
Editing Graphs into Few Cliques: Complexity,
Approximation, and Kernelization Schemes

Falk Hüffner?, Christian Komusiewicz, and André Nichterlein

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{falk.hueffner,christian.komusiewicz,andre.nichterlein}@tu-berlin.de

Abstract. Given an undirected graph G and a positive integer k, the
NP-hard Sparse Split Graph Editing problem asks to transform G
into a graph that consists of a clique plus isolated vertices by performing
at most k edge insertions and deletions; similarly, the P3-Bag Editing
problem asks to transform G into a graph which is the union of two
possibly overlapping cliques. We give a simple linear-time 3-approximation
algorithm for Sparse Split Graph Editing, an improvement over a
more involved known factor-3.525 approximation. Further, we show that
P3-Bag Editing is NP-complete. Finally, we present a kernelization
scheme for both problems and additionally for the 2-Cluster Editing
problem. This scheme produces for each fixed ε in polynomial time a
kernel of order εk. This is, to the best of our knowledge, the first example
of a kernelization scheme that converges to a known lower bound.

1 Introduction

The study of graph modification problems is a classic topic in theoretical computer
science. The typical task in this context is, given a graph class Π and a graph G,
to modify G by a minimum number of operations such that the resulting graph is
contained in Π. By a general result, graph modification is NP-hard if the operation
is vertex deletion and Π is hereditary [19]. In contrast, for edge modification
problems where one may insert or delete edges, no such general hardness result is
possible. One nontrivially tractable example is the case when Π is the class of split
graphs, that is, graphs whose vertex set can be partitioned into a clique and an
independent set (edges between the independent set and the clique are allowed).
The problem of modifying a graph into a split graph by a minimum number
of edge modifications (insertions or deletions) is polynomial-time solvable [15].
This result relies on the fact that a split graph can be recognized by its degree
sequence. In contrast, Natanzon et al. [20] showed that the problem becomes
NP-hard when allowing either only edge deletions or only edge insertions.

Damaschke and Mogren [6, 7] considered several graph modification prob-
lems for very restricted graph classes where, informally, the number of different
neighborhoods is constant. In this paper, we study two problems of this kind.

? Supported by DFG project ALEPH (HU 2139/1).

First, we consider a very restricted subclass of split graphs where no edges
between the independent set and the clique are allowed. More specifically, we
call a graph G a sparse split graph if G consists of a clique and isolated vertices.
The corresponding graph modification problem is defined as follows.

Sparse Split Graph Editing
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Can G be transformed into a sparse split graph by at most k

edge insertions and deletions?

Sparse Split Graph Editing was studied by Damaschke and Mogren [6] under
the names K1[0]-Bag Editing and Clique Editing. For example, it was shown

that Sparse Split Graph Editing can be solved in 2O(
√
k log k) · nO(1) time

whereas the NP-hardness of Sparse Split Graph Editing was initially left
open [6]; it was later shown to be NP-hard by Kovác et al. [18]. We also consider
the following further problem, as introduced by Damaschke and Mogren [6].

P3-Bag Editing
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Can G be transformed into two possibly overlapping cliques

by at most k edge insertions and deletions?

We call such graphs P3-bag graphs. The term refers to the fact that in such a
graph merging all vertices with the same closed neighborhood results in a P3 or
an induced subgraph of a P3. An equivalent definition is as follows: the graph
class is the set of all graphs with edge clique cover number at most two.

Further related work. To obtain a sparse split graph by a minimum number of edge
insertions is trivially solvable in polynomial time. If one allows only edge deletions,
the problem is NP-hard [7]. Sparse Split Graph Editing has applications
in the identification of core–periphery structures in social networks [4]. Other
models considered in this context include Split Editing and Dense Split
Graph Editing which asks to transform the input graph into a dense split
graph, that is, a graph which consists of a clique and an independent set and in
which all edges are present between the clique and the independent set [4].

Many graph classes defined by existence of a certain vertex partitioning can be
captured with the notion of a pattern [16]. A pattern for a partition into d parts is
a symmetric d× d matrix M with entries from {0, 1, ∗}. Then, an M -partition of
a graph G = (V,E) is a partition V1, . . . , Vd of V such that two distinct vertices
in (possibly equal) parts Vi and Vj are adjacent if M(i, j) = 1 and nonadjacent
if M(i, j) = 0 (the entry M(i, j) = ∗ signifies no restriction). Thus, sparse
split graphs are the graphs with a

(
1 0
0 0

)
-partition and P3-bag graphs are the

graphs with a
(

1 1 1
1 1 0
1 0 1

)
-partition. Expressed with these definitions, Damaschke

and Mogren [7] consider editing problems for the case where the diagonal is 1
and off-diagonal elements are 0 or 1.

2-Cluster Editing (also known as 2-Correlation Clustering on com-
plete graphs) is to find a minimum number of edge modifications to convert a

graph into two disjoint cliques (that is, into a graph with a
(
1 0
0 1

)
-partition). It

is NP-hard [21], but has a kernel with at most 4k + 2 vertices [14]. It can be

solved in subexponential time 2O(
√
k) +nO(1) [11]; a subexponential running time

follows also from the more general result of Damaschke and Mogren [7]. Wu and
Chen [22] give a different subexponential algorithm.

Our results. First, we complement and improve on results for Sparse Split
Graph Editing and P3-Bag Editing. In particular, we show a factor-3 approx-
imation for Sparse Split Graph Editing in Section 2, and prove NP-hardness
of P3-Bag Editing in Section 3. The former result improves a factor-3.524
approximation from Kovác et al. [18] and the latter answers an open question of
Damaschke and Mogren [6].

Second, we provide kernelization schemes for Sparse Split Graph Edit-
ing, P3-Bag Editing, and 2-Cluster Editing in Section 4. Analogous to a
polynomial-time approximation scheme (PTAS), a kernelization scheme provides
increasingly good bounds on the kernel size, at the cost of an increasing running
time bound. Only few kernelization schemes are known (e. g. [1, 3, 10]), and they
provide kernel size bounds of the form (1 + ε)k, where the limit bound k is not
known to be sharp (unlike for a PTAS). Abu-Khzam and Fernau [1] ask whether
there are kernelization schemes that converge to a provable lower bound. We
answer this question positively by providing, for the three above-mentioned prob-
lems, such schemes where the size bound converges, in fact, to 0. We formalize
this by introducing the notion of strict kernelization schemes.

Definition 1. A strict kernelization scheme is an algorithm A which takes as
input an instance (I, k) of a parameterized problem and a constant ε > 0 and
produces in (|I| + k)f(1/ε) time an instance (I ′, k′) such that (I, k) ∈ L ⇐⇒
(I ′, k′) ∈ L, |I ′| ≤ ε · g(k), and k′ ≤ k for some functions f and g.

Note that, by first kernelizing with ε = 1 and then in a second step kernelizing
the resulting instance with the intended value of ε, the running time of a strict
kernelization scheme can always be improved to g(k)f(1/ε) + |I|O(1).

Preliminaries. For a graph G = (V,E) we set n := |V | and m := |E|. The open
neighborhood of a vertex u is NG(u) := {v | {u, v} ∈ E}. The closed neighborhood
of a vertex u is NG[u] := {u} ∪NG(u). For a vertex subset V ′ ⊆ V , the subgraph
induced by V ′ is denoted by G[V ′]. For two disjoint vertex subsets V1, V2 ⊆ V ,
the set of edges with one endpoint in V1 and one endpoint in V2 is denoted
by EG(V1, V2). We omit the subscript if the graph G is clear from the context.
A clique on k ∈ N vertices is denoted by Kk, and a complete bipartite graph
with k1 ∈ N vertices in one part and k2 ∈ N vertices in the other part is
denoted by Kk1,k2

. The “M” operator denotes the symmetric difference with
A MB := (A ∪B) \ (A ∩B).

For the relevant notions of parameterized complexity, such as kernelization,
we refer to the monograph by Downey and Fellows [8]. Due to space constraints,
several proofs are deferred to a full version.

2 Sparse Split Graph Editing

We first make several simple observations on the structure of sparse split graphs
and on dense split graphs. These observations can be useful in applications of
Sparse Split Graph Editing.

Characterizations. The class of sparse split graphs is hereditary, that is, it is
closed under vertex deletions. Hence, sparse split graphs can be characterized by
a set of forbidden induced subgraphs. In general, such characterizations can be
useful for example for obtaining recognition algorithms for a graph class Π or
for obtaining fixed-parameter algorithms for hard graph modifications problems
for Π [5]. For sparse split graphs, the following simple characterization is known.

Theorem 1 ([23, Theorem 5.2.7]). A graph G is a sparse split graph if and
only if it does not contain a 2K2 or a P3 as an induced subgraph.

Like split graphs, sparse split graphs can be characterized by their degree sequence,
that is, the list of degrees of their vertices sorted in descending order.

Theorem 2. A graph is a sparse split graph if and only if its degree sequence is
c, c, . . . , c︸ ︷︷ ︸

c+1

, 0, 0, . . . , 0︸ ︷︷ ︸
n−c−1

for some c ≥ 1.

Sparse split graphs are closely related to dense split graphs.

Lemma 1. A graph G is a dense split graph if and only if its complement is a
sparse split graph.

By building the complement of the forbidden induced subgraphs for sparse split
graphs, we can thus obtain the following forbidden subgraph characterization for
dense split graphs.

Corollary 1. A graph G is a dense split graph if and only if it does not contain
a C4 or a K2 +K1 as an induced subgraph.

Similarly, we obtain the following corollary to Theorem 2.

Corollary 2. A graph is a dense split graph if and only if its degree sequence is
n− 1, n− 1, . . . , n− 1︸ ︷︷ ︸

c

, c, c, . . . , c︸ ︷︷ ︸
n−c

for some c ≥ 1.

Approximation. Kovác et al. [18] present an approximation algorithm for Sparse
Split Graph Editing and prove an approximation factor of 3.524; they
conjecture that the algorithm is a 3.383-approximation. We give a simpler 3-
approximation, inspired by the polynomial-time algorithm for Split Graph
Editing [15] that is based on a characterization by the degree sequence. This
algorithm sorts the vertices by degree, and chooses the vertices up to a certain
point in the sequence for the independent set and the remaining ones for the
clique of the resulting split graph. Since sparse split graphs have a similar char-
acterization by degree sequence (Theorem 2), we use the same algorithm to get

an approximation for Sparse Split Graph Editing. For separating the clique
from the independent set, however, we do not calculate the threshold but try
all of them. More precisely, for each 0 ≤ x ≤ n, choose the x vertices with the
highest degree as clique (resolving ties arbitrarily), and retain the best of these
n+ 1 solutions. Here, “choosing as clique” means to add all missing edges within
the vertex set and delete all other edges, yielding a sparse split graph.

Theorem 3. Sparse Split Graph Editing can be approximated in linear
time within a factor of 3.

Proof. A linear running time can be achieved by processing the vertices in order
of decreasing degree, where the clique would be formed by all vertices processed
so far. We maintain mc, the number of edges within the clique; updating mc can
be done in O(m) time total. The number of modifications for clique size c can
then be calculated as (

(
c
2

)
−mc) + (m−mc).

We now analyze the approximation factor. The analysis is based on the proof
of Hammer and Simeone [15] showing that Split Graph Editing is polynomial
time solvable. Let Copt be the clique of an optimal solution Sopt of cost kopt and
C the clique of the solution S calculated by the approximation algorithm for
c = |Copt|, with cost k. For S1, S2 ⊆ V , we denote by E(S1) the edges that have
both endpoints in S1 ⊆ V and by E(S1, S2) the edges with one endpoint in S1

and the other endpoint in S2. With this, the cost kopt can be decomposed:

kopt =
c(c− 1)

2
− |E(Copt)|︸ ︷︷ ︸

edges added in Copt

+ |E(V \ Copt)|+ |E(Copt, V \ Copt)|︸ ︷︷ ︸
deleted edges with endpoint(s) in V \Copt

. (1)

Observe that for any set S ⊆ V it holds that:∑
v∈S

deg(v) = 2|E(S)|+ |E(S, V \ S)|, (2)

where deg(v) denotes the degree of v. Rearranging Equality (2) to have |E(S)| on
the left-hand side and inserting the right-hand side in Equality (1) for |E(Copt)|
and |E(V \ Copt)| yields:

kopt =
1

2

c(c− 1)−
∑

v∈Copt

deg(v) +
∑

v∈V \Copt

deg(v)

+ |E(Copt, V \ Copt)|. (3)

Let d1 ≥ d2 ≥ . . . ≥ dn be the degrees of the vertices in descending order. It
follows that:∑

v∈Copt

deg(v) ≤
c∑

i=1

di and
∑

v∈V \Copt

deg(v) ≥
n∑

i=c+1

di. (4)

Inserting this into Equality (3) yields:

kopt ≥
1

2

(
c(c− 1)−

c∑
i=1

di +

n∑
i=c+1

di

)
+ |E(Copt, V \ Copt)| (5)

Observe that if Copt contains the vertices with the highest degree in G, then
Inequality (5) becomes an equality. Furthermore, our approximation algorithm
for x = c actually contains the c vertices with highest degree in C. Thus, using
the same analysis as above for k and C instead of kopt and Copt, we obtain

k =
1

2

(
c(c− 1)−

c∑
i=1

di +

n∑
i=c+1

di

)
+ |E(C, V \ C)|. (6)

It remains to bound the size of E(C, V \ C). To this end, observe that

|E(C, V \ C)| ≤
∑

v∈V \C

deg(v) =

n∑
i=c+1

di
(4)

≤
∑

v∈V \Copt

deg(v)

(2)

≤ 2|E(V \ Copt)|+ 2|E(V \ Copt, Copt)|
(1)

≤ 2kopt

Putting this together yields k ≤ 3kopt. ut

Using a computer program, we determined the worst-case approximation factor
(i. e., with unlucky tie resolving) for all graphs up to 11 vertices. The worst case
is a factor of 2.5, and only one graph with this factor was found (up to adding
singletons): a disjoint union of a triangle and a P3.

3 P3-Bag Editing

We now turn to P3-Bag Editing. Recall that a P3-bag graph is a graph that
consists of exactly two possibly overlapping cliques.

Characterizations. We first give a forbidden subgraph characterization of P3-bag
graphs. Note that P3-bag graphs cannot be characterized by their degree sequence:
Two disjoint triangles and a cycle on six vertices have both the degree sequence
2, 2, 2, 2, 2, 2. However, only the former is a P3-bag graph.

Theorem 4. A graph G is a P3-bag graph if and only if it does not contain
a 3K1, P4, or C4 as an induced subgraph.

Proof. It is easy to see that P4 and C4 are not P3-bag graphs. From a more
general result on forbidden subgraphs for graphs with certain M -partitions [9,
Corollary 3.3], it follows that a minimal forbidden subgraph for P3-bag graphs
can have at most four vertices, and there can be at most two minimal forbidden
subgraphs with four vertices. Finally, it is easy to verify that all graphs with
three or fewer vertices except for 3K1 are P3-bag graphs. ut

For P3-Bag Editing, we can also consider the complement problem. The fol-
lowing characterizations follow from our characterizations of P3-bag graphs.

Lemma 2. For a graph G, the following are equivalent.

1. G is a complement of a P3-bag graph.
2. G consists of a complete bipartite graph (biclique) plus isolated vertices.
3. G does not contain a K3, P4, or 2K2 as an induced subgraph.

Thus, while Sparse Split Graph Editing is the problem of editing a graph
into a clique plus isolated vertices, P3-Bag Editing is the problem of editing
the complement of a graph into a biclique plus isolated vertices. Note that the
problem of editing a graph into a biclique (without isolated vertices) is the
complement problem of 2-Cluster Editing.

NP-hardness. We now show that P3-Bag Editing is NP-complete. This demon-
strates the value of the subexponential fixed-parameter algorithm that solves

P3-Bag Editing in O(2
√
k log k) time [7].

Theorem 5. P3-Bag Editing is NP-complete.

Proof (sketch). Containment in NP is obvious. To prove NP-hardness, we provide
a polynomial-time reduction from the Bisection problem, which was shown to
be NP-hard by Garey et al. [12].

Bisection
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Does G have a bisection with cut size at most k, that is, a

partition of V into two sets V1 and V2 such that |V1| = |V2|
and |E(V1, V2)| ≤ k?

Given a Bisection instance (G = (V,E), k) with m > k we construct an
equivalent P3-Bag Editing instance (G′ = (V ′, E′), k′) as follows. First, copy G
into G′. Next, add for each vertex v ∈ V a clique with n2 vertices to G′ and make
all vertices in this clique adjacent to v in G′. Denote the vertices in this clique
by C(v) (with v /∈ C(v)). We call these cliques pendant cliques to distinguish them
from the at most two maximal cliques in the P3-bag graph. We first explain the
intuition behind the construction. The pendant cliques are pairwise non-adjacent.
This forces a balanced “distribution” of the pendant cliques to the two maximal
cliques of the P3-bag graph as any non-balanced distribution exceeds the budget
(which we define below). Then the balanced distribution of the pendant cliques
forces the original vertex set V to be also split into two equal size sets. Hence,
choosing the budget k′ appropriately ensures a cut size of at most k between
these two sets. To define k′, we use t := n/2 to denote the size of the two parts
in a bisection of G and set

k′ := n4 · 2
(
t

2

)
︸ ︷︷ ︸
edges added

between cliques

+ n2 · n(t− 1)︸ ︷︷ ︸
edges added

between cliques and
original vertices

+ k︸︷︷︸
edges removed

in cut of
bisection

+ 2

(
t

2

)
− (m− k).︸ ︷︷ ︸

edges added between
original vertices inside the
two parts of the partition

It now holds that (G, k) is a yes-instance of Bisection ⇐⇒ (G′, k′) is a
yes-instance of P3-Bag Editing; we omit the proof. ut

In the proof above, the intersection of the maximal cliques in the optimal solution
for the constructed instance is empty. Thus, the reduction also provides an
alternative NP-hardness proof for 2-Cluster Editing.

4 Kernelization Schemes

We now give strict kernelization schemes (see Definition 1 in Section 1) for
2-Cluster Editing, Sparse Split Graph Editing, and P3-Bag Editing.
Since complementing the graph does not affect k, they also apply to Biclique
Editing, Dense Split Graph Editing, and Biclique+Singletons Editing.

The idea of all three schemes is to apply data reduction that ensures that the
number of edge modifications incident on each vertex is at least some constant c.
Then, if we can solve the instance with k modifications, the number of vertices
remaining is at most 2k/c, and by setting c := 2/ε, we can achieve any kernel
of order εk. The critical property that allows the data reduction is that from
knowing the neighborhood of just one vertex in an optimal solution, we can easily
construct a complete optimal solution graph. Here, for simplicity, we use solution
to refer either to the set of editing operations or to the graph from the target
class of the editing problem that is obtained by applying the editing operations.

We formulate the data reduction for any graph modification problem that
is “neighborhood-reconstructible” and “allows isolation”, and prove that our
problems have these properties. For convenience, instead of P3-Bag Editing we
consider the complement problem Biclique+Singletons Editing, that is, the
problem of editing into a biclique plus isolated vertices.

Definition 2. A graph modification problem is neighborhood-reconstructible
in p(n) time for some polynomial p when given the nonempty neighborhood of a
vertex in a solution G′, one can in p(n) time either find a solution with at most
k edge modifications or determine that the solution G′ incurs more than k edge
modifications. This method is called neighborhood reconstruction.

Observe that we demand the reconstructibility only for nonempty neighborhoods.
This is done to cope with vertices that can become singletons in the solution.

Lemma 3. 2-Cluster Editing, Sparse Split Graph Editing, and Bi-
clique+Singletons Editing are neighborhood-reconstructible in linear time.

Proof. For 2-Cluster Editing, neighborhood reconstruction is possible even
given an empty neighborhood of a vertex. Assume we know the neighborhood N(u)
of any vertex u in a solution. Then we can reconstruct the solution in linear time:
one clique is C1 := N [u] and the other is C2 := V \N [u]. We can in linear time
determine m1,2, the number of edges between C1 and C2. Then the number of

modifications k can be calculated as
(|C1|

2

)
+
(|C2|

2

)
−m+ 2m1,2.

For Sparse Split Graph Editing, let C and I be the clique and the
isolated vertices of a solution, respectively. Only vertices in C have nonempty
neighborhoods in a solution. Assume we know the neighborhood N(u) of a

vertex u ∈ C in a solution. Then C = N [u] and I = V \ N [u]. We can count
in linear time the number mC of edges within C, and the number of edge
modifications is m+

(|C|
2

)
− 2mC .

For Biclique+Singletons Editing, let B1 and B2 be the two parts of
the biclique, and I the isolated vertices. Assume that for a vertex u ∈ B1 ∪B2

(without loss of generality u ∈ B1), we know the neighborhood N(u) of u in a
solution. Then we have B2 = N(u) and B1 ∪ I = V \N(u). It remains to allocate
the vertices in B1 ∪ I to B1 or I. Each decision for a vertex v ∈ B1 ∪ I can be
made independently: if there are at least |B2|/2 edges from v to B2, we place v
in B1, and otherwise we place it in I. Since each edge will be considered at
most once, this can be done in O(m) time. We can then count in linear time the
number mB of edges between B1 and B2, and the number of edge modifications
is m+ |B1||B2| − 2mB . ut

The first rule directly exploits neighborhood reconstructibility: Assume that there
is a vertex with nonempty neighborhood in the solution and that the difference
between the input neighborhood and solution neighborhood is small. Then, we
can find an optimal solution by guessing this small difference and then using
neighborhood reconstruction. When this fails for all vertices, we know that each
vertex has many incident edge modifications or is isolated in the solution.

Rule 1. Consider a constant c and a graph modification problem that is neigh-
borhood-reconstructible in p(n) time. For each vertex u, try all ways of changing
up to c− 1 incidences with the other vertices, that is, consider the neighborhoods
{N(u) M T | T ⊆ V \ {u}, |T | ≤ c− 1}. If for some u and some T , neighborhood
reconstruction finds a solution with at most k edge modifications, then replace
the instance by a trivial “yes”-instance.

Lemma 4. Rule 1 is sound and can be executed in O(nc · p(n)) time.

Proof. It is clear that the rule is sound, that is, it produces a “yes”-instance if
and only if the original instance is a “yes”-instance. The running time can be
seen as follows. There are n vertices and O(nc−1) vertex sets to try, and each
choice can be checked in p(n) time. ut

Observation 1. Exhaustively applying Rule 1 yields an instance in which it
holds for every solution with at most k edge modifications that each vertex is
incident with at least c edge modifications or isolated in the solution.

For 2-Cluster Editing, at most two vertices have empty neighborhood in the
solution. Hence, Rule 1 is already sufficient to bound the number of incident edge
modifications for all except two vertices. This is not sufficient for Sparse Split
Graph Editing and Biclique+Singletons Editing where a solution may
contain many singletons. Here, we exploit another problem property.

Definition 3. A graph modification problem allows isolation if the property of
being a solution is hereditary, and adding an isolated vertex to a solution yields
another solution.

Thus, any solution can be transformed into a new one by picking an arbitrary
vertex and removing all incident edges, hence the name. Observe that Sparse
Split Graph Editing and Biclique+Singletons Editing allow isolation.

Rule 2. For a graph modification problem that allows isolation, assume it is
known that in every solution, each vertex has at least c incident edge modifications
or degree 0 in the solution (or both). If G contains a vertex u with deg(u) ≤ c,
then remove u from G and reduce k by deg(u).

Lemma 5. Rule 2 is sound and can be performed exhaustively in O(nm) time.

Observation 2. Exhaustively applying Rules 1 and 2 yields an instance in which
it holds for any solution with at most k editing operation each vertex has at least
c incident edge modifications.

Rule 3. For a graph modification problem, assume we can for some constant
c ≥ 1 in polynomial time reduce to an instance where the number of edge
modifications incident on each vertex is at least c. If the graph contains more
than 2k/c vertices, then return a trivial no-instance.

The above observation together with Rule 3 yields the problem kernel of oder 2k/c
for graph modification problems that are neighborhood-reconstructible and allow
isolation. For the running time bound of the kernelization, we make use of the
fact that neighborhood reconstruction runs in linear time for all three problems.

Theorem 6. For any c ≥ 1, 2-Cluster Editing, Sparse Split Graph
Editing, and P3-Bag Editing have a kernel with at most 2k/c vertices that
can be computed in O

(
nm+ ck2 ·

(
2k
c−1
)c)

time.

Proof. Let δ(u) denote the number of edge modifications incident on a vertex u.
By Observation 2, we have 2k =

∑
u∈V δ(u) ≥ cn, implying n ≤ 2k/c. The

straightforward running time of O(ncm) caused by Rule 1 can be improved by
applying data reduction in rounds for c′ = 1 to c′ = c. The first round with c′ = 1
takes O(nm) time and produces an instance with at most 2k vertices. Before a
round with c′ ≥ 2, there are at most 2k/(c′ − 1) vertices left, and the number of
edges can be bounded by O(k2). Thus, the remaining rounds run in time

c∑
c′=2

O

((
2k

c′ − 1

)c′

k2

)
= O

(
ck2 ·

(
2k

c− 1

)c)
. ut

Note that for 2-Cluster Editing, already for c = 1, we obtain a kernel with 2k
vertices, improving the 4k + 2-vertex kernel derived from a more general result
for d-Cluster Editing [14].

Subexponential-time algorithms. We can use our strict kernelization schemes to
obtain subexponential-time algorithms.

Theorem 7. If a graph problem can be solved in 2O(n) time and it has a strict
kernelization scheme that produces for any c > 0 in nO(c) time a kernel of at
most O(k/c) vertices, then it can be solved in 2O(

√
k log k) + nO(1) time.

Proof. We kernelize for increasing c up to c =
√
k/ log k and then solve the

instance. This requires kO(
√

k/ log k) + nO(1) + 2O(
√
k log k) = 2O(

√
k log k) + nO(1)

time. ut

For Sparse Split Graph Editing and P3-Bag Editing, this running time is
similar to the known subexponential-time algorithms [7], for 2-Cluster Editing
this running time almost meets the best known running time [11]. We can also
use Theorem 7 to rule out strict kernelization schemes for certain problems with
known lower bounds on their running time.

Theorem 8. Cluster Editing does not not have a kernelization scheme that
produces for any c > 0 in nO(c) time a kernel of at most O(k/c) vertices, unless
the exponential time hypothesis (ETH) is false.

Proof. Cluster Editing is easily solved in 2O(n) time by standard dynamic
programming over vertex subsets. Moreover, assuming ETH, there is no 2o(k)·nO(1)

time algorithm for Cluster Editing [17]. ut

5 Outlook

Several open questions remain. For example, is Sparse Split Graph Editing
APX-hard, or does it have a PTAS? Possibly a PTAS for the 2-Correlation
Clustering problem [13] can be adapted. Furthermore, it seems worthwhile
to explore the relation between kernelization schemes, subexponential-time solv-
ability and polynomial-time approximation schemes more closely. For example,
it would be interesting to investigate whether, similar to efficient polynomial-
time approximation schemes (EPTAS) there are efficient strict kernelization
schemes with running time f(1/ε) · (|I|+ k)O(1). Finally, it is open to find further
applications of strict kernelization schemes. We would like to remark that the
schemes also apply to the edge deletion variants of the considered problems.
Preliminary considerations indicate that some of these problems admit efficient
strict kernelization schemes.

Acknowledgment. We are grateful to Henning Fernau for fruitful discussions
about the problems considered in this work.

References

[1] F. N. Abu-Khzam and H. Fernau. Kernels: Annotated, proper and induced.
In Proc. 2nd IWPEC, volume 4169 of LNCS, pages 264–275. Springer, 2006.

[2] M. D. Barrus, M. Kumbhat, and S. G. Hartke. Graph classes characterized
both by forbidden subgraphs and degree sequences. J. Graph Theory, 57(2):
131–148, 2008.

[3] S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and
S. Thomassé. Kernels for feedback arc set in tournaments. J. Comput.
System Sci., 77(6):1071–1078, 2011.

[4] S. P. Borgatti and M. G. Everett. Models of core/periphery structures. Soc.
Networks, 21(4):375–395, 1999.

[5] L. Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Inf. Process. Lett., 58(4):171–176, 1996.

[6] P. Damaschke and O. Mogren. Editing the simplest graphs. In Proc. 8th
WALCOM, volume 8344 of LNCS, pages 249–260. Springer, 2014.

[7] P. Damaschke and O. Mogren. Editing simple graphs. J. Graph Algorithms
Appl., 18(4):557–576, 2014. doi: 10.7155/jgaa.00337.

[8] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

[9] T. Feder and P. Hell. On realizations of point determining graphs, and
obstructions to full homomorphisms. Discrete Math., 308(9):1639–1652,
2008.

[10] H. Fernau. Parameterized algorithmics: A graph-theoretic approach. Ha-
bilitationsschrift, Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, 2005.

[11] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. Tight
bounds for parameterized complexity of cluster editing with a small number
of clusters. J. Comput. System Sci., 80(7):1430–1447, 2014.

[12] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-
complete graph problems. Theor. Comput. Sci., 1(3):237–267, 1976.

[13] I. Giotis and V. Guruswami. Correlation clustering with a fixed number of
clusters. Theory of Computing, 2(1):249–266, 2006.

[14] J. Guo. A more effective linear kernelization for cluster editing. Theor.
Comput. Sci., 410(8-10):718–726, 2009.

[15] P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica, 1
(3):275–284, 1981.

[16] P. Hell. Graph partitions with prescribed patterns. Eur. J. Combin., 35:
335–353, 2014.

[17] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded
modifications. Discrete Appl. Math., 160(15):2259–2270, 2012.

[18] I. Kovác, I. Selecéniová, and M. Steinová. On the clique editing problem. In
Proc. 39th MFCS, volume 8635 of LNCS, pages 469–480. Springer, 2014.

[19] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary
properties is NP-complete. J. Comput. System Sci., 20(2):219–230, 1980.

[20] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some
edge modification problems. Discrete Appl. Math., 113:109–128, 2001.

[21] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.
Discrete Appl. Math., 144(1–2):173–182, 2004.

[22] B. Y. Wu and L.-H. Chen. Parameterized algorithms for the 2-clustering
problem with minimum sum and minimum sum of squares objective functions.
Algorithmica, 2014. doi: 10.1007/s00453-014-9874-8. To appear.

[23] W. Xie. Obstructions to trigraph homomorphisms. Master’s thesis, School
of Computing Science, Simon Fraser University, British Columbia, Canada,
2006.

A Proofs

A.1 Full proof of Theorem 2

Proof. Clearly, any sparse split graph has such a degree sequence. For the converse,
note that each such sequence defines a sparse split graph with n− c−1 singletons
and a clique of c+ 1 vertices. Moreover, sparse split graphs are unigraphs, that
is, each sparse split graph is the only realization of its degree sequence, up to
isomorphism [2, Proposition 6]. ut

A.2 Full proof of Lemma 1

Proof. Consider a sparse split graph G = (V,E) and let A denote the clique
in G. Let Ḡ be the complement graph of G. Then, A is an independent set in Ḡ.
Moreover, V \A is a clique in Ḡ since it is an independent set in G. Finally, in Ḡ
each vertex in A is adjacent to each vertex in V \ A. Hence, Ḡ is a dense split
graph. The converse can be shown in an analogous manner. ut

A.3 Full proof of Theorem 5

Proof. The containment in NP is easy to see: just guess an edge modification
set and check whether the resulting graph is indeed a P3-bag graph. To prove
the NP-hardness, we provide a polynomial-time reduction from the Bisection
problem, which was shown to be NP-hard by Garey et al. [12].

Bisection
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Does G have a bisection with cut size at most k, that is, a

partition of V into two sets V1 and V2 such that |V1| = |V2|
and |E(V1, V2)| ≤ k?

Given a Bisection instance (G = (V,E), k) with m > k we construct an
equivalent P3-Bag Editing instance (G′ = (V ′, E′), k′) as follows. First, copy G
into G′. Next, add for each vertex v ∈ V a clique with n2 vertices to G′ and make
in G′ all vertices in this clique adjacent to v. Denote the vertices in this clique
by C(v). We call these cliques pendant cliques to distinguish them from the at
most two maximal cliques in the P3-bag graph. We first explain the intuition
behind the construction. The pendant cliques are pairwise non-adjacent. This
forces a balanced “distribution” of the pendant cliques to the two maximal cliques
of the P3-bag graph as any non-balanced distribution exceeds the budget (which
we define below). Then the balanced distribution of the pendant cliques forces
the original vertex set V to be also split into two equal size sets. Hence, choosing
the budget k′ appropriately ensures a cut size of at most k between these two sets.

To define k′, we use t := n/2 to denote the size of the two parts in a bisection
of G and set

k′ := n4 · 2
(
t

2

)
︸ ︷︷ ︸
edges added

between cliques

+ n2 · n(t− 1)︸ ︷︷ ︸
edges added

between cliques and
original vertices

+ k︸︷︷︸
edges removed

in cut of
bisection

+ 2

(
t

2

)
− (m− k).︸ ︷︷ ︸

edges added between
original vertices inside the
two parts of the partition

We now prove that (G, k) is a yes-instance of Bisection ⇐⇒ (G′, k′) is a
yes-instance of P3-Bag Editing.

“⇒:” Let V1 and V2 denote a bisection with cut size at most k. For a vertex
subset X ⊆ V , let C(X) :=

⋃
v∈X C(v) denote the union of its pendant cliques.

In order to transform G′ into a P3-bag graph, we add all missing edges within
the sets V1 ∪ C(V1) and V2 ∪ C(V2) and remove all edges with endpoints in both
these sets. Observe that the resulting graph is indeed a P3-bag graph: each of the
two sets V1∪C(V1) and V2∪C(V2) forms a clique and there are no edges between
these sets. Furthermore, the choice of k′ ensures that the budget constraint is
satisfied: we have to add the edges between the cliques C(vi), 1 ≤ i ≤ n, between
the cliques C(vi) and the original vertices, between the original vertices, and we
remove the edges in the cut of the bisection.

“⇐:” Let S be a minimum-size P3-bag edge modification set for G′ with |S| ≤
k and let G′′ := G′ M S be the resulting P3-bag graph. Denote by V ′1 , V ′2 ,
and V ′1,2 the vertices that are only in the first, only in the second, or in both
maximal cliques of G′′. Hence, the two cliques are V ′1 ∪ V ′1,2 and V ′2 ∪ V ′1,2. Note
that V ′1 ∪ V ′2 ∪ V ′1,2 = V ′. Observe that the sets V ′1 and V ′2 are both non-empty,
since there is insufficient budget to transform the whole graph G′ into a clique.

We first show that C(V) ∩ V ′1,2 = ∅. Assume towards a contradiction that
for some pendant clique C(vi) we have C(vi) ∩ V ′1,2 6= ∅. Since all vertices in the
pendant clique C(vi) are twins, we can assume by a result of [6, Proposition 1]
that C(vi) ⊆ V ′1,2. Without loss of generality assume that vi ∈ V ′1 ∪ V ′1,2. As each
vertex in the pendant clique C(vi) has in G′ exactly one neighbor outside of C(vi),
namely vi, it follows that EG′′(C(vi), V

′
2) ⊆ S, that is all edges between C(vi)

and V ′2 are contained in S. Hence, S \ EG′′(C(vi), V
′
2) is a smaller P3-bag edge

modification set (where C(vi) is contained in the set V ′1). This contradicts the
minimality of S.

Next, we show that each of the two sets V ′1 and V ′2 contain exactly n/2 = t
pendant cliques. Assume towards a contradiction, that V ′1 contains at least t+ 1
pendant cliques and let C(vi) be one of them. As the closed neighborhood of each
vertex of C(vi) in G′ is C(vi)∪vi, it follows that EG′′(C(vi), V

′
1 \(C(vi)∪vi)) ⊆ S.

By the same argument, however,

S′ = (S \ EG′′(C(vi), V
′
1 \ (C(vi) ∪ vi))) ∪ EG′′(C(vi), V

′
2)

is also P3-bag edge modification set. Since |V ′2 | ≤ (t−1)n2 +n < (t+ 1)n2 ≤ |V ′1 |,
it follows that |S′| < |S|; a contradiction to the minimality of S.

By the above, it follows that V ′1 and V ′2 contain each exactly t cliques
from C(V). Observe that each vertex in a clique C(vi) has only one neigh-

bor outside of C(vi). Hence, S contains all n4 · 2
(
t
2

)
edges to make the t cliques

in each set V ′1 and V ′2 all pairwise adjacent. Furthermore, each vertex v ∈ V is
in G′′ adjacent to at least t cliques and in G′ to exactly one clique, namely C(v).
Hence, S contains at least n2 · n(t− 1) further edges to make the n vertices in V
adjacent to at least t− 1 cliques each. Thus, the remaining budget is

k′ − n4 · 2
(
t

2

)
− n2 · n(t− 1) = k + 2

(
t

2

)
− (m− k) < k + 2

(
t

2

)
= k +

n

2

(n
2
− 1
)
<
n2

2
+
n2

4
< n2.

Since |C(v)| = n2 and C(v) ⊆ NG′(v), it follows that every vertex v ∈ V is in the
same set V ′1 or V ′2 as C(v). Now let x := |EG′(V ∩V ′1 , V ∩V ′2)| denote the number
of edges between original vertices that are in different cliques of G′′. Then, x
edge deletions are performed between V ′1 and V ′2 . Moreover, the number of edge
insertions between the vertices from V ∩V ′1 and between the vertices from V ∩V ′2
is 2
(
t
2

)
−(m−x). The remaining budget for these modifications is k+2

(
t
2

)
−(m−k)

and thus x ≤ k. Thus, V ∩ V ′1 and V ∩ V ′2 denote a bisection of V in G with cut
size at most k and hence (G, k) is a yes-instance of Bisection. ut

A.4 Full proof of Lemma 5

Proof. The running time bound is easy to see. For soundness, we need to show

(G, k) is a yes-instance ⇐⇒ (G− u, k − deg(u)) is a yes-instance,

where G− u is the graph G without vertex u.
“⇒”: Consider a solution with at most k edge modifications. Deleting the

vertex u in this solution yields another graph with the desired property as
the property is hereditary. By the condition of the rule u is incident with at
least deg(u) edge modifications. Thus, removing all edge modifications incident
with u yields a solution for G− u and this solution has at most k − deg(u) edge
modifications.

“⇐”: If we have a solution for (G − u, k − deg(u)), we can extend it to a
solution for G by additionally deleting all edges incident on u; this solution for G
has cost at most k − deg(u) + deg(u) = k, and thus (G, k) is a yes-instance. ut

	Editing Graphs into Few Cliques: Complexity, Approximation, and Kernelization Schemes

