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Abstract

To cover the edges of a graph with a minimum number of

cliques is an NP-complete problem with many applications.

The state-of-the-art solving algorithm is a polynomial-time

heuristic from the 1970’s. We present an improvement

of this heuristic. Our main contribution, however, is the

development of efficient and effective polynomial-time data

reduction rules that, combined with a search tree algorithm,

allow for exact problem solutions in competitive time. This

is confirmed by experiments with real-world and synthetic

data. Moreover, we prove the fixed-parameter tractability

of covering edges by cliques.

1 Introduction

Data reduction techniques for exactly solving NP-hard
combinatorial optimization problems have proven use-
ful in many studies [1, 3, 10, 16]. The point is that by
polynomial-time executable reduction rules many input
instances of hard combinatorial problems can be signifi-
cantly shrunk and/or simplified, without sacrificing the
possibility of finding an optimal solution to the given
problem. For such reduced instances then often exhaus-
tive search algorithms can be applied to efficiently find
optimal solutions in reasonable time. Hence data reduc-
tion techniques are considered as a “must” when try-
ing to cope with computational intractability. Studying
the NP-complete problem to cover the edges of a graph
with a minimum number of cliques ((Edge) Clique
Cover)1, we add a new example to the success story
of data reduction, presenting both empirical as well as
theoretical findings.
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1We remark that covering vertices by cliques (Vertex Clique
Cover or Clique Partition) is of less interest to be studied on
its own because it is equivalent to the well-investigated Graph
Coloring problem: A graph has a vertex clique cover of size k

iff its complement graph can be colored with k colors such that
adjacent vertices have different colors.

Our study problem Clique Cover, also known
as Keyword Conflict problem [12] or Covering
by Cliques (GT17) or Intersection Graph Basis
(GT59) [9], has applications in diverse fields such as
compiler optimization [19], computational geometry [2],
and applied statistics [11, 18]. Thus, it is not surprising
that there has been substantial work on (polynomial-
time) heuristic algorithms for Clique Cover [12, 14,
19, 18, 11]. In this paper, we extend and complement
this work, particularly introducing new data reduction
techniques.

Formally, as a (parameterized) decision problem,
Clique Cover is defined as follows:

Clique Cover
Input: An undirected graph G = (V, E) and
an integer k ≥ 0.
Question: Is there a set of at most k cliques
in G such that each edge in E has both
its endpoints in at least one of the selected
cliques?

Clique Cover is hard to approximate in polyno-
mial time and nothing better than only a polynomial
approximation factor is known [5].

We examine Clique Cover in the context of
parameterized complexity [7, 17]. An instance of a
parameterized problem consists of a problem instance I
and a parameter k. A parameterized problem is fixed-
parameter tractable if it can be solved in f(k) · |I|O(1)

time, where f is a computable function solely depending
on the parameter k, not on the input size |I|.

Our contributions are as follows. We start with
a thorough mathematical analysis of the heuristic of
Kellerman [12] and the postprocessing of Kou et al. [14],
which is state of the art [19, 11]. For an n-vertex and
m-edge graph, we improve the runtime from O(nm2)
to O(nm). Afterwards, as our main algorithmic contri-
bution, we introduce and analyze data reduction tech-
niques for Clique Cover. As a side effect, we pro-
vide a so-called problem kernel for Clique Cover, for
the first time showing—somewhat surprisingly—that
the problem is fixed-parameter tractable with respect
to the parameter k. We continue with describing an
exact algorithm based on a search tree. For our ex-
perimental investigations, we combined our data reduc-



tion rules with the search tree, clearly outperforming
heuristic approaches in several ways. For instance, we
can solve real-world instances from a statistical applica-
tion [18]—so far solved heuristically [18, 11]—optimally
without time loss. This indicates that for a significant
fraction of real-world instances our exact approach is
clearly to be preferred to a heuristic approach which
is without guaranteed solution quality. We also ex-
perimented with random graphs of different densities,
showing that our exact approach works extremely well
for sparse graphs. In addition, our empirical results re-
veal that for dense graphs a data reduction rule that
was designed for showing the problem kernel does very
well. In particular, this gives strong empirical support
for further theoretical studies in the direction of im-
proved fixed-parameter tractability results for Clique
Cover, nicely demonstrating a fruitful interchange be-
tween applied and theoretical algorithmic research.

Not all details and proofs are given in this extended
abstract.

2 Improved Heuristic

Kellerman [12] proposed a polynomial-time heuristic for
Clique Cover. This heuristic was improved by Kou,
Stockmeyer, and Wong [14] by adding a postprocessing
step; this version has been successfully applied to
instruction scheduling problems [19] and in the analysis
of statistical data [11]. Clearly, both versions of the
heuristic run in polynomial time but in both cases a
more precise analysis of their runtime was not given.
In this section, for an n-vertex and m-edge graph, we
analyze the runtime of both heuristics as O(nm2). We
show how to slightly modify Kellerman’s heuristic such
that we can improve the runtime of both heuristics
to O(nm) by a careful use of additional data structures.

The Clique Cover heuristic by Kellerman [12],
further-on referred to as CC-Heuristic 1, is described
in pseudo-code in the left column of Fig. 1. To
simplify notation, we use V = {1, . . . , n} as vertex set.
The algorithm starts with an empty clique cover and
successively, for i = 1, . . . , n, updates the clique cover
to account for edges {i, j} with j < i. In case there
are no edges between the currently processed vertex i
and the set W of its already processed neighbors, a new
clique is created, containing only i. Otherwise, we try to
add i to existing cliques where possible. After this, there
may still remain uncovered edges between i and W . To
cover those edges, we create a new clique containing i
and its neighbors from one of the existing cliques such
that the number of edges covered by this new clique
is maximized. We repeat this process until all edges
between i and vertices from W are covered.

To improve both the analysis and in some cases the

Input: Clique Cl, vertex i.
Globals: S, I
1 for j ∈ N>(j′), with some arbitrary j′ ∈ Cl:

2 if l ∈ S[j] ∧ i /∈ N<(j):
3 S[j]← S[j] \ {l}
4 for j ∈ N>(i):
5 update position of l in sorted I [j]
6 Cl ← Cl ∪ {i}

Figure 2: The add-to-clique subroutine.

result of the heuristic, we assume that the algorithm is
aborted as soon as m cliques are generated. In that case
we can simply take the solution that covers each edge
separately by a two-vertex clique.

It is relatively straightforward to observe that CC-
Heuristic 1 runs in O(nm2) time.

To improve the runtime, the idea is to identify the
“hot spots” and to use caching data structures that will
give the computation of these hot spots basically for
free, and spread the work of keeping this structure up-
to-date throughout the rest of the program.

We maintain the following two tables for vertices i,
1 ≤ i ≤ n, where Cl, 1 ≤ l ≤ m, are the cliques
generated by the algorithm:

S[i] := {l | Cl ⊆ N<(i)},

I[i] := {l | Cl ∩ N<(i) 6= ∅}, sorted

descending according to |Cl ∩ N<(i)|,

where the set N<(i) for a vertex i is defined as

N<(i) := {j | j < i and {i, j} ∈ E is uncovered},

with {i, j} ∈ E called uncovered if ∀1 ≤ l ≤ m :
{i, j} 6⊆ Cl. The set N>(i) is defined analogously. The
table S[i] is used to keep track of the existing cliques to
which a vertex i may be added. Using S[i] will avoid
to inspect every existing clique individually in order to
test whether vertex i can be added to the clique (see
lines 10 and 11 for CC-Heuristic 1 in Fig. 1). The
table I[i] is used to keep track of the existing cliques
with which a vertex i has an “uncovered overlap”, i.e.,
with which i shares yet uncovered edges. The cliques
are kept sorted by the size of this uncovered overlap.
Using table I[i], we will avoid the costly computation
of a clique with maximum uncovered overlap in line 18.
Thus, tables S and I help to replace costly operations
during the heuristic by constant-time look-ups in these
tables. This comes at the price of having to keep these
tables up-to-date throughout the heuristic.

We now first explain how the newly introduced
tables are updated throughout the heuristic and, then,



Input: Graph G = ({1, 2, . . . , n}, E) without isolated vertices.
Output: A clique cover for G.
1 k ← 0 . number of cliques created so far

2 for i = 1, 2, . . . , n:

. loop invariant: C1, . . . , Ck cover all edges incident to vertices v, w ≤ i
3 W ← {j | j < i and {i, j} ∈ E}
4 if W = ∅:
5 k ← k + 1
6 Ck ← {i} add-to-clique(k, i)
7 else:

8 . try to add vi to each of the existing cliques

9 U ← ∅ . set of neighbors j of i where {i, j} is already covered

10 for l = 1, . . . , k: S′ ← S[i]
11 if Cl ⊆W : for l ∈ S′:

if Cl 6⊆ U :

12 Cl ← Cl ∪ {i} add-to-clique(l, i)
13 U ← U ∪ Cl U ← U ∪ Cl

14 if U = W : break if U = W : break

15 W ←W \ U
16 while W 6= ∅:
17 . for the remaining edges, try to cover as many as possible at a time

18 l← min{ l | 1 ≤ l ≤ k, l← min{I [i]}
|Cl ∩W | is maximal}

19 k← k + 1 k← k + 1
20 Ck ← (Cl ∩W ) ∪ {i} for q ∈ (Cl ∩W ) ∪ {i}:

add-to-clique(k, q)
21 W ←W \ Cl

22 return {C1, C2, . . . , Ck}

Figure 1: Comparison of CC-Heuristic 1 by Kellerman [12] and the improved CC-Heuristic 2 in pseudo-code. Code
in the right column indicates that in CC-Heuristic 2 the code replaces the corresponding lines of CC-Heuristic 1
shown in the left column.

we show how they are used to modify CC-Heuristic 1.
Initially, the entries S[i] and I[i] are empty for all
1 ≤ i ≤ n. To handle all modifications to our partial
clique cover and to update tables S and I, we introduce
the function add-to-clique, presented in pseudo-code in
Fig. 2. The function adds one vertex i to a clique Cl

and updates these tables as follows.

• Table S: The grown Cl might not be subset
of N<(j) anymore for some j with l ∈ S[j]. This
is accounted for in lines 1–3. To this end, we need
to find all vertices j such that clique Cl is subset
of N<(j) before adding i to Cl but is not subset
of N<(j) after adding i to Cl. All these j are
certainly found when inspecting all neighbors of one
arbitrarily selected element j′ of the old Cl. If, for
some j, l ∈ S[j] but i /∈ N<(j), then we remove l
from S[j].

• Table I: For each j in N>(i), we percolate l to its
right place in I[j] since Cl ∩ N<(j) has grown by
one. This is done in lines 4–5.

Clearly, after these updates, the addition of i to Cl has
been correctly accounted for.

Fig. 1 shows how function add-to-clique is used
to modify CC-Heuristic 1 in order to obtain our new
heuristic to which we refer as CC-Heuristic 2. More
precisely, we replace every addition of a vertex to a
clique by a call to the new function add-to-clique; this
explains the changes of lines 6, 12, and 20 and makes
sure that in these modifications the tables I and S are
updated.

Table S is then used to speed up lines 10 to 14
of the old heuristic where the currently processed ver-
tex i is added to existing cliques where possible. Here,
instead of testing for each existing clique individually
whether this is possible (as done in CC-Heuristic 1),
CC-Heuristic 2 directly accesses these cliques in table
entry S[i]. Moreover, we also change the heuristic by
adding vertex i to an existing clique Cl only if there
are edges between i and Cl which are yet uncovered. In
contrast, CC-Heuristic 1 adds vertex i to every possible
existing clique Cl (unless all edges connecting i to pre-



viously processed vertices are already covered). Thus,
in some cases CC-Heuristic 1 may add vertex i to an
existing clique while not covering previously uncovered
edges, and, in other cases, vertex i is not added to an
existing clique although this would be possible. There-
fore, our modification makes the algorithm more con-
sistent and additionally this change will be essential in
the runtime proof.

Table I is used to speed up lines 18 to 20 of the
old heuristic where new cliques are generated for the
still uncovered edges connecting the currently processed
vertex i to its already processed neighbors in W . More
precisely, we generate a clique containing i and Cl ∩ W
where Cl is chosen such that it maximizes the overlap
with W . While the choice of l was time-consuming
in CC-Heuristic 1, it is now done by a constant-time
look-up in table entry I[i]. Then, the new clique Ck is
built by adding each element individually, using add-to-

clique. This concludes the changes of CC-Heuristic 2 in
comparison with CC-Heuristic 1.

To infer the runtime we observe the following essen-
tial invariant which applies to the solutions generated
by CC-Heuristic 2:

Lemma 2.1. In a solution generated by CC-Heuristic 2,
the sum of solution clique sizes is at most 2m.

It is not clear how to prove the invariant stated
in Lemma 2.1 for CC-Heuristic 1. The reason lies in
line 11 of the heuristic where CC-Heuristic 1 may add
new vertices to a clique without covering previously
uncovered edges. This is prevented by the modification
introduced in CC-Heuristic 2 and we can infer the
following runtime:

Theorem 2.1. CC-Heuristic 2 runs in O(nm) time.

Proof. We first analyze the runtime of add-to-clique.
Clearly, each of the for loops iterates at most n times.
The set operations in lines 2 and 3 can be implemented
to run in constant time by using bitmaps. The update
in line 5 can also be done in constant time by using n
buckets for each I[i] and an additional map that allows
us to find the bucket where l resides. In summary, one
add-to-clique call takes O(n) time.

To analyze the runtime of the modified algorithm,
we note that the total runtime is dominated by add-

to-clique calls. We analyze the number and total
runtime of add-to-clique calls amortized over the whole
algorithm: With Lemma 2.1 the sum of clique sizes is at
most 2m and therefore add-to-clique is called at most
2m times. Since lines 13 and 14 take at most O(n)
time and are called only on occasion of an add-to-clique

call, their runtime can be also subsumed here. This

shows a total runtime of O(nm) for all add-to-clique

calls (including lines 13 and 14).
Leaving aside the add-to-clique calls and

lines 13/14, all other operations inside the main
loop—iterating over all n vertices—can be done in
O(m) time. This is in particular true for line 11: Using
bitmaps in combination with a doubly-linked structure,
testing Cl for containment in a set U can be done in
|Cl| steps. With Lemma 2.1 we infer that testing all
existing cliques for containment in a set U can be done
in O(m) time.

Finally, we turn our attention to the postprocessing
proposed by Kou et al. [14] as an addition for CC-
Heuristic 1. They proposed to test every clique found
by CC-Heuristic 1 for redundancy: For every clique C
in the solution of CC-Heuristic 1, it is tested whether C
is “subsumed” by the remaining cliques of the solution,
i.e., whether each of C’s edges is also covered by another
clique of the solution. If C is subsumed, then C is
deleted from the solution. Kou et al. left it open to
give a precise estimation of the time complexity of this
postprocessing.

The following result is straightforward to obtain by
using appropriate caching data structures.

Proposition 2.1. The postprocessing proposed by Kou
et al. [14] on instances returned by CC-Heuristic 2 can
be done in O(nm) time.

3 Data Reduction

A (data) reduction rule replaces, in polynomial time,
a given Clique Cover instance (G, k) consisting of a
graph G and a nonnegative integer k by a “simpler”
instance (G′, k′) such that (G, k) has a solution iff
(G′, k′) has a solution. An instance to which none of
a given set of reduction rules applies is called reduced
with respect to these rules. A parameterized problem
such as Clique Cover (the parameter is k) is said to
have a problem kernel if, after the application of the
reduction rules, the reduced instance has size f(k) for
a function f depending only on k. It is a well-known
result from parameterized complexity theory that the
existence of a problem kernel implies fixed-parameter
tractability for a parameterized problem [7, 17].

We formulate reduction rules for a generalized ver-
sion of Clique Cover in which already some edges
may be marked as “covered.” Then, the question is to
find a clique cover of size k that covers all non-covered
edges. Clearly, Clique Cover is the special case of this
annotated version where no edge is marked as covered.

We start by describing an initialization routine that
sets up auxiliary data structures once at the beginning
of the algorithm such that the many applications of the



subsequent Rule 2 become cheaper in terms of runtime.
Moreover, the data structures initialized here are also
used by the exact algorithm proposed in Sect. 4. From
the reduction rules below, only Rule 1 updates these
auxiliary data structures.

Initialization We inspect every edge {u, v} of the
original graph. We use two auxiliary variables: We
compute a set N{u,v} of its common neighbors and
we determine whether the vertices in N{u,v} induce
a clique. More precisely, we compute a positive
integer c{u,v} which stores the number of edges
interconnecting the vertices of N{u,v}.

The following is easy to see.

Lemma 3.1. The proposed initialization can be done in
O(m2) time.

We start the presentation of reduction rules with a
trivial rule removing isolated elements.

Rule 1. Remove isolated vertices and vertices that are
only adjacent to covered edges.

Lemma 3.2. Rule 1 is correct. Every application of
Rule 1 including the update of auxiliary variables can
be executed in O(nm) time.

The next reduction rule is concerned with maximal
cliques. Note that we can safely assume that an optimal
solution consists of maximal cliques only since a non-
maximal clique in a solution can always be replaced by
a maximal clique it is contained in. The following rule
identifies maximal cliques which have to be part of every
optimal solution.

Rule 2. If an edge {u, v} is contained only in exactly
one maximal clique C, i.e., if the common neighbors of
u and v induce a clique, then add C to the solution,
mark its edges as covered, and decrease k by one.

Lemma 3.3. Rule 2 is correct. Every application of
Rule 2 can be executed in O(m) time.

Rules 1 and 2 imply that all degree-1 and degree-2
vertices are removed from the instance. Further, they
imply that an isolated clique is deleted: Its vertices
belong to exactly one maximal clique; the clique, if it
contains more than one vertex, is added to the solution
by Rule 2 and its vertices are “cleaned up” by Rule 1.

In the following we present two interrelated reduc-
tion rules Rules 3’ and 3. Rule 3’ is subsumed by Rule 3.
Nevertheless we choose to present both rules separately
since Rule 3’ is easier to understand and more efficient to
implement. Moreover, as will be shown in Theorem 3.1,
already Rule 3’ is sufficient to show a problem kernel
for Clique Cover.

v

Figure 3: An illustration of the partition of the neigh-
borhood of a vertex v. The two vertices with rectangles
are exits, the others are prisoners.

Rule 3’. If there is an edge {u, v} whose endpoints
have exactly the same closed neighborhood, i.e., for
which N [u] = N [v], then mark all edges incident to u
as covered. To reconstruct a solution for the unreduced
instance, add u to every clique containing v.

Comparing N [u] and N [v] for each edge {u, v}, we
can in O(nm) time search an edge for which Rule 3’ is
applicable and invoke the rule.

For formulating a generalization of Rule 3’ we
introduce additional terminology. For a vertex v, we
partition the set of vertices that are connected by an
uncovered edge to v into prisoners p with N(p) ⊆ N(v)
and exits x with N(x) \ N(v) 6= ∅.2 We say that the
prisoners dominate the exits if for every exit x there is a
prisoner connected to x. An illustration of the concept
of prisoners and exits is given in Fig. 3.

Rule 3. If there is a vertex v which has at least one
prisoner and whose prisoners dominate its exits, then
mark all edges incident to v as covered. To reconstruct
a solution for the unreduced instance, add v to every
clique containing a prisoner of v.

Observe that a vertex v is always a prisoner of a
vertex u with u 6= v and N [u] = N [v] (and vice versa).
Thus, Rule 3’ is subsumed by Rule 3.

Lemma 3.4. Rule 3 is correct. Every application of
Rule 3 can be executed in O(n3) time.

Proof. For the correctness note that, by definition,
every neighbor of v’s prisoners is also a neighbor of v
itself. If a prisoner of v participates in a clique C,
then C ∪ {v} is also a clique in the graph. Therefore,

2We remark that the concept of prisoners and exits (and, in ad-
dition, “gates”) was introduced for data reduction rules designed
for the Dominating Set problem [4]. The strength of these rules
has been proven theoretically [4] as well as empirically [3].



it is correct to add v to every clique containing a
prisoner in the reduced graph. Next, we show that
all edges adjacent to v are covered by the cliques
resulting by adding v to the cliques containing v’s
prisoners. W.l.o.g. we can assume that prisoners are not
“isolated,” i.e., they are connected to other prisoners
or exits since, otherwise, Rules 1 and 2 would delete
the isolated prisoner. Now, we consider separately the
edges connecting v to prisoners and edges connecting v
to exits. Regarding an edge {v, w} to a non-isolated
prisoner w, vertex w has to be part of a clique C of the
solution for the instance after application of the rule.
Therefore, the edge {v, w} is covered by C ∪ {v} in
the solution for the unreduced instance. Regarding an
edge {v, x} to an exit x, the exit x is dominated by a
prisoner w and therefore x has to be part of a clique C
with w. Therefore, the edge {v, x} is covered by C∪{v}
in the solution for the unreduced instance.

For executing the rule, we inspect every vertex v
to test whether the rule is applicable. To this end,
we inspect every neighbor u of v. In O(n) time, we
determine whether u is an exit or a prisoner. Having
identified all prisoners, we can for every exit u determine
in O(n) time whether u is dominated by a prisoner.

Lemma 3.5. Using Rules 1 to 3, in O(n4) time one can
generate a reduced instance where none of these rules
applies any further.

From a theoretical viewpoint, the main result of this
section is a problem kernel with respect to parameter k
for Clique Cover:

Theorem 3.1. A Clique Cover instance reduced
with respect to Rules 1 and 3’ contains at most 2k ver-
tices or, otherwise, has no solution.

Proof. Consider a graph G = (V, E) that is reduced
with respect to Rules 1 and 3’ and has a clique
cover C1, . . . , Ck of size k. We assign to each ver-
tex v ∈ V a binary vector bv of length k where bit i,
1 ≤ i ≤ k, is set iff v is contained in clique Ci. If we
assume that G has more than 2k vertices, then there
must be u 6= v ∈ V with bu = bv. Since Rule 1 does not
apply, every vertex is contained in at least one clique,
and since bu = bv, u and v are contained in the same
cliques. Therefore, u and v are connected. As they
also share the same neighborhood, Rule 3’ applies, in
contradiction to our assumption that G is reduced with
respect to Rule 3’. Consequently, G cannot have more
than 2k vertices.

Corollary 3.1. Clique Cover is fixed-parameter
tractable with respect to parameter k.

Input: Graph G = ({1, 2, . . . , n}, E).
Output: A minimum clique cover for G.
1 k ← 0; X ← nil

2 while X = nil:

3 X ← branch(G, k, ∅)
4 k ← k + 1
5 return X

6 function branch(G, k, X):
7 if X covers G: return X
8 reduce (G, k)
9 if k < 0: return nil

10 choose {i, j} such that
`|N{i,j}|

2

´

− c{i,j} is minimal
11 for each maximal clique C in N [i] ∩N [j]:
12 X ′ ← branch(G, k − 1, X ∪ {C})
13 if X ′ 6= nil: return X ′

14 return nil

Figure 4: Exact algorithm for Clique Cover.

The result of Corollary 3.1 might be surprising when
noting that many graph problems that involve cliques
turn out to be hard in the parameterized sense. For
example, the NP-complete Clique problem is known to
be W[1]-complete with respect to the clique size [7, 17].
Another example even more closely related to Clique
Cover is given by the NP-complete Clique Partition
problem, which is also hard in the parameterized sense.
Herein, we ask, given a graph, for a set of k cliques
covering all vertices of the input graph (in contrast
to covering all edges as in Clique Cover). Clique
Partition is NP-hard already for k = 3 [9]. It follows
that there is no hope for obtaining fixed-parameter
tractability for Clique Partition with respect to
parameter k, unless P = NP.

4 Exact Search Tree Algorithm

Search trees are a popular means of exactly solving hard
problems. The basic method is to identify for a given
instance a small set of simplified instances such that the
given instance has a solution if at least one of the sim-
plified instances has one. The corresponding algorithm
branches recursively into each of these instances until a
stop criterion is met.

The search tree algorithm presented here for
Clique Cover works as follows. We choose an un-
covered edge, enumerate all maximal cliques this edge
is part of, and then branch according to which of these
cliques we add to the clique cover. The recursion stops
as soon as a solution is found or k cliques are generated
without finding a solution. The algorithm is presented
in pseudo-code in Fig. 4.



Regarding the choice of the edge to branch on, we
would, ideally, like to branch on the edge that is con-
tained in the least number of maximal cliques. However,
this calculation would be costly. Therefore, we make use
of the infrastructure set up for an efficient incremen-
tal application of Rule 2. The initialization described
in Sect. 3 provides a set N{i,j} containing the common
neighborhood of edge {i, j} and a counter c{i,j} contain-
ing the number of edges in the common neighborhood
of its endpoints. Therefore,

(|N{i,j}|
2

)

−c{i,j} is the num-
ber of edges missing in the common neighborhood of
edge {i, j} as compared to a clique (the score). For
branching, we choose the edge with the lowest score.
If the score is 0, then the edge is contained in only
one maximal clique (and thus will be reduced). If the
score is 1, the edge is contained in exactly two maximal
cliques. Generalizing this, it is plausible to assume that
an edge is contained in few maximal cliques if its score
is low.

Having chosen the edge to branch on, we determine
the set of maximal cliques the edge is contained in using
a variant of the classical Bron–Kerbosch algorithm [6]
by Koch [13].

We use the branching routine within an iterative
deepening framework, that is, we impose a maximum
search depth k and increase this limit by one when no
solution is found.

Combining the data reduction rules described in
Sect. 3—which yield a problem kernel for Clique
Cover—with the search tree algorithm described here,
we obtain a competitive fixed-parameter algorithm for
Clique Cover that can solve problem instances of
considerable size (a few hundred vertices) efficiently (see
Sect. 5).

5 Experimental Results

In this extended abstract we focus on the newly de-
veloped exact algorithm with data reduction rules—
eperimental investigations of CC-Heuristic 1 are kept
to a minimum and of CC-Heuristic 2 are completely
omitted. This is to become part of the full version of
the paper.

We implemented the search tree algorithm from
Sect. 4 and the data reduction rules from Sect. 3. The
program is written in the Objective Caml programming
language [15] and consists of about 1200 lines of code.
The source code is free software and available from the
authors on request. Graphs are implemented using a
purely functional representation based on Patricia trees.
This allows to (conceptually) modify the graph in the
course of the algorithm without having to worry about
how to restore it when returning from the recursion.
Moreover, it allows for quick intersection operations

Clique cover size

n m Heuristic Optimal

A 13 55 4 4
B 17 86 6 5
C 124 4847 50 49
D 121 4706 48 48
E 97 3559 34 31

Table 1: Clique cover sizes for five real-world Clique
Cover instances, where “Heuristic” is CC-Heuristic 1
with the postprocessing by Kou et al. [14].

on neighbor sets, as required for some reduction rules.
The cache data structure c described in Sect. 3 is
implemented using a priority search queue.

We tested our implementation on various inputs on
an AMD Athlon 64 3400+ with 2.4GHz, 512KB cache,
and 1GB main memory, running under the Debian
GNU/Linux 3.1 operating system.

Real Data. We first tested the implementation on
five “real-world” instances from an application in graph-
ical statistics [18] (see Table 1). Currently, heuristics
like that of Kou et al. [14] are used to solve the problem
in practice [18, 11]. With our implementation of CC-
Heuristic 1, the runtime is negligible for these instances
(< 0.1 s). Our implementation based on the search tree
with data reduction could solve all instances to opti-
mality within less than two seconds. We observe that
the heuristic produces reasonably good results for these
cases; previously nothing was known about its solution
quality. In summary, the application of our algorithm
in this area seems quite attractive, since we can pro-
vide provably optimal results within acceptable runtime
bounds.

Random Graphs. Next, we tested the implemen-
tation of the exact algorithm on random graphs, that
is, graphs where every possible edge is present with
a fixed probability. It is known that with high prob-
ability a random graph has a large clique cover of
size O(n2/ log2 n) [8]. Therefore, relying on branching
and a not too large search tree is unlikely to succeed, and
reduction rules are crucial. The results are presented in
Fig. 5. In the following, the “size” of an instance means
the number of vertices. We exhibit three trials: Sparse
graphs with m ≈ n logn, graphs with edge probabil-
ity 0.1, and graphs with edge probability 0.15. For the
denser graphs outliers occur: for example for graphs of
size 51 and edge probability 0.15, all instances could be
solved within a second but one, which took 25 minutes.
In contrast, sparse graphs can be solved uniformly very
quickly, and the growth even seems to be subexponen-
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Figure 5: Runtime for random graphs. Each point is
the average over 20 runs.

tial: Instances of size 1 000 can still be solved within 100
seconds and instances of size 2 000 within 11 minutes,
with a standard deviation for the runtime of < 2 %.
Our approach is very promising for sparse instances up
to moderate size, while for denser instances probably a
fallback to heuristic algorithms is required to compen-
sate for the outliers.

The presence of extreme outliers for some combina-
tions of parameters makes it difficult to get a clear pic-
ture based only on combining statistics such as averages.
Therefore, we show measurements for several concrete
instances in Table 2. For edge probability 0.1 and 0.15,
respectively, we select an instance that takes very long,
and additionally present two arbitrary instances with
similar parameters. For sparse graphs, no such outliers
occur, so we show three arbitrary instances of similar
size.

Synthetic Data. Real instances are not com-
pletely random; in particular, in most sensible applica-
tions the clique cover is expected to be much smaller
than that of a random graph. The fixed-parameter
tractability of our algorithm also promises a better run-
time for instances where the clique cover is small. To ex-
amine this, we generated random graph instances with
approximately 200 vertices and 2000 edges by succes-
sively completing random sets of random size to form
cliques until at least 2000 edges are present, but no
more than 2020. By choosing the maximum size of the
placed cliques, the number of placed cliques is (roughly)
controlled. Figure 6 shows the resulting runtimes. In
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Figure 6: Average runtime for graphs with n ≈ 200 and
m ≈ 2000 constructed by randomly placed cliques.

fact, these comparably large and dense instances can
be solved very quickly when the size of the clique cover
is small. Below a clique cover size of about 150, per-
formance is also very smooth; no outliers occur. In
contrast, the performance becomes erratic for more
than about 170 cliques, with frequent occurrences of
instances taking very long to solve. In summary, this
makes our exact algorithm also attractive for the nu-
merous applications where we can expect a small clique
cover as solution.

Effectiveness of Rule 3. The prisoner-exit-rule
(Rule 3) is comparably complicated and expensive and
has been developed in context with searching for a
problem kernel. Does it really gain any benefit in
practice? To examine this question, we repeated the
previous experiment with Rule 3 disabled (see Figure 6).
While initially similar, around a cover size of 80 the
performance drops sharply, and outliers taking very
long time to solve occur. This means that Rule 3
nearly doubled the range of instances that can be solved
smoothly, and is clearly worthwhile.

6 Outlook

As seen in Table 2, there are some outliers with ex-
ceedingly high runtimes when compared to “similar”
instances. Without the application of data reduction
Rule 3, there were even more such outliers. This clearly
indicates that Rule 3, which also leads to a size-2k prob-



n m |C| runtime search tree Rule 1 Rule 2 Rule 3

sparse 602 3 837 3 230 21.77 6 463 6 434 5 214 833 1 192
602 3 786 3 239 21.55 6 479 3 472 5 243 941 0
603 3 910 3 340 23.37 66 81 6 365 5 576 130 0

p = 0.1 152 1 202 628 4 860.24 76 856 966 103 117 567 126 934 019 166 594 479
152 1 130 627 0.83 1 578 1 126 196 093 4 972
151 1 207 644 1.01 1 603 1 715 206 732 6 260

p = 0.15 80 531 243 24 002.49 1 063 679 952 1 327 673 517 397 529 584 225 500 975
80 492 244 0.11 1 248 898 29 450 1 753
80 501 242 0.73 33 769 47 098 38 331 9 488

Table 2: Statistics for selected Clique Cover instances. Here, p is the edge probability, runtime is in seconds,
|C| is the size of the clique cover, “search tree” is the number of nodes in the search tree, and “Rule r” is the
number of applications of Rule r.

lem kernel, can cope with some of the outliers but not
all. Hence it is an intriguing open question whether
there are further data reduction rules that can cope
with the remaining outliers. In parallel, this might also
lead to a better upper bound on the problem kernel size
and improved fixed-parameter tractability for Clique
Cover.
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