is
in E, we delete it.

6

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

3. If u and v have both more than k common and more than k non-
common neighbors, then the given instance has no solution.

Lemma 1. Rule 1 is correct.

Proof. Case 1: Vertices u and v have more than k common neighbors. If
we did exclude {u, v} from E, then we would have to, for every common
neighbor z of u and v, delete {u, z}, {v, z}, or both. This, however, would
require at least k + 1 edge deletions, a contradiction to the maximum of k
edge modifications allowed.
Case 2: Vertices u and v have more than k non-common neighbors. If
we did include {u, v} in E, then we would have to, for every non-common
neighbor z of u and v, edit one of the edges {u, z} and {v, z}. Without loss
of generality, let z be a neighbor of u and not a neighbor of v. Then, we
would have to either delete {u, z} from E or to add {v, z} to E. With at
least k + 1 non-common neighbors, this would require at least k + 1 edge
modifications.
Case 3: Vertices u and v have more than k common neighbors and more
than k non-common neighbors. From the proofs for Case 1 and Case 2 it
is clear that it would require more than k edge modifications both when
including {u, v} in E and when excluding {u, v} from E.

Note that Rule 1 applies to every vertex pair {u, v} for which the number
of vertices which are neighbors of u or v (or both) is greater than 2k.

Rule 2 For every three vertices u, v, w ∈ V :

1. If T [u, v] = permanent and T [u,w] = permanent, then {v, w}, if not
already there, has to be added to E and T [v, w] := permanent.

2. If T [u, v] = permanent and T [u,w] = forbidden, then {v, w}, if
already there, has to be deleted from E and T [v, w] := forbidden.

The correctness of Rule 2 is obvious. Regarding the running time, we
analyze the interleaved application of Rules 1 and 2 together.

Lemma 2. A graph can in O(|V |3) time be transformed into a graph which
is reduced with respect to Rules 1 and 2.

Proof. We present an algorithm to reduce a given graph G = (V,E) to a
graph G′ = (V ′, E′) with respect to Rules 1 and 2 in O(|V |3) time. The
algorithm processes Rules 1.1 and 1.2 and, with little additional effort, also
Rules 1.3 and 2.
Data Structures.

7

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

• Adjacency matrix for G.

• Two |V |× (|V | − 1)/2 arrays C and N where, for a vertex pair {vi, vj}
with i < j, C[i, j] (N [i, j]) contains the number of common (non-
common) neighbors of vi and vj .

• Linked lists to store the vertex pairs that are candidates to be in-
serted into the edge set or to be deleted from the edge set. More
precisely, we maintain lists Lc,0, Lc,1, . . . , Lc,k, and Lp where Lc,r with
1 ≤ r ≤ k contains those vertex pairs which have exactly r common
neighbors. List Lp contains those vertex pairs which are scheduled to
be set to permanent due to Rule 1.1 or Rule 2 (for instance, when
they have more than k common neighbors). Similarly, we maintain
lists Ln,0, Ln,1, . . . , Ln,k, and Lf where Ln,s with 1 ≤ s ≤ k contains
those vertex pairs which have s non-common neighbors. List Lf con-
tains those vertex pairs which are scheduled to be set to forbidden due
to Rule 1.2 or Rule 2.

• Two (|V | × (|V | − 1))/2 arrays Pc and Pn. A vertex pair {vi, vj} with
i < j is contained in at most one list from Lc,0, Lc,1, . . . , Lc,k. If {vi, vj}
is contained in one of these lists, then array entry Pc[i, j] contains a
pointer to this list entry. If {vi, vj} is contained in none of these lists,
then Pc[i, j] contains a null pointer. In an analogous way, Pn[i, j]
contains a null pointer or a pointer to an entry of {vi, vj} in one list
of Ln,0, Ln,1, . . . , Ln,k.

Initialization. We assume that the adjacency matrix for G is given. For
every vertex pair vi, vj ∈ V with i < j, we initialize C[i, j] and N [i, j] by
counting their common and non-common neighbors in the adjacency matrix.
Based on these numbers, we add the pair {vi, vj} to the appropriate list. If
vi and vj have r common neighbors for 0 ≤ r ≤ k, then {vi, vj} is added to
Lc,r. If vi and vj have more than k common neighbors, then {vi, vj} is added
to Lp. Analogously, {vi, vj} is added to Ln,s for s non-common neighbors,
0 ≤ s ≤ k, and added to Lf for more than k non-common neighbors. If
a vertex pair is added to one of Lc,0, Lc,1, . . . , Lc,k, then a pointer to that
entry is stored for that vertex pair in Pc[i, j] (analogously in Pn[i, j] if the
vertex pair is added to one of Ln,0, Ln,1, . . . , Ln,k). If now or in the following
algorithm, one vertex pair {vi, vj} satisfies both C[i, j] > k and N [i, j] > k,
then the algorithm terminates, reporting that the instance has no solution
due to Rule 1.3.
Algorithm. In the following, we describe one iteration of the algorithm.
The algorithm terminates when both Lp and Lf are empty. If at least one

8

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

of Lp and Lf is non-empty, the vertex pairs in Lp and Lf are waiting to
be processed. One iteration of the algorithm processes one of these vertex
pairs. In the following, we describe how to process a vertex pair {vi, vj},
i < j, taken from Lp. Processing a vertex pair from Lf will, then, work in
an analogous way, and is omitted here.

For a vertex pair {vi, vj} from Lp, vi and vj are scheduled to be connected
by a permanent edge due to Rule 1 or Rule 2. We make sure that {vi, vj}
is in the edge set and we set T [vi, vj] := permanent. If, thereby, we added a
new edge to the edge set, parameter k has to be decreased by one.

When adding a new edge to the edge set,

(a) we have to update the counters of common and non-common neighbors
(if we change counters, then we also have to update the lists) and

(b) we have to test whether the added edge gives rise to an application of
Rule 2.

Regarding (a), we assume that we add a new edge {vi, vj}. We assume
that k still has its “old” value, i.e., it is not yet decreased by one. To update
the counters and to test whether the lists have to be updated, we consider
every vertex vl with vl 6= vi and vl 6= vj , since only for {vi, vl} and {vj , vl}
the counters of common and non-common neighbors can change. Since we
add a new edge, we have to consider the following situations (without loss
of generality we assume i < j < l):

• Vertex vl is a common neighbor of vi and vj . Then we set N [i, l] :=
N [i, l] − 1, C[i, l] := C[i, l] + 1, N [j, l] := N [j, l] − 1, and C[j, l] :=
C[j, l] + 1.

• Vertex vl is a neighbor of exactly one of vi and vj . Without loss of
generality we assume that vl is a neighbor of vj but not a neighbor of vi.
Then, we set N [i, l] := N [i, l] − 1, C[i, l] := C[i, l] + 1, and N [j, l] :=
N [j, l] + 1.

• Vertex vl is neither a neighbor of vi nor a neighbor of vj . Then, we
set N [i, l] := N [i, l] + 1 and N [j, l] := N [j, l] + 1.

If the value of an entry in C changes, we update lists Lc,r, 1 ≤ r ≤ k, and Lp.
If the value of an entry in N changes, we update lists Ln,s, 1 ≤ s ≤ k, and Lf .
Updating these lists is described using the example of increasing C[i, l]. If
C[i, l] is increased to a value of at most k + 1, and {vi, vl} is contained in
one of the lists Lc,r, 1 ≤ r ≤ k, then {vi, vl} is contained in Lc,C[i,l]−1 (with

9

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

respect to the new value of C[i, l]). We remove {vi, vl} from Lc,C[i,l]−1, using
the pointer stored in Pc[i, l]. If the new value C[i, l] satisfies C[i, l] = k + 1,
we move the entry to the end of list Lp and, otherwise, we move the entry to
the end of list Lc,C[i,l]. When we move {vi, vl} to Lp, we delete the pointer
stored in Pc[i, l] since it is no longer needed.

Having updated the counters and lists in the described way, we append
list Lc,k (still with respect to the old value of k) to the end of list Lp since,
for the vertex pairs in Lc,k and the new value of k, Rule 1.1 applies. In the
same way, we append list Ln,k to the end of list Lf due to Rule 1.2. Then,
we actually decrease parameter k by 1.

Regarding (b), we test whether the permanent edge {vi, vj} gives rise to
an application of Rule 2 as follows. Again, we consider every vertex vl with
vl 6= vi and vl 6= vj and test whether {vi, vl} is permanent but not {vj , vl} or
vice versa. Without loss of generality, we assume that {vi, vl} is permanent
but not {vj , vl}. If not already contained in Lp or Lf , we add the non-
permanent vertex pair {vj , vl} to the list Lp. Both tests, (a) and (b), can,
by making use of the adjacency matrix and the arrays Pc and Pn, be done
in O(|V |) time. This completes the description of the iteration processing
vertex pair {vi, vj}. When {vi, vj} is processed, its corresponding entry is
removed from Lp.

The outlined iteration is repeated until k = 0 or both Lp and Lf are
empty. If parameter k reaches 0 before Lp and Lf are empty, then the given
instance has no solution. If Lp and Lf are empty while k ≥ 0, there is
no remaining vertex pair for which Rule 1 or Rule 2 applies and, thus, the
resulting graph is reduced with respect to Rules 1 and 2.
Running time. The initialization of the lists and arrays, i.e., to count
the number of common and non-common neighbors for every vertex pair
can be done in O(|V |3) time: For every vertex pair {vi, vj}, we consider all
vertices vl with vl 6= vi and vl 6= vj . An entry for {vi, vj} is added to the
appropriate lists in constant time.

One iteration of the algorithm takes at most O(|V |) time, since the list
entries can be accessed and moved in constant time, by using the pointers
stored in arrays Pc and Pn. Beyond that, the iteration involves only a loop
over all vertices in V .

There are less than |V |2 iterations (at most one for every vertex pair)
since, after a vertex pair is processed, it is removed from all lists. Summa-
rizing, the total time to reduce the given graph is O(|V |3).

The following rule completes the set of reduction rules proposed in this
section.

10

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

Rule 3 Delete the connected components which are cliques from the graph.

The correctness of Rule 3 is straightforward. Computing the connected
components of a graph and checking for cliques can easily be done in linear
time:

Lemma 3. Rule 3 can be executed in O(|G|) time.

Notably, for the problem kernel size to be shown, Rules 1 and 3 would be
sufficient. Rule 2 is also taken into account since it is very easy and general
and can be executed in the course of executing Rule 1. Thus, Rules 1
to 3 constitute a small set of general and easy reduction rules which yields a
problem kernel with O(k2) vertices and O(k3) edges and which is computable
in O(|V |3) time. Note that the O(|V |3) running time given here is only a
worst-case bound and it is to be expected that the application of the rules
is much more efficient in practice.
The following theorem shows that reducing a graph with respect to Rules 1
to 3 leads to a problem kernel for Cluster Editing.

Theorem 1. Cluster Editing has a problem kernel which contains at
most 2k2 + k vertices and at most 2k3 + k2 edges. It can be found in
O(|V |3) time.

Proof. Let G = (V,E) be a graph which is reduced with respect to Rules 1
to 3. Without loss of generality, we assume that G is connected. For a
non-connected graph G, we process every connected component separately.
Since Rule 3 deletes all isolated cliques from the given graph, G is not
a clique and we need at least one edge modification to transform, by a
minimum number of edge modifications, G = (V,E) into a graph G′ =
(V,E′), consisting of disjoint cliques. Let k be the minimum number of
required edge modifications, namely ka edge additions and kd edge deletions.
Under the assumption that G is reduced with respect to Rules 1 to 3, we
will show by contradiction that |V | ≤ (2k + 1) · k and that |E| ≤

(2k+1
2

)

· k
as follows.

Assume that |V | > (2k + 1) · k. We distinguish two cases, namely the
case that ka = 0 and the case that 1 ≤ ka ≤ k. In both cases, we show a
contradiction to our assumption that the graph is reduced with respect to
Rule 1.

(Case 1): ka = 0. We have kd edge deletions, 1 ≤ kd = k, to trans-
form G into G′. Let VC ⊂ V denote the vertex set of a largest clique in
G′. The vertices in VC also form a clique in G since ka = 0. Since G is

11

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

connected, at least one vertex u ∈ VC is connected to a vertex v /∈ VC .
We further distinguish two subcases: Either v is not connected to any other
vertex u′ ∈ VC with u′ 6= u or there is a u′ ∈ VC with u′ 6= u and {u′, v} ∈ E.

(Case 1.1): Vertex v is not connected to any other vertex u′ ∈ VC

with u′ 6= u. We can lower-bound the clique size by |VC | ≥ |V |/(kd +1): By
kd edge deletions, G is transformed into a graph G′ containing at most kd+1
cliques and, therefore, a largest clique in G′ contains at least |V |/(kd + 1)
vertices. Firstly, we assume that kd ≥ 2 (∗). Using our further assumptions
that |V | > (2k + 1) · k (∗∗) and kd = k (∗∗∗) we obtain

|VC | ≥
|V |

kd + 1

(∗∗)
>

(2k + 1) · k

kd + 1

(∗∗∗)
=

2k2 + k

k + 1
=

k2 + k

k + 1
+

k2

k + 1

(∗)

≥ k + 1.

Consequently, |VC | ≥ k + 2 and u has at least k + 1 neighbors—all vertices
u′ ∈ VC with u′ 6= u—which are not neighbors of v. This contradicts the
assumption that G is reduced with respect to Rule 1. Secondly, assuming
that kd = k = 1 while |V | > (2k + 1) · k = 3, G′ consists of two cliques;
either both contain at least two vertices or one of them contains at least
three vertices—both times, Rule 1 would apply, a contradiction.

(Case 1.2): There is a u′ ∈ VC with u′ 6= u and {u′, v} ∈ E. We
can lower-bound the clique size by at least |V |/kd: G is transformed into a
graph G′ containing at most kd cliques and, therefore, a largest clique in G′

contains at least |V |/kd vertices. With the assumptions |V | > (2k +1) ·k (∗)

and kd = k (∗∗), we obtain

|VC | ≥
|V |

kd

(∗)
>

(2k + 1) · k

kd

(∗∗)
= 2k + 1.

Consequently, VC contains more than 2k + 1 vertices and at most k many
of them are connected to v. Therefore, u has more than k + 1 neighbors in
this clique which are not neighbors of v, contradicting the assumption that
G is reduced with respect to Rule 1.

(Case 2): 1 ≤ ka ≤ k. We know, since ka +kd = k, that kd < k. Again,
let VC ⊆ V denote the vertex set of a largest clique in G′. Since G′ contains
at most kd +1 cliques, we have |VC | ≥ |V |/(kd +1). With kd < k, this yields
|VC | ≥ |V |/k and, using |V | > (2k + 1) · k, we obtain

|VC | > (2k + 1). (1)

Since the vertices of VC form a clique in G′ and at most k many edges
are added in the transformation from G to G′, in G there are at most k
vertex pairs (vi, vj) with i < j and vi, vj ∈ VC which are not connected by

12

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

an edge. In the following, we show that, under the two assumptions that
|VC | > 2(k + 1) and that |{(vi, vj) | vi, vj ∈ VC , i < j, {vi, vj} /∈ E}| ≤ k, the
graph cannot be reduced with respect to Rule 1. To this end, we consider
the cases that ka = k and that ka < k separately.

(Case 2.1): ka = k. We conclude that VC = V and G′ consists of
only one clique. Since ka = k ≥ 1, there are vi, vj ∈ V with i < j and
{vi, vj} /∈ E. Further, we know that V contains more than 2k + 1 vertices

and, thus, there are more than
(

2k+1
2

)

many vertex pairs. Out of these
vertex pairs, at most k vertex pairs (including {vi, vj}) are not connected
by an edge. By counting arguments, vi and vj have at least k + 1 common
neighbors in G and Rule 1 would apply, in contradiction to our assumption
that G is reduced with respect to Rule 1.

(Case 2.2): ka < k. We can conclude that there are u ∈ VC and v /∈ VC

such that {u, v} ∈ E. Due to inequality (1), there are more than 2k + 1
vertices in VC . On the one hand, there are at least (2k +1)− ka − 1 vertices
u′ ∈ VC with {u′, u} ∈ E. On the other hand, there are at most kd − 1
vertices u′ ∈ VC with {u′, v} ∈ E. Consequently, we have at least

(2k + 1) − (ka + kd) = (2k + 1) − k = k + 1

vertices u′ ∈ VC with {u′, u} ∈ E but {u′, v} /∈ E. This implies that u has at
least k + 1 neighbors in G which are not neighbors of v and Rule 1 applies.
In both cases, for ka = k and for 1 ≤ ka < k, we obtain a contradiction to
the assumption that G is reduced since Rule 1 would apply.

Regarding the edge set of the connected component, we infer a contra-
diction from the assumption that |E| >

(2k+1
2

)

k in an analogous way as for
the vertex set: Again, we let VC be the vertex set of a largest clique in G′

and we distinguish between the cases kd = 0 and kd > 0. If kd = 0, then we
can easily derive that |VC | > 2k+1 and the contradiction follows in analogy
to (Case 2.1) above. If kd > 0, we derive (omitting some details here) that
|VC | ≥ 2k + 1. Then, the contradiction follows in analogy to (Case 2.2)
above.

Summarizing, the reduced graph contains at most 2k2+k vertices and at
most

(

2k+1
2

)

k = 2k3 + k2 edges (otherwise, no solution exists). The running
time follows directly from Lemmas 2 and 3.

4 Search Tree Algorithm for Cluster Editing

In this section, we describe a recursive algorithm for Cluster Editing that
follows the bounded search tree paradigm. The basic idea of the algorithm is

13

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

to identify a “conflict triple” consisting of three vertices and to branch into
subcases to repair this “conflict” by adding or deleting edges between the
three considered vertices. Thus, we invoke recursive calls on instances which
are simplified in the sense that the value of the parameter is decreased by at
least one. Before starting the algorithm and after every such branching step,
we compute the problem kernel as described in Sect. 3. The running time of
the algorithm is, then, mainly determined by the size of the resulting search
tree. In Sect. 4.1, we introduce a straightforward branching strategy that
leads to a search tree of size O(3k); in Sect. 4.2, we show how a more involved
branching strategy leads to a search tree of worst-case size O(2.27k).

Note that the more general result of Leizhen Cai [5] as discussed in the
introductory section also provides an algorithm with exponential factor 3k.
By way of contrast, however, he uses a sort of enumerative approach with
more computational overhead (concerning polynomial-time computations).
In addition, the search tree algorithm in Sect. 4.1 also lies the basis for a
more refined search tree strategy with the improved exponential term 2.27k.
Since our mathematical analysis is purely worst-case, we expect that the
search tree sizes would be usually much smaller in practical settings; this
seems particularly plausible because our search tree strategy as discussed in
Sect. 4.3 also allows numerous heuristic improvements of the running time
and the search tree size without influencing the worst-case mathematical
analysis.

4.1 Basic Branching Strategy

Central for the branching strategy described in this section is the following
lemma observed in [27].

Lemma 4. A graph G = (V,E) consists of disjoint cliques iff there are no
three vertices u, v, w ∈ V with {u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E.

Lemma 4 implies that, if a given graph does not consist of disjoint cliques,
then we can find a conflict triple of vertices between which we either have
to insert or to delete an edge in order to transform the graph into disjoint
cliques. In the following, we describe the recursive procedure that results
from this observation. Inputs are a graph G = (V,E) and a nonnega-
tive integer k, and the procedure reports, as its output, whether G can be
transformed into a union of disjoint cliques by deleting and adding at most
k edges.

• If the graph G is already a union of disjoint cliques, then we are done:
Report the solution and return.

14

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

• Otherwise, if k ≤ 0, then we cannot find a solution in this branch of
the search tree: Return.

• Otherwise, identify u, v, w ∈ V with {u, v} ∈ E, {u,w} ∈ E, but
{v, w} /∈ E (they exist with Lemma 4). Recursively call the branching
procedure on the following three instances consisting of graphs G′ =
(V,E′) with nonnegative integer k′ as specified below:

(B1) E′ := E − {u, v} and k′ := k − 1. Set T [u, v] := forbidden.

(B2) E′ := E − {u,w} and k′ := k − 1. Set T [u, v] := permanent,
T [u,w] := forbidden, and T [v, w] := forbidden.

(B3) E′ := E + {v, w} and k′ := k − 1. Set T [u, v] := permanent,
T [u,w] := permanent, and T [v, w] := permanent.

Proposition 1. Cluster Editing can be solved in O(3k · k2 + |V |3) time.

Proof. The recursive procedure suggested above is obviously correct. Con-
cerning the running time, we observe the following. The preprocessing in
the beginning to obtain the reduction to a problem kernel can be done in
O(|V |3) time (Theorem 1). After that, we employ the search tree with size
clearly bounded by O(3k). Hence, it remains to justify the factor k2 which
stands for the computational overhead related to every search tree node.
Firstly, note that in a further preprocessing step, we can once set up a
linked list of all conflict triples. This is clearly covered by the O(|V |3) term.
Secondly, within every search tree node (except for the root) we deleted or
added one edge and, thus, we have to update the conflict list accordingly.
Due to Theorem 1, we only have O(k2) graph vertices now and with little
effort, one verifies that the addition or deletion of an edge can make at most
O(k2) new conflict triples appear and it can make at most O(k2) conflict
triples disappear. Using a doubly-linked list of all conflict triples, one can
update the list, after adding or deleting an edge of the graph, in O(k2) time:
after adding or deleting edge {vi, vj}, vi, vj ∈ V , we iterate over all O(k2)
many vertices vl ∈ V , vl 6= vi and vl 6= vj . Only the status of the vertex
triples {vi, vj , vl} can be changed by this modification, either by causing a
new conflict (then, the triple has to be added to the conflict list) or by be-
ing a conflict solved by the modification (then, the triple has to be deleted
from the conflict list). This update for one vertex triple can be done in
constant time, by employing a hash table or by using a size-|V |3 array to
store, for every vertex triple, pointers to possible entries in the conflict list.
Summarizing, the conflict list can be updated in O(|V |) = O(k2) time.

15

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

In fact, it “does not really matter” what the polynomial factor in k is, as
the interleaving technique of [25] can be applied improving Proposition 1:

Corollary 1. Cluster Editing can be solved in O(3k + |V |3) time.

Proof. In [25], it was shown that, in case of a polynomial size problem kernel,
by doing the “kernelization” repeatedly during the course of the search tree
algorithm whenever possible, the polynomial factor in parameter k can be
replaced by a constant factor.

4.2 Refining the Branching Strategy

The branching strategy from Sect. 4.1 can be easily improved as described
in the following. We still identify a conflict triple of vertices, i.e., u, v, w ∈ V
with {u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E. Based on a case distinction,
we provide for every possible situation additional branching steps. The
amortized analysis of the successive branching steps, then, yields the better
worst-case bound on the running time. We start with distinguishing three
main situations that may apply when considering the conflict triple:

(C1) Vertices v and w do not share a common neighbor, i.e. @x ∈ V, x 6=
u : {v, x} ∈ E and {w, x} ∈ E.

(C2) Vertices v and w have a common neighbor x 6= u and {u, x} ∈ E.

(C3) Vertices v and w have a common neighbor x 6= u and {u, x} /∈ E.

Regarding case (C1), we show in the following lemma that, here, a
branching into two cases (B1) and (B2) as described in Sect. 4.1 suffices.

Lemma 5. Given a graph G = (V,E), a nonnegative integer k and u, v, w ∈
V with {u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E. If v and w do not share a
common neighbor besides u, then branching case (B3) cannot yield a better
solution than both cases (B1) and (B2), and can therefore be omitted.

Proof. Consider a clustering solution G′ for G where we did add {v, w}
(see Fig. 1). We use NG∩G′(v) to denote the set of vertices which are
neighbors of v in G and in G′. Without loss of generality, assume that
|NG∩G′(w)| ≤ |NG∩G′(v)|. We then construct a new graph G′′ from G′ by
deleting all edges adjacent to w. It is clear that G′′ is also a clustering solu-
tion for G. We compare the cost of the transformation G → G′′ to that of
the transformation G → G′:

16

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

PSfrag replacements

u u

v vw w
x
m

NG∩G′(v) NG∩G′(w)

G G′

Figure 1: In case (C1), adding edge {v, w} does not need to be considered.
Here, G is the given graph and G′ is a clustering solution of G by adding
edge {v, w}. The dashed lines denote the edges being deleted to transform G
into G′, and the bold lines denote the edges being added. Observe that the
drawing only shows that parts of the graphs (in particular, edges) which are
relevant for our argumentation

• −1 for not adding {v, w},

• +1 for deleting {u,w},

• −|NG∩G′(v)| for not adding all edges {w, x}, x ∈ NG∩G′(v),

• +|NG∩G′(w)| for deleting all edges {w, x}, x ∈ NG∩G′(w).

Herein, we omitted possible vertices which are neighbors of w in G′ but not
neighbors of w in G because they would only increase the cost of transfor-
mation G → G′.

In summary, the cost of G → G′′ is not higher than the cost of G → G′,
i.e., we do not need more edge additions and deletions to obtain G′′ from G
than to obtain G′ from G.

Lemma 5 shows that in case (C1) a branching into two cases is sufficient,
namely to recursively consider graphs G1 = (V,E−{u, v}) and G2 = (V,E−
{u,w}), each time decreasing the parameter value by one.

For case (C2), we change the order of the basic branching. In the first
branch, we add edge {v, w}. In the second and third branches, we delete
edges {u, v} and {u,w}, as illustrated by Fig. 2.

• Add {v, w} as labeled by 2© in Fig. 2. The cost of this branch is 1.

17

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

PSfrag replacements

u u u

u

u

uu

u

v v v

v

v

vv

v

w w w

w

w

ww

w

x x

x

x

x

x

x

x

−1

−2−2 −3 −3

1©

2© 3© 4©

5© 6© 7© 8©

9©

Figure 2: Branching for case (C2). Bold lines denote permanent, dashed
lines forbidden edges

• Mark {v, w} as forbidden and delete {u, v}, as labeled by 3©. This
creates the new conflict triple u, v, x. To resolve this conflict, we make
a second branching. Since adding {u, v} is forbidden, there are only
two branches to consider:

– Delete {v, x}, as labeled by 5©. The cost is 2.

– Mark {v, x} as permanent and delete {u, x}. With reduction
rule 2 from Sect. 3, we then delete {w, x}, too, as labeled by 6©.
The cost is 3.

• Mark {v, w} as forbidden and delete {u,w} (4©). This case is sym-
metric to the previous one, so we have two branches with costs 2 and
3, respectively.

In summary, the branching vector for case (C2) is (1, 2, 3, 2, 3).
For case (C3), we perform a branching as illustrated by Fig. 3:

• Delete {u, v}, as labeled by 2©. The cost of this branch is 1.

• Mark {u, v} as permanent and delete {u,w}, as labeled by 3©. With
Rule 2, we can additionally mark {v, w} as forbidden. We then identify
a new conflict triple u, v, x. Not being allowed to delete {u, v}, we can
make a 2-branching to resolve the conflict:

18

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005PSfrag replacements

u u u

u

u

uu

u

v v v

v

v

vv

v

w w w

w

w

ww

w

x xx

x

x

xx

x

−1

−2−2 −3 −3

1©

2© 3© 4©

5© 6© 7© 8©

Figure 3: Branching for case (C3)

– Delete {v, x}, as labeled by 5©. The cost is 2.

– Mark {v, x} as permanent. This implies {u, x} needs to be added
and {w, x} to be deleted due to reduction rule 2, as labeled by 6©.
The cost is 3.

• Mark {u, v} and {u,w} as permanent and add {v, w}, as labeled by 4©.
Vertices u, w, and x form a conflict triple. To solve this conflict without
deleting {u,w}, we make a 2-branching:

– Delete {w, x} as labeled by 7©. We then also need to delete {v, x}.
The cost is 3. Additionally, we can mark {u, x} as forbidden.

– Add {u, x}, as labeled by 8©. The cost is 2. Additionally, we can
mark {u, x} and {v, x} as permanent.

It follows that the branching vector for case (C3) is (1, 2, 3, 3, 2).
In summary, this leads to a refinement of the branching with a worst-case

branching vector of (1, 2, 2, 3, 3), yielding branching number 2.27. Since the
recursive algorithm stops whenever the parameter value has reached 0 or
below, we obtain a search tree size of O(2.27k). This results in the following
theorem.

Theorem 2. Cluster Editing can be solved in O(2.27k + |V |3) time.

19

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

4.3 Heuristic Improvements

The following rules do not affect the worst-case time complexity since there is
no guarantee that any of them ever applies; however, they might be useful
for a practical implementation, since they are fairly cheap and can help
reduce the size of the search tree substantially if they do apply.

4.3.1 Branching Rules

• If {u, v} ∈ E and u and v do not have a common neighbor, branch into
two cases: either delete {u, v}, or delete all edges adjacent to u and v
except {u, v}, leaving {u, v} as a 2-clique. With an argument similar
to that used in Lemma 5, it is easy to see that an optimal solution
can be found in one of the two described subcases. This branching
is usually noticeably better than that of Theorem 2 (case (C1)); e.g.,
with u and v both being degree 3 vertices, the branching corresponds
to the branching vector (1, 4) and the branching number 1.39.

4.3.2 Reduction Rules

In some cases, no branching is needed, and an instance G with parameter k
can be directly replaced with a simplified instance G′ with parameter k′.
The correctness of the following rules can be easily seen with the above
branching rules and symmetry arguments.

Let u, v, w, x, y be distinct vertices.

• If deg(u) = deg(v) = 1 and N(u) = N(v) = {w}, then delete {u,w}
and set k′ := k − 1.

• If deg(u) = 1,deg(v) = 2, N(u) = {v} and N(v) = {u,w}, then
delete {v, w} and set k′ := k − 1.

• If deg(u) = 2,deg(v) = deg(w) = 3 and N(u) = {v, w}, N(v) =
{u,w, x}, N(w) = {u, v, y}, then delete {v, x} and {w, y} and set k′ :=
k − 2.

Presumably, these rules can be further generalized, e.g. to handle cliques
with few connections to outside vertices.

4.3.3 Bail-Out Rules

Some branches in the search tree need not be followed, since either they
cannot lead to a solution, or because it is known that for any solution they

20

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

might lead to, we find another solution which is at least as good in another
branch.

• Let G0 be the original input graph and let G be the graph in the cur-
rent state of the algorithm. If G contains a vertex v with degG(v) ≥
2 degG0

(v) then the current branch of the search tree can be omit-
ted, since we can be certain to find an optimal solution in another
branch of the search tree. This rule is correct as can be seen as fol-
lows: for any possible clustering solution G′ of G, we can construct
another clustering solution G′′ by removing all edges adjacent to v
in G′. Clearly, the cost of transforming G0 to G′′ is not higher than
the cost of transforming G0 to G′.

5 Cluster Deletion

From the basic 3-branching algorithm for Cluster Editing in Sect. 4.1,
it is straightforward to get an O(2k + |V |3) time algorithm for Cluster

Deletion as follows. Given a conflict triple consisting of vertices u, v, w ∈ V
with {u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E, the insertion of an edge is
not allowed here and, thus, we only need to make a branching into two
cases: Either delete edge {u, v} or delete edge {u,w}. In the remainder of
this section, we show how the branching number can be improved from 2
to 1.77.

As in Sect. 4.2, we start with identifying u, v, w ∈ V with {u, v} ∈ E,
{u,w} ∈ E, but {v, w} /∈ E, and distinguish the following three cases:

(C1) Vertices v and w do not share any common neighbor besides u, i. e.,
@x ∈ V, x 6= u : {v, x} ∈ E and {w, x} ∈ E.

(C2) Vertices v and w have a common neighbor x 6= u and {u, x} /∈ E.

(C3) Vertices v and w have a common neighbor x 6= u and {u, x} ∈ E.

Regarding case (C1), we distinguish three subcases:

(C1.1) Vertices v and w have no other neighbors besides u:
It is easy to observe that we do not need to make any branching, it
suffices to delete one arbitrary edge from {u, v} and {u,w} to resolve
this conflict without branching.

(C1.2) Vertices v or w have a neighbor x 6= u with {u, x} /∈ E. We as-
sume that vertex v has such a neighbor, i. e., {v, x} ∈ E, {w, x} /∈ E,
and {u, x} /∈ E. We make a branching into two cases:

21

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

• Delete edge {u, v}. The cost of this branch is 1.

• Mark edge {u, v} as permanent and delete {u,w}. Since {u, v}
is permanent and there is no edge between u and x, edge {v, x}
has to be deleted as well. Thus, the cost of this branch is 2.

(C1.3) All neighbors of vertices v and w are also neighbors of u. Let x
be such a neighbor and assume that {v, x} ∈ E, {w, x} /∈ E, and
{u, x} ∈ E. We make a branching into two cases:

• Delete {u,w}. The cost of this branch is 1.

• Mark {u,w} as permanent and delete {u, v}. Since edge {u,w}
is permanent and there is no edge between w and x, edge {u, x}
has to be deleted as well. The cost of this branch is 2.

Summarizing the three subcases, we have for case (C1) a worst-case branch-
ing vector of (1, 2).

For case (C2), we apply the following branching:

• Delete {u, v}. The cost of this branch is 1.

• Mark {u, v} as permanent and delete {u,w}. We then identify a new
conflict triple v, u, x. Since edge {u, v} is permanent, we can only
resolve this conflict by deleting {v, x}. The cost of this branch is 2.

Consequently, the branching vector for case (C2) is (1, 2).
For case (C3), we apply the following branching, illustrated in Fig. 4.

• Delete {u, v} (see 2© in Fig. 4). This creates a new conflict triple x, u, v.
To resolve this conflict, we make a 2-branching:

– Delete {v, x} (3©). The cost of this branch is 2.

– Mark {v, x} as permanent and delete {u, x} (4©). However, this
implies that {w, x} needs to be deleted. The cost is 3.

• Delete {u,w} (5©). This creates a new conflict triple x, u,w. To resolve
this conflict, we make a 2-branching:

– Delete {w, x} (6©). The cost of this branch is 2.

– Mark {w, x} as permanent (7©). However, this implies that {u, x}
and also {v, x} have to be deleted. The cost is 3.

22

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005PSfrag replacements

u

u

uu

uu

u

u

v

v

vv

vv

v

v

w

w

ww

ww

w

w

xxx

xxx

x

x

−2−2 −3−3

1©

2©2©

3© 4©

5©

6© 7©

8©
9©

Figure 4: Branching for case (C3) of the search tree algorithm for Cluster

Deletion. Bold lines denote permanent, dashed lines forbidden edges

It follows that the branching vector for case (C3) is (2, 3, 2, 3).
In summary, the worst case is case (C3), where the branching vector

is (2, 3, 2, 3) which corresponds to branching number 1.77. In analogy to
Theorem 2, we obtain the following theorem:

Theorem 3. Cluster Deletion can be solved in O(1.77k + |V |3) time.

6 Conclusion

Adopting a parameterized point of view [2, 9, 10, 12, 13], we have shed new
light on the algorithmic tractability of the NP-complete problems Cluster

Editing and Cluster Deletion. We developed efficient fixed-parameter
algorithms in both cases and the algorithms seem easy enough in order to
allow for efficient implementations.

We feel that the whole field of data clustering problems might benefit
from more studies on the parameterized complexity of the many problems
related to this field. There appear to be numerous parameters (e.g., number
of clusters, number of “data cleaning operations”, dimensionality of the data
space) that make sense in this context.

23

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

Ongoing and future work. In ongoing work, we try to provide efficient
implementations of our algorithms. It has to be investigated which of the
reduction and branching rules are of real practical importance and which
of them (although necessary for the theoretical worst-case analysis) only
increase the administrative overhead instead of really speeding up the al-
gorithms. Furthermore, it might be interesting to investigate how standard
heuristic techniques such as branch-and-bound or A∗ from artificial intelli-
gence can be used in our approach to obtain further speed-ups in practice.
We plan to experiment with real-world clustering data and to incorporate
additional features (such as edge and/or vertex weights) in order to deal
with more realistic settings.

In recent work, we started to provide a general framework for computer-
generated search trees for graph modification problems [14, 16]. Using the
sheer computing power of machines and obtaining a large number of case
distinctions, we achieved at least theoretical improvements over the search
tree sizes given in this paper. More precisely, the improved search tree
bounds achieved are O(1.92k) for Cluster Editing and O(1.53k) for Clus-

ter Deletion. To what extent these lowered worst-case bounds also have
practical significance remains an issue of future research. Note that the
computer-generated search trees have a significantly increased number of
branching cases which causes increased overhead in the implementation etc.

Theoretical challenges. Shamir et al. [27] showed that so-called p-Cluster

Editing is NP-complete for p ≥ 2 and p-Cluster Deletion is NP-
complete for p ≥ 3. Herein, p denotes the number of cliques that should
be generated by as few edge modifications as possible. Hence, there is no
hope for fixed-parameter tractability with respect to parameter p, because
fixed-parameter tractability with respect to parameter p would thus im-
ply P = NP. Moreover, Shamir et al. consider the p-Cluster Com-

pletion problem (where only edge additions are allowed)3 and claim an
algorithm running in O(np) time.4 Further parameterized complexity in-
vestigations concerning the parameter p in graph clustering problems seem
appropriate.

We conclude with two concrete open questions concerning data reduction
by preprocessing, i.e., problem kernelization:

3Observe that general Cluster Completion (without bound p on the number of clus-
ters) is trivially polynomial-time solvable by simply determining all connected components
of the graphs and transforming them into cliques.

4The algorithm described by them seems to have O(pn) running time but the O(np)
running time can be shown by additional arguments.

24

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

1. Is there a significantly better reduction to a problem kernel for Clus-

ter Deletion than we have for Cluster Editing? Note that in
Sect. 5 for Cluster Deletion we implicitly made use of the prob-
lem kernelization as given for Cluster Editing in Sect. 3.

2. Do Cluster Editing and Cluster Deletion even allow for prob-
lem kernels of linear size O(k)? For Vertex Cover on general
graphs [7] and Dominating Set on planar graphs [1] such results
are known, but it seems hard to derive similar results in our setting.

Acknowledgment. We thank Jochen Alber (Tübingen) and Elena Prieto-
Rodriguez (Newcastle, Australia) for inspiring discussions and two anony-
mous referees of Theory of Computing Systems for comments that helped
improving the presentation.

References

[1] J. Alber, M. R. Fellows, and R. Niedermeier. Efficient data reduction
for Dominating Set: a linear problem kernel for the planar case. In
Proc. of 8th SWAT , volume 2368 of LNCS, pages 150-159. Springer,
2002. Long version to appear under the title “Polynomial-Time Data
Reduction for Dominating Set” in Journal of the ACM.

[2] J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for
hard problems: a parameterized point of view. Discrete Mathematics,
229:3–27, 2001.

[3] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proc. of
43rd IEEE FOCS , pages 238-247, 2002.

[4] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression
patterns. Journal of Computational Biology, 6(3/4):281–297, 1999.

[5] Leizhen Cai. Fixed-parameter tractability of graph modification prob-
lems for hereditary properties. Information Processing Letters, 58:171–
176, 1996.

[6] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative
information. In Proc. of 44th IEEE FOCS, pages 524–533, 2003.

[7] J. Chen, I. Kanj, and W. Jia. Vertex Cover: further observations and
further improvements. Journal of Algorithms, 41:280–301, 2001.

25

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

[8] E. D. Demaine and N. Immorlica. Correlation clustering with partial
information. In Proc. of 6th APPROX, volume 2764 of LNCS. Springer,
2003.

[9] R. G. Downey. Parameterized complexity for the skeptic (invited pa-
per). In Proc. of 18th IEEE Conference on Computational Complexity,
pages 147–169, 2003.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[11] D. Emanuel and A. Fiat. Correlation clustering – minimizing disagree-
ments on arbitrary weighted graphs. In Proc. of 11th ESA, volume 2832
of LNCS, pages 208–220. Springer, 2003.

[12] M. R. Fellows. Parameterized complexity: the main ideas and connec-
tions to practical computing. In Experimental Algorithmics, volume
2547 of LNCS, pages 51–77. Springer, 2002.

[13] M. R. Fellows. New directions and new challenges in algorithm design
and complexity, parameterized (invited paper). In Proc. of 8th WADS,
volume 2748 of LNCS, pages 505–519. Springer, 2003.

[14] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated gen-
eration of search tree algorithms for graph modification problems. In
Proc. of 11th ESA, volume 2832 of LNCS, pages 642–653. Springer,
2003.

[15] P. Hansen and B. Jaumard. Cluster analysis and mathematical pro-
gramming. Mathematical Programming, 79:191–215, 1997.

[16] F. Hüffner. Graph Modification Problems and Automated Search
Tree Generation. Diploma Thesis, WSI für Informatik, Universität
Tübingen, October 2003.

[17] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, 1988.

[18] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized
completion problems on chordal, strongly chordal, and proper interval
graphs. SIAM Journal on Computing, 28(5):1906–1922, 1999.

[19] S. Khot and V. Raman. Parameterized complexity of finding subgraphs
with hereditary properties. Theoretical Computer Science, 289:997–
1008, 2002.

26

Theory of Computing Systems, Vol. 38(4), pp. 373-392, 2005

[20] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree
clustering. Acta Informatica, 23(3):311–323, 1986.

[21] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, 223(1-2):1–72, 1999.

[22] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Journal of Algorithms, 31:335–354, 1999.

[23] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification
of some edge modification problems. Discrete Applied Mathematics,
113:109–128, 2001.

[24] R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover
further improved. In Proc. of 16th STACS, volume 1563 of LNCS,
pages 561–570. Springer, 1999.

[25] R. Niedermeier and P. Rossmanith. A general method to speed up
fixed-parameter-tractable algorithms. Information Processing Letters,
73:125–129, 2000.

[26] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algo-
rithms for Weighted Vertex Cover. Journal of Algorithms, 47(2):63–77,
2003.

[27] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification prob-
lems. In Proc. of 28th WG, volume 2573 of LNCS, pages 379–390.
Springer, 2002.

[28] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applica-
tions to gene expression analysis. In Proc. of 8th ISMB, pages 307–316.
AAAI Press, 2000.

[29] R. Sharan and R. Shamir. Algorithmic approaches to clustering gene
expression data. In T. Jiang et al. (eds): Current Topics in Computa-
tional Molecular Biology , pages 269–300. The MIT Press, 2002.

27

