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Abstract

The NP-complete Closest 4-Leaf Power problem asks, given an undirected graph,

whether it can be modified by at most ` edge insertions or deletions such that it becomes

a 4-leaf power. Herein, a 4-leaf power is a graph that can be constructed by considering

an unrooted tree—the 4-leaf root—with leaves one-to-one labeled by the graph vertices,

where we connect two graph vertices by an edge iff their corresponding leaves are at

distance at most 4 in the tree. Complementing and “completing” previous work on

Closest 2-Leaf Power and Closest 3-Leaf Power, we show that Closest 4-Leaf
Power is fixed-parameter tractable with respect to parameter `. This gives one of the first

and so far deepest positive algorithmic results in the field of “approximate graph power

recognition”—note that for 5-leaf powers even the complexity of the exact recognition

problem is open.

1 Introduction

Graph powers form a classical concept in graph theory, and the rich literature dates back to
the sixties of the previous century (see [2, Sect. 10.6] and [15] for surveys). The k-power of an
undirected graph G = (V, E) is the undirected graph Gk = (V, E′) with (u, v) ∈ E′ iff there
is a path of length at most k between u and v in G. We say G is the k-root of Gk. It is
NP-complete to decide whether a given graph is a k-power or not [18]. By way of contrast,
one can decide in O(|V |3) time whether a graph is a k-power of a tree for any fixed k [12]. In
particular, it can be decided in linear time whether a graph is a square of a tree [17, 14].

In this paper we concentrate on certain practically motivated variants of tree powers.
Whereas Kearney and Corneil [12] study the problem where every tree node one-to-one cor-
responds to a graph vertex, Nishimura, Ragde, and Thilikos [21] introduce the notion of leaf
powers where exclusively the tree leaves stand in one-to-one correspondence to the graph ver-
tices. In addition, Lin, Kearney, and Jiang [16], Chen, Jiang, and Lin [4], and Chen and
Tsukiji [5] examine the variant of leaf powers where all inner nodes of the root tree have
degree at least three. Both problems find applications in computational evolutionary biol-
ogy [21, 16, 4]. The corresponding recognition problems are called k-Leaf Power [21] and
k-Phylogenetic Root [16], respectively.1 For k ≤ 4, both problems are solvable in polyno-
mial time [21, 16]. The complexities of both recognition problems for k ≥ 5 are still open.

Several groups of researchers [4, 12, 16] strongly advocate the consideration of a more re-
laxed or “approximate” version of the graph power recognition problem: Now, look for roots
whose powers are close to the input graphs, thus turning the focus of study to the correspond-
ing graph modification problems. Kearney and Corneil [12] were the first to formulate this
problem setting when introducing the Closest k-Tree Power problem. In this “error cor-
rection setting” the question is whether a given graph can be modified by adding or deleting
at most ` edges such that the resulting graph has a k-tree root. This problem turns out to be
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1 Both problems k-Leaf Power and k-Phylogenetic Root ask if a given graph is a leaf power resp. a
phylogenetic power. We find it more natural to use the term power instead of the term root here, although we
used the term root in our previous considerations concerning the case k = 3 [6].
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NP-complete for k ≥ 2 [12, 11, 7]. One also obtains NP-completeness for the corresponding
problems Closest k-Leaf Power [13, 6] and Closest k-Phylogenetic Root [4, 24].

All nontrivial (k ≥ 2) “approximate recognition” problems in our context turn out to
be NP-complete [1, 4, 6, 7, 11, 12, 13, 23, 24]. Hence, the pressing quest is to also show
positive algorithmic tractability results such as polynomial-time approximation or non-trivial
(exponential-time) exact algorithms. So far, only the most simple version of Closest Leaf
Power, k = 2, has been algorithmically attacked with somewhat satisfactory success. In
this context recently intricate polynomial-time constant-factor approximation algorithms have
been developed [1, 3].2 Moreover, it is fairly easy to show that the problem is fixed-parameter
tractable with respect to the parameter ` denoting the number of allowed edge modifica-
tions [10]. At least with respect to this fixed-parameter tractability result, the success is
surely due to the fact that there is a very simple characterization by a forbidden subgraph: a
graph is a 2-leaf power iff it contains no induced 3-vertex subgraph forming a path. Observe
that, in this way, also the recognition problem for 2-leaf powers is solvable in linear time by
just checking whether the given graph is a disjoint union of cliques. By way of contrast, the
recognition problem for 3-leaf and 4-leaf powers is much harder and only intricate cubic-time
algorithms are known [21]. At first sight, this lowers the hope for obtaining positive algorith-
mic results for Closest k-Leaf Power for k = 3, 4. The key idea we put forward here and in
a companion paper [6] is to again develop and to employ forbidden subgraph characterizations
of the respective graph classes. Unlike for 2-leaf powers, these characterizations are not so
obvious. In [6], we describe a forbidden subgraph characterization for 3-leaf powers, consisting
of five graphs of small size. Here, we present a forbidden subgraph characterization for 4-leaf
powers—it already requires numerous forbidden subgraphs.

Let us discuss the algorithmic use of these forbidden subgraph characterizations. First,
both characterizations immediately imply polynomial-time recognition algorithms for 3- and
4-leaf powers which are conceptually simpler than those in [21]. However, they are of purely
theoretical interest because the running times of these straightforward algorithms are much
worse than that of the known cubic-time algorithms from [21]. More important, the charac-
terizations open up the way to the first tractability results for the harder problems Closest
k-Leaf Power for k = 3, 4. Using the forbidden subgraphs for 3-leaf powers, in [6] we show
that Closest 3-Leaf Power is fixed-parameter tractable with respect to the parameter
“number ` of edge modifications.” Due to the significantly increased combinatorial complex-
ity of 4-leaf powers (with numerous forbidden subgraphs instead of only a handful), analogous
results for Closest 4-Leaf Power remained open in [6]. We close this gap here. We show
that Closest 4-Leaf Power can be solved in polynomial time for ` = O(log n/ log log n);
that is, it is fixed-parameter tractable with respect to parameter `. Moreover, the variants
of Closest 4-Leaf Power where only edge insertions or only edge deletions are allowed
are fixed-parameter tractable as well. On the way to our result, we develop a “compressed
form” of a forbidden subgraph characterization of 4-leaf powers that has been developed—
independently and by different means—by Rautenbach [22]. Since we aim at algorithmic
tractability results for Closest 4-Leaf Power, we employ a “more constructive” approach.

Due to the lack of space, we omit almost all proofs.

2 Preliminaries

We consider only undirected graphs G = (V, E) with n := |V | and m := |E|. Edges are
denoted as tuples (u, v). For a graph G = (V, E) and u, v ∈ V , let dG(u, v) denote the length
of the shortest path between u and v in G. With E(G), we denote the edge set E of a
graph G = (V, E). We call a graph G′ = (V ′, E′) an induced subgraph of G = (V, E) and
denote G′ with G[V ′] if V ′ ⊆ V and E′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E}. For a non-empty
collection of graphs G, a graph is said to be G-free if it does not contain any graph in G as

2 Note that in the various papers (partially not referring to each other) Closest 2-Leaf Power appears
under various names such as Cluster Editing [23] and Correlation Clustering [1, 3].
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induced subgraph. A cycle with n vertices is denoted as Cn. An edge between two vertices of
a cycle that is not part of the cycle is called chord. An induced cycle of length at least four is
called hole. A chordal graph then is a hole-free graph. For two sets A and B, A M B denotes
the symmetric difference (A \B) ∪ (B \A).

Definition 1 ([21]). Consider an unrooted tree T with leaves one-to-one labeled by the
elements of a set V . The k-leaf power of T is a graph, denoted T k, with T k := (V, E), where
E := {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.

The leaf power version k-Leaf Power (LPk) of the graph power problem is: given a
graph G, is there a tree T such that T k = G?

One may view the leaf power concept as a “Steiner extension” of the standard notion of
tree powers [4, 16]. The more general, approximate version of LPk we focus on in this work,
called Closest k-Leaf Power (CLPk), then reads as follows. Consider a graph G = (V, E)
and a nonnegative integer `, is there a tree T such that T k and G differ by at most ` edges,
that is, |E(T k) M E(G)| ≤ `? CLPk is NP-complete for k ≥ 2 [13, 6].

In this paper we also study two variations of CLPk referring to only one-sided errors:
CLPk Edge Insertion only allows insertion of edges and CLPk Edge Deletion only
allows deletion of edges. CLPk Edge Deletion is NP-complete for k ≥ 2 [19, 6], and CLPk
Edge Insertion is NP-complete for k ≥ 3 but polynomial-time solvable for k = 2 [6].

A central technical tool within this work are critical cliques and critical clique graphs as
Lin et al. [16] introduce them:

Definition 2. A critical clique of a graph G is a clique K where the vertices of K all have
the same set of neighbors in G \ K, and K is maximal under this property. Consider a
graph G = (V, E). Let C be the collection of its critical cliques. Then the critical clique
graph CC(G) is a graph (C, EC) with

(Ki, Kj) ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : (u, v) ∈ E.

That is, the critical clique graph has the critical cliques as nodes, and two nodes are connected
iff the corresponding critical cliques together form a larger clique.

Eventually, for technical reasons we also need the concept of a k-Steiner root.

Definition 3. Consider a graph G = (V, E). An unrooted tree T = (A ∪̇ V, E′) is called a
k-Steiner root of G if E = {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.

Note that if A = ∅, then a k-Steiner root simply is a k-tree root. Similarly, if A is the set
of inner nodes of T , then a k-Steiner root is the same as a k-leaf root. This means that the
set of graphs that have k-Steiner roots is a superset of the set of graphs that have k-tree roots
or k-leaf roots. The following lemma is easy to show (a similar statement was already made
by Lin et al. [16]).

Lemma 1. A graph G has a k-leaf root iff CC(G) has a (k − 2)-Steiner root.

We show that CLP4 and both its edge insertion and edge deletion variant are fixed-
parameter tractable (FPT) with respect to parameter `. That is, we show that CLP4 can
be solved in f(`) · nO(1) time, where f is a computable function only depending on `, and n
denotes the number of vertices of the input graph. Two recent surveys on fixed-parameter
tractability can be found in [9, 20].

3 Forbidden Subgraph Characterization of 4-Leaf Powers

In this section we give a characterization of 4-leaf powers using a set of eight forbidden induced
subgraphs for critical clique graphs of 4-leaf powers. This set can be extended to a larger
set of forbidden subgraphs for the 4-leaf powers themselves by a simple iterative algorithm.
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F1 F2 F3 F4 F5 F6 F7 F8

Figure 1: The “compressed” set of forbidden induced subgraphs: All forbidden subgraphs can
be derived from these eight graphs.

Independently and by different proof techniques, Rautenbach [22] achieves the same results.
Our approach, however, is tailored towards the algorithmic treatment following in the next
section. The eight forbidden subgraphs for critical clique graphs of 4-leaf powers are shown in
Fig. 1. Let F := {F1, F2, . . . , F8} as given there.

The main result of this section is as follows:

Theorem 1. A graph G has a 4-leaf root iff G is chordal and its critical clique graph CC(G)
is F-free.

The forbidden subgraph characterization of Theorem 1 refers to critical clique graphs.
However, it directly implies a somewhat more extensive forbidden subgraph characterization
for the original graphs.

Corollary 1. All graphs that are 4-leaf powers are chordal and can be characterized by a finite
set of forbidden subgraphs.

It is relatively easy to see that graphs having a 4-leaf root must be chordal, and that a
critical clique graph CC(G) containing a graph in F (Fig. 1) as an induced subgraph has no
2-Steiner root (and, according to Lemma 1, the graph G has no 4-leaf root). The reverse
direction of Theorem 1 is technically far more difficult. We show constructively that every
F -free and chordal critical clique graph has indeed a 2-Steiner root by using Algorithm SRG
(Fig. 2). This algorithm extends the method by Lin et. al. [16] for constructing 2-Steiner
roots: While their algorithm only computes an output graph if the input graph has a 2-
Steiner root and says “no” otherwise, our Algorithm SRG also generates an output graph
with some guaranteed properties in case of inputs that are (F , C4, C5)-free but nonchordal
graphs. This will be of use for our fixed-parameter algorithms in Sect. 4.

For a given critical clique graph CC(G) = (C, EC), Algorithm SRG constructs a pseudo
Steiner root graph S = (V ′, E′) with V ′ := A ∪̇ B, where B := {bc | c ∈ C}. The nodes
in A and B are called Steiner and non-Steiner nodes, respectively. Each non-Steiner node
one-to-one corresponds to a node in CC(G), whereas Steiner nodes do not have to correspond
to nodes in CC(G). If CC(G) is F -free and chordal, the graph S is a 2-Steiner root of CC(G).
(The term “pseudo Steiner root graph” expresses that if the input graph is (F , C4, C5)-free
but nonchordal, the output S has some, but not all properties of a 2-Steiner root.)

The idea of the algorithm is to consider every maximal clique of the input graph CC(G)
and to connect the corresponding nodes in the output graph to form a star. More specifically,
if a maximal clique K in CC(G) has an edge e in common with another maximal clique,
one of the two endpoints of e is selected and the corresponding node in the output graph is
connected by edges with the other nodes corresponding to K. If otherwise K has no edge in
common with another maximal clique, a Steiner node sK is inserted into the output graph,
and every node corresponding to a node of K is connected by an edge with sK (see Fig. 3 for
an example).

We can show that Algorithm SRG fulfills the following five claims, which implies that
the constructed pseudo Steiner root graph of an F -free, chordal critical clique graph CC(G)
actually is a 2-Steiner root of CC(G), which together with Lemma 1 proves the missing
direction of Theorem 1. Note that the first four claims do not require chordality of the
input graph. We will make use of this fact in Sect. 4 when we have to modify a critical clique
graph to make it chordal. The five claims are:
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SRG(CC(G) = (C, EC))
Input: (F , C4, C5)-free critical clique graph CC(G)
Output: Pseudo Steiner root graph of CC(G)

1 S ← ({bc | c ∈ C}, ∅)
2 L← list of all maximal cliques of CC(G)
3 while there is a K in L which shares edges (c1, c2) and (c1, c3) with two

other maximal cliques K ′ and K ′′ in CC(G):
4 Delete K from L
5 for c ∈ K, c 6= c1:
6 Insert an edge between bc1 and bc

7 while there is a K in L which shares only one edge (c1, c2) with only one
other maximal clique K ′ in CC(G):

8 Delete K from L
9 if K ′ is in L:
10 for c ∈ K, c 6= c1:
11 Insert an edge between bc1 and bc

12 else:
13 c′ ← a node in K ′ \K
14 if there is an edge (bc1 , bc′) in S:
15 for c ∈ K, c 6= c2:
16 Insert an edge between bc2 and bc

17 else:
18 for c ∈ K, c 6= c1:
19 Insert an edge between bc1 and bc

20 while there is a K in L:
21 Delete K from L
22 Add a new node sK into S
23 for c ∈ K:
24 Insert an edge between sK and bc

25 while there are at least two connected components S1 and S2 in S:
26 Add two edge-connected Steiner nodes s1 and s2 to S and connect by an edge s1 to

an arbitrary node in S1 and s2 to an arbitrary node in S2

Figure 2: Algorithm to construct the pseudo Steiner root graph S of a critical clique
graph CC(G)

K1

K2 K3 K4
v1

v2 v3

bv1

bv2
bv3

SRG(CC(G)):CC(G):

Figure 3: Example. A subgraph of a critical clique graph CC(G) and the pseudo Steiner
root graph computed for this part of CC(G). Algorithm SRG first considers the maximal
clique K1 with c1 = v1 and inserts edges between bv1 and the other nodes corresponding to K1.
Thereafter, the cliques K2 and K3 are considered. When considering K4, Algorithm SRG
inserts a Steiner node (drawn white).
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1. There are at most 2·|E|maximal cliques in an (F , C4, C5)-free critical clique graph CC(G).

2. Every maximal clique K of an (F , C4, C5)-free critical clique graph CC(G) is considered
exactly once by the algorithm, and for every node pair u, v in K which is considered
by the algorithm, a path of length at most two is generated between the corresponding
nodes in the output graph.

3. For an (F , C4, C5)-free critical clique graph CC(G) = (C, EC) the algorithm outputs a
graph with the following property: If two nodes u, v ∈ C are not adjacent, the distance
between the nodes corresponding to u and v in the output graph is at least three.

4. For an (F , C4, C5)-free critical clique graph CC(G) the output graph of the algorithm
contains no cycle of length at most seven.

5. For a chordal and F -free critical clique graph CC(G) the output graph of the algorithm
is a tree.

Note that Claims 2 and 3 together show the desired “distance property” of Definition 3
for Steiner roots.

4 Fixed-Parameter Tractability of CLP4

In this section we show the fixed-parameter tractability of CLP4 Edge Deletion, CLP4
Edge Insertion, and CLP4 with respect to the parameter “number of edge editing opera-
tions” `. The basic approach somewhat resembles our previous work for CLP3 [6]; however,
for the case of CLP4 Edge Deletion new, more intricate methods are necessary. Therefore,
we focus on the CLP4 Edge Deletion case in this section.

Note that graphs that have 3-leaf roots have a characterization similar to that of Theorem 1:
they are graphs that are chordal and contain none of the induced subgraphs “bull,” “dart,”
and “gem” [6]. Therefore, the basic idea for CLP3 Edge Deletion as well as for CLP4
Edge Deletion is to use the forbidden subgraph characterization in a search tree algorithm:
find a forbidden subgraph, and recursively branch into several cases according to the possible
edge deletions that destroy the forbidden subgraph. If we can bound the number of branching
cases by a function depending only on `, we obtain a run time that proves fixed-parameter
tractability.

Since the forbidden subgraph characterization from Theorem 1 for the critical clique
graph CC(G) is much simpler than the implied characterization for G (Corollary 1), we would
like to apply modifications directly on CC(G). This is possible by the following lemma, which
is a straightforward extension of Lemma 6 in [6].

Lemma 2. For a graph G, there is always an optimal solution for CLP4 that is represented
by edge editing operations on CC(G). That is, one can find an optimal solution that does not
delete any edges within a critical clique; furthermore, in this optimal solution, between two
critical cliques either all or no edges are inserted or deleted.

Now, working with CC(G) instead of G has two implications: First, a deletion of an edge e
in CC(G) can represent several deletions in G. Consider an edge e in CC(G) between two
nodes that represent critical cliques of size c1 and c2. Deleting e implies deleting all c1 · c2

edges between the vertices of the critical cliques in G. Therefore, we give the edge e the
weight c1 · c2. Note that this means that an edge modification on CC(G) can decrease the
parameter ` in the bounded search tree algorithm by more than one. Second, if two adjacent
nodes in CC(G) obtain identical neighborhood after deleting edges in CC(G), then CC(G)
needs to be updated, since each node in CC(G) has to represent a critical clique in G. In this
situation a merge operation is needed, which replaces these nodes in CC(G) by a new node
with the same neighborhood as the original nodes. In the following, we assume that after
each modification of CC(G), all pairs of nodes in CC(G) are checked as to whether a merge
operation between them is required, which can be done in O(|C| · |EC |) time.
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The main obstacle in obtaining an FPT algorithm for both CLP3 Edge Deletion and
CLP4 Edge Deletion is that the holes in CC(G) can have arbitrary length, and, therefore,
one cannot simply find some hole and branch for each edge of the hole that is to be deleted—
the number of branching cases would not be a function depending on `. For CLP3 Edge
Deletion, the key observation was that a critical clique graph CC(G) containing neither a
bull nor a dart nor a gem nor a C4 contains no triangles and, therefore, no hole in CC(G)
can be destroyed by merging its critical cliques without deleting at least one edge of the hole.
In this way, a minimum weight set of edges to be deleted to make CC(G) chordal could be
obtained in polynomial time by searching for a maximum weight spanning tree. Unfortunately,
the observation is not valid for an F -free (Fig. 1) CC(G) as we obtain it for CLP4 after deleting
the forbidden subgraphs. Thus, the main technical contribution of this section is to show how
to circumvent these difficulties by new, more sophisticated techniques than that required for
CLP3 Edge Deletion.

The idea is to examine the output SRG(CC(G)) of Algorithm SRG (Fig. 2) for the critical
clique graph CC(G). If it is a tree, we are done. Otherwise, the output is a pseudo Steiner root
graph S that contains a cycle which corresponds to a hole in CC(G). By repeatedly deleting
degree-1 nodes and contracting consecutive degree-2 nodes in S we get a graph S′ in which
every edge is part of at least one cycle and in which there is no path that consists of three or
more consecutive degree-2 nodes. By finding the shortest cycle in this reduced graph S′, we
can obtain an “FPT hole” in CC(G), that is, a hole for which we can bound the possibilities
to delete edges to get rid of the hole in an optimal way by a function only depending on `.

For the pseudocode of this algorithm (Fig. 4), we introduce some notation for the relation
between a graph and its pseudo Steiner Root graph.

Definition 4. Consider a critical clique graph CC(G) = (C, EC) and a pseudo Steiner root
graph S = (VS , ES) constructed by Algorithm SRG for CC(G). For v ∈ C we use S(v) to
denote the node from VS that corresponds to v, and for vS ∈ VS , we define S−1(vS) as the
node in C corresponding to vS if vS is a non-Steiner node, or ⊥ if vS is a Steiner node.
We extend this notation to sets: for C′ ⊆ C, S(C′) := {S(v) | v ∈ C′}, and for V ′ ⊆ VS ,
S−1(V ′) := {S−1(v) | v ∈ V ′}.

To show the correctness of Algorithm CLP4Del-Branch in Fig. 4, we first need the
following lemma which is not very difficult to see using the Claims 1–4 in Sect. 3.

Lemma 3. Consider a set of edges H as constructed in line 8 of Algorithm CLP4Del-
Branch (Fig. 4). Then H induces at least one hole in CC(G).

To define the branching set D in line 9 of Algorithm CLP4Del-Branch, we need some
notation.

Definition 5. A big node is a node of a pseudo Steiner root graph S that is not deleted by
the data reduction in line 5 of Algorithm CLP4Del-Branch and that has degree at least 3
in the constructed S′.

For a pseudo Steiner root graph S with two big nodes vi and vj connected by a path P
containing only non-big nodes, the border set BP

i is the set of non-Steiner nodes on P which
have distance at most 2 to vi. With P+ we denote the maximal set of nodes in S such that P+

contains the nodes of P and such that P+ induces a connected component in S \ {vi, vj}.
Let MinCut(G, V1, V2) be a minimum weight set of edges in G = (V, E) that disconnects

all vertices in V1 ⊆ V from those in V2 ⊆ V .

The main observation that helps to bound the number of branching cases and, hence, leads
to our FPT-algorithm is that for a cycle Q in S the number of branching cases is independent
of the lengths of the paths in Q between the big nodes: If P is a path in Q between two
big nodes vi and vj and if the two node sets S−1(BP

i ), S−1(BP
j ) have to be disconnected

in CC(G)[S−1(P+)] then it is always optimal to take an edge set with a minimum weight
whose removal disconnects the two sets. Such an edge set can be found in polynomial time;
one can show that the stucture of an (F , C4, C5)-free critical clique graph guarantees that
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CLP4Del-Branch(G, `)
Input: A Graph G = (V, E) and an integer `
Output: A set of at most ` edges in G whose removal makes G a 4-leaf power,

or nil if no such set exists
1 if ` < 0: return nil
2 if CC(G) contains a forbidden subgraph: branch accordingly
3 S ← SRG(CC(G))
4 if S is a tree: return ∅
5 S′ ← S with degree-1 and degree-2 nodes reduced
6 Q′ ← shortest cycle in S′

7 Q← cycle corresponding to Q′ in S
8 H ← S−1(Q) \ {⊥}
9 Determine a set D of edge sets in CC(G)[H ] such that

at least one d ∈ D is a subset of an optimal solution
10 for d ∈ D:
11 X ← CLP4Del-Branch (CC-Del(G, d), `−CC-Weight(G, d))
12 if X 6= nil: return X ∪ d
13 return nil

Figure 4: Algorithm for CLP4 Edge Deletion. The subroutine CC-Del(G, d) takes a
graph G and a set d of edges in CC(G) as input. For every edge (K1, K2) ∈ d, all edges from G
that have one endpoint in K1 and the other endpoint in K2 are deleted by CC-Del(G, d).
CC-Weight(G, d) returns the sum of the weights of the edges in d.

no new forbidden subgraphs are generated by this step. The following lemma states this
observation more precisely.

Lemma 4. Consider a cycle Q in a pseudo Steiner root graph S as constructed by Algorithm
CLP4Del-Branch (Fig. 4) in line 7. Let v0, . . . , vj−1 be the big nodes in Q, ordered by their
appearance in Q, and for every node vi with 0 ≤ i < j let Pi be the path in Q between vi

and v(i+1) mod j.
Then it is correct to choose the branching set D as follows: Either delete an edge (u, v)

such that
u, v ∈ S−1

(

{vi} ∪B
P(i−1) mod j

i ∪BPi

i

)

\ {⊥} with 0 ≤ i < j

(that is, delete an edge between nodes near a big node) or delete a set of edges

MinCut
(

CC(G)[S−1(P+
i ) \ {⊥}], S−1(BPi

i ), S−1(BPi

(i+1) mod j
)
)

with 0 ≤ i < j

(that is, delete a minimum weight set of edges such that all paths in the subgraph induced
by S−1(P+

i ) \ {⊥} between nodes in S−1(BPi

i ) and nodes in S−1(BPi

(i+1) mod j
) are destroyed).

Fig. 5 shows an illustration for Lemma 4. It remains to show the complexity of CLP4Del-
Branch (Fig. 4). It is clear that S′ can be constructed in O(|S|) time and S′ has a cycle iff S
has a cycle. A well-known result by Erdős and Pósa [8] states that any graph with minimum
vertex degree at least 3 has a cycle of length at most 2 logn + 1, where n denotes the number
of graph nodes. Using this result we can give an upper bound on the size of the shortest cycle
in S′ and show the following lemma:

Lemma 5. When choosing D in Algorithm CLP4Del-Branch in line 9 as described by
Lemma 4, we can bound its size by |D| ≤ 48 ·O(log(|V |)) + 24.

Using Lemma 5, we arrive at the main theorem of this section.

Theorem 2. CLP4 Edge Deletion with ` edge deletions allowed is fixed-parameter tractable
with respect to `.
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S−1(P+
i )S−1(P+

i−1)

vi

BPi

iB
Pi−1

i

P+
i−1 P+

i

Figure 5: Illustration of Lemma 4. The upper picture shows a part of pseudo Steiner root
graph S. The encircled node represents a big node; black nodes represent nodes that are part
of a cycle in S. The grey nodes are not part of any cycle in S and, therefore, deleted by
the data reduction in line 5 of Algorithm CLP4Del-Branch. In this example, all black and
grey nodes are non-Steiner nodes; the only Steiner node is the white node. The lower picture
shows the corresponding part of CC(G). The edges drawn with bold lines are those between

nodes u, v with u, v ∈ S−1
(

{vi} ∪B
P(i−1) mod j

i ∪BPi

i

)

\ {⊥}.

Proof. Using Lemma 4, it is easy to see that the Algorithm CLP4Del-Branch correctly
solves CLP4 Edge Deletion. By Lemma 5 and the fact that the height of the search tree
is bounded from above by `, it runs in (48 ·O(log n) + 24)` · nO(1) = c` · (` log `)` · nO(1) time
for a constant c.

With Theorem 2 and using the same techniques as applied for CLP3 Edge Insertion
and CLP3 [6], we achieve the following result:

Corollary 2. CLP4 Edge Insertion and CLP4 with ` edge modifications allowed are fixed-
parameter tractable with respect to `.

5 Concluding Remarks

Our fixed-parameter algorithms for Closest 4-Leaf Power mean the first positive algorith-
mic results for the most difficult k-leaf power problem with known polynomial-time solvable
recognition problem. To the best of our knowledge, so far results in this direction are only
obtained for the simpler problems Closest 2-Leaf Power [1, 3, 10] and Closest 3-Leaf
Power [6]. As long as it remains open to determine the complexity of k-Leaf Power for
k > 4, it seems to make little sense to study the more general Closest k-Leaf Power
for k > 4. Given our new results, it is of particular interest to attack the open problem
of finding good polynomial-time approximation algorithms for Closest 3-Leaf Power and
Closest 4-Leaf Power. The only known result in this direction is a factor-4 approximation
algorithm for Closest 2-Leaf Power [1, 3], the by far simplest of these problems.

Also Closest k-Tree Power problems as introduced by Kearney and Corneil [12] deserve
further investigations. Note that they only state a straightforward solution that calls the
(exact) tree power recognition algorithm O(n`) times, thus exhaustively trying all possibilities.
This clearly does not lead to fixed-parameter tractability since the parameter ` (number of
edge modifications) appears in the exponent of the polynomial.
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