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Abstract

A c-interval is the disjoint union of c intervals over N. The c-IntervalMulticover problem is the special case of SetMulticover
where all sets available for covering are c-intervals. We strengthen known APX-hardness results for c-IntervalMulticover, show
W[1]-hardness when parameterized by the solution size, and present fixed-parameter algorithms for alternative parameterizations.
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1. Introduction

For a positive integer n, we consider the ground set {1, . . . , n}
whose elements we call positions. A c-interval is the disjoint
union of c intervals. We study the following problem:

c-IntervalMulticover
Input: A multiset C of c-intervals over {1, . . . , n} and a de-

mand function d : {1, . . . , n} → N.
Output: A minimum-size cover S ⊆ C such that each posi-

tion i ∈ {1, . . . , n} is contained in at least d(i) c-intervals
of S.

The c-Interval Multicover problem is a special case of the
well-known SetMulticover problem, in which the multiset C
may consist of arbitrary sets and is not constrained to c-intervals.
Special cases and generalizations of c-IntervalMulticover have
been considered in the literature [3, 4, 10]:

(1) Ding, Fu, and Zhu [3, 4] investigate the special case
m-Fold c-Interval Cover, where d(i) = m for all i ∈ {1, . . . , n}.
They are particularly interested in the case of c = 2 and m = 1,
which they call Paired-End Interval Cover.

(2) Hochbaum and Levin [10] consider Multi-Shift Schedul-
ing, a generalization where each input c-interval can be used
multiple times in the cover. This problem can be modeled as
c-Interval Multicover by duplicating each input c-interval
maxi∈{1,...,n} d(i) times. This transformation works in polynomial
time if the input multiset C is represented as an ordinary set that
stores the multiplicity of each element in binary.
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1-IntervalMulticover can be solved in polynomial time by
a greedy algorithm [10]. 1-Fold 2-Interval Cover is NP-hard
even if each input 2-interval contains at most three positions [3,
4]. However, if each 2-interval contains at most two positions,
then the problem is polynomial-time solvable by techniques
from matching theory [3, 4, 10]. 1-Fold 3-Interval Cover is
APX-hard due to a simple reduction from Set Cover [3, 4, 10].

In Section 2, we strengthen known results in the context of ap-
proximation algorithms [14]. In Section 3, we complement them
by results in the context of parameterized complexity [6, 8, 13].

Related work. 1-Fold c-Interval Cover is a special case of
Set Cover, in which the sets used for covering form c-inter-
vals. More precisely, if we view a Set Cover instance as a
binary matrix A = (ai, j) with ai, j = 1 if i is in the j-th set and
ai, j = 0 otherwise, then the goal is to select a minimum number
of columns such that at least one 1 from each row is selected. In
this setting, 1-Fold c-Interval Cover is the special case where
each column contains at most c blocks of consecutive ones. The
literature contains some hardness results and fixed-parameter
algorithms for the special case where each row consists of blocks
of consecutive ones [5, Section 4.2.2]. However, these results
do not seem to transfer to our problem. Similarly, the fixed-
parameter tractability results for problems on intersection graphs
of c-intervals [7] do not seem to carry over to our problem, as
an intersection graph cannot store the information on which
c-intervals contain which positions.

2. Approximation

Ding et al. [4] give a factor-2c(4m− 1) approximation algorithm
for m-Fold c-Interval Cover. As noted earlier by Hochbaum
and Levin [10], one can in fact get a factor-c approximation by
splitting each c-interval into c intervals and solving the resulting
m-Fold 1-Interval Cover instance optimally by using a greedy
algorithm. The c-approximation of Hochbaum and Levin [10]
even works for the more general c-IntervalMulticover.
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We note that it is possible to construct examples where the
factor c is attained; thus, to improve the factor, it is necessary to
improve the algorithm and not just its analysis.

2.1. A stronger APX-hardness result

1-Fold c-Interval Cover is APX-hard for c ≥ 3 [10, 3, 4]. We
strengthen this negative result to 1-Fold 2-Interval Cover. Our
hardness result holds for very restricted types of 2-intervals,
thus establishing a sharp separation line between easy and hard
cases (recall that the case where each 2-interval consists of two
length-1 intervals is polynomial-time solvable).

Theorem 1. 1-Fold 2-Interval Cover is APX-hard even if each
input c-interval is either

• a 1-interval of length 3, or

• a 2-interval consisting of length-1 intervals.

Proof. We reduce from the following APX-hard problem [11]:

Maximum Bounded 3-DimensionalMatching
Input: Pairwise disjoint sets X,Y,Z and triples T ⊆ X ×Y ×Z

where every element of X ∪ Y ∪ Z occurs in at most three
triples of T .

Output: Find a maximum-size matching T ′ ⊆ T such that no
two triples in T ′ agree in any coordinate.

Given an instance P = (X,Y,Z,T ) of Maximum Bounded
3-DimensionalMatching, we construct an instance P′ of 1-Fold
2-Interval Cover on a ground set of |X ∪ Y ∪ Z|+ 3|T | positions.
First, for each e ∈ X ∪ Y ∪ Z, we allocate a position A(e), which
we call type A, and for each triple t = (x, y, z) ∈ T , we allocate
three consecutive positions B(t, x), B(t, y), B(t, z), which we call
type B. The actual positions allocated are arbitrary except that
the three positions for a triple are consecutive. Then, for each
e ∈ X ∪ Y ∪ Z and each t ∈ T , we add a 2-interval Ie,t consisting
of the two singleton intervals A(e) and B(t, e). Finally, for each
t = (x, y, z) ∈ T , we add a 1-interval It = {B(t, x), B(t, y), B(t, z)}.

Claim 1. Let n := |X∪Y ∪Z|. Then, there is a matching T ′ ⊆ T
for P with |T ′| = τ if and only if there is a cover S for P′ with
|S| = n + |T | − τ.

Proof (of claim). (⇒) From a matching T ′ for P with |T ′| = τ,
we can construct a cover S for P′ as follows: first, for each t ∈ T \
T ′, we choose the 1-interval It, and for each t = (x, y, z) ∈ T ′, we
choose the three 2-intervals Ix,t, Iy,t, Iz,t. This covers all positions
of type B, and since the elements of T ′ are distinct in each coor-
dinate, it also covers 3τ positions of type A. We then cover each
of the n − 3τ still uncovered positions of type A with arbitrary
2-intervals. The cover has size (|T |−τ)+3τ+(n−3τ) = n+ |T |−τ.

(⇐) Consider any cover for P′ of size n + |T | − τ. We first
canonicalize the cover without making it larger: while there is a
position A(e) for some e ∈ X ∪Y ∪Z that is covered by a 2-inter-
val Ie,t = {A(e), B(t, e)} and another 2-interval, replace Ie,t by It.
We obtain a cover for P′ of size at most n+|T |−τwhere each posi-
tion A(e) is covered by exactly one 2-interval Ie,t. Thus, the cover
contains at most |T |−τ of the intervals It. Consequently, at least τ

of the intervals It are not contained in the cover. We now choose
as a matching T ′ for P those τ triples t for which It is not in the
cover. This is indeed a matching: if two selected triples t, t′ were
to coincide in an element e, then the positions B(t, e) and B(t′, e)
would need to be covered by two 2-intervals Ie,t and Ie,t′ , which
is not possible after our preprocesing. �

Now assume that we have an algorithm that approximates
1-Fold 2-Interval Cover within a factor of (1 + ε). If the
optimal solution for P is τ∗ and n := |X ∪ Y ∪ Z|, then we can
find a solution of size τ for P with

n + |T | − τ ≤ (1 + ε) · (n + |T | − τ∗). (*)

Since each element occurs in at most three triples, we have
|T | ≤ 3n. Moreover, each triple conflicts with at most six
other triples in T , and hence τ∗ ≥ |T |/7. Finally, after deleting
elements from X ∪ Y ∪ Z that are not contained in any triple,
we have 3|T | ≥ n. This yields

(1 + ε) · τ∗
(*)
≤ τ + ε · (n + |T |) ≤ τ + 4ε · n
≤ τ + 4ε · 3|T | ≤ τ + 84ε · τ∗

=⇒ τ ≥ (1 − 83ε) · τ∗.

Thus, if 1-Fold 2-Interval Cover is approximable to an arbitrary
factor, then also Maximum Bounded 3-Dimensional Matching
is, implying APX-hardness for 1-Fold 2-Interval Cover. �

3. Parameterized Complexity

Ding et al. [3, 4] note that if each position occurs in at most
t c-intervals and k := |S| is the size of the solution, then m-Fold
c-Interval Cover can be solved in tk · nO(1) time by a branching
algorithm. That is, it is fixed-parameter tractable with respect to
the combined parameter (k, t). Regarding tractability for param-
eter k alone, we prove that already 1-Fold 2-Interval Cover is
W[1]-hard when parameterized by k (Section 3.1), thus not fixed-
parameter tractable unless FPT = W[1]; only for very restricted
instances we obtain tractability (Section 3.2). We obtain another
positive result for a cutwidth-like parameter (Section 3.3).

3.1. Parameter “solution size”
Theorem 2. 1-Fold 2-Interval Cover is W[1]-hard with re-
spect to the parameter “number k of c-intervals to be selected”.

Proof. We prove W[1]-hardness by a parameterized reduction
from the W[1]-hard Multicolored Clique problem [7] to 1-Fold
2-Interval Cover.

Multicolored Clique
Input: A graph G = (V, E), an integer k ∈ N, and vertex

colors φ : V → [1, k].
Question: Is there a vertex subset V ′ ⊆ V that induces a

clique in G and contains exactly one vertex of each color?

Let (G, φ, k) be an instance of Multicolored Clique, where G =

(V, E). For convenience, let V = {1, . . . , n} and E = {e1, . . . , em}.
We construct an instance (C, k′) of 1-Fold 2-Interval Cover that
is yes if and only if (G, φ, k) is yes for Multicolored Clique.

2



That is, the instance (C, k′) will allow for a cover with at most
k′ 2-intervals if and only if G contains a clique C of size at least k
and φ(C) = [1, k].

We will construct two types of gadgets: Edge selection gad-
gets and testing gadgets, following the established strategy of
modeling Multicolored Clique as the task of selecting one
edge for each color pair and then checking consistency, that
is, whether the selected edges select only one vertex of each
color. Each gadget will have its private set of positions, but,
for convenience, in the construction of each gadget we always
start with position 0. The understanding is that we can turn
all these position sets into a single ground set of consecutive
positions [0,N] by using appropriate offsets. All constructed
intervals will be fully contained in the position set of a single
gadget but 2-intervals may be composed of intervals from dif-
ferent gadgets. Finally, we will shorthand K := 4(k − 2), which
will turn out to be the number of copies that we have to make
for each edge selection in order to test for consistency.

Edge selection gadgets. For each color combination {i, j} ⊆
[1, k] we create an edge selection gadget S ({i, j}) as follows.
The set of positions is [0,m · K + 1]. For each e` = {u, v} ∈ E
with {φ(u), φ(v)} = {i, j}, that is, for every edge with endpoints
of color i and j, we introduce a 2-interval

I{i, j},` = [0, (` − 1) · K] ] [` · K + 1,m · K + 1].

In other words, the 2-interval I{i, j},` contains all positions of the
gadget except for K consecutive positions in [(`−1) ·K +1, ` ·K].
Moreover, these K positions are disjoint for every two different
of these 2-intervals. We will use the requirement to cover these
positions to test the consistency of the

(
k
2

)
edge selections. For

the moment, let us only introduce singleton intervals [s, s] for all
s ∈ [1,m ·K] to use them later for 2-intervals; note that there are
no such singletons for the first and last position in the gadget.

Testing gadgets. The following testing gadgets test the consis-
tency of the edge selections. Concretely, if we choose edge e` for
colors i and j and edge e`′ for colors i and j′, then we want the
endpoints of color i in both edges to be the same. For technical
reasons we make two gadgets T ( j, i, j′) and T ( j′, i, j) for each
such test, that is, there will be k(k − 1)(k − 2) testing gadgets.

We explain how to construct T ( j, i, j′) for {i, j, j′} ⊆ [1, k]:
The set of positions is [0, n + 1]. For every edge e` = {u, v} with
φ(u) = j and φ(v) = i we introduce an interval [0, v] (recall that
v ∈ V = [1, n]). For every edge e`′ = {v′,w} with φ(v′) = i and
φ(w) = j′ we introduce an interval [v′ + 1, n + 1]. It is important
to note the asymmetry of this construction, that is, we are
checking the interaction of edges from colors j and j′ to color i
but the ordering of j and j′ in T ( j, i, j′) is relevant. The idea
is that the intervals [0, v] and [v′ + 1, n + 1] together cover all
positions if and only if v′ ≤ v. Moreover, since we also create
the gadget T ( j′, i, j), where the roles will be exchanged, we
can cover both sets of positions only with intervals belonging
to e` and e`′ if and only if v = v′. Otherwise, if v , v′ then using
only these intervals will give an overlap of the intervals in one
of T ( j, i, j′) and T ( j′, i, j), and an uncovered gap in the other.

Connecting the gadgets. At this point we have all intervals
that we need for our construction but we still need to combine
them into 2-intervals. Concretely, let e` = {u, v} be any edge
and assume {φ(u), φ(v)} = {i, j}. We have intervals associated
with e` in the testing gadgets T ( j, i, j′) and T ( j′, i, j) for
j′ ∈ [1, k] \ {i, j}, that is, for checking consistency for color i,
and in testing gadgets T (i, j, i′) and T (i′, j, i) for i′ ∈ [1, k] \ {i, j},
that is, for checking consistency for color j. Overall, these are
4(k − 2) = K intervals, matching the K singleton intervals that
are left uncovered when we pick interval I{i, j},` corresponding
to e` in selection gadget S ({i, j}). We recall that these positions
are disjoint for different choices of edges in S ({i, j}). Thus, we
may arbitrarily pair up the singleton intervals with intervals in
the mentioned K testing gadgets. Together with the 2-intervals
previously created in the selection gadgets (and modulo
arranging all gadgets such that we get a consecutive sequence
of positions) this defines the final set C of 2-intervals.

Setting the budget. The budget k′ is set to
(

k
2

)
+ 2k(k − 1)(k − 2).

This is intended to be used by picking exactly one interval I{i, j},`
in each of the

(
k
2

)
selection gadgets S ({i, j}) and picking exactly

two intervals in each testing gadget T ( j, i, j′). It is easy to see
that this is correctly enforced: Singleton intervals in S ({i, j}) do
not contain positions 0 or m · K + 1, forcing selection of at least
one interval I{i, j},`. Similarly, in any testing gadget T ( j, i, j′) we
have no interval containing both position 0 and position n + 1
and, thus, require at least two intervals to be chosen. Hence,
we already need at least k′ 2-intervals and may not select any
further ones. Whether or not the created instance has a cover
with k′ 2-intervals thus depends on the singleton intervals that
are paired up with intervals in testing gadgets.

This completes the construction. It can be checked that it can
be implemented to work in polynomial time. The output is the
instance (C, k′) of 1-Fold 2-Interval Cover.

Correctness. (⇒) Assume first that (G, φ, k) is yes for Multicol-
ored Clique and let C = {v1, . . . , vk} ⊆ V be a clique in G with
φ(vi) = i. We will construct a size-k′ cover for the created 1-Fold
2-Interval Cover instance. In the selection gadgets S ({i, j}), we
pick the 2-interval I{i, j},`({i, j}) with e`({i, j}) = {vi, v j}. Additionally,
we pick all 2-intervals that contain the K singletons that are not
covered by I{i, j},`({i, j}) in S ({i, j}). This yields exactly(
k
2

)
· (1 + K) =

(
k
2

)
+

(
k
2

)
· (4(k− 2)) =

(
k
2

)
+ 2k(k− 1)(k− 2) = k′

2-intervals S ⊆ C, which clearly covers all positions in edge
selection gadgets S ({i, j}).

Now consider any testing gadget T ( j, i, j′) for {i, j, j′} ⊆ [1, k].
We selected all 2-intervals containing singletons for edges {vi, v j}

and {vi, v j′ } in the respective selection gadgets S ({i, j}) and
S ({i, j′}). Thus, by construction, these 2-intervals also contain
the intervals associated with these edges in T ( j, i, j′). Concretely,
these intervals are [0, vi] and [vi + 1, n + 1] (noting that in the
construction we have u = v j, v = vi, v′ = vi, and w = v j′ ). Thus,
all positions in T ( j, i, j′) are covered. It follows that S is indeed
a solution for the instance (C, k′), as claimed.
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(⇐) Now assume that we have a size-k′ cover S ⊆ C for the
created 1-Fold 2-Interval Cover instance. We already know
that it contains exactly one 2-interval I{i, j},`({i, j}) of each selection
gadget S ({i, j}), so let e`({i, j}) be the corresponding edges of G.
By construction, these edges have the correct endpoint colors
since that was prerequisite for adding 2-intervals to S ({i, j}). It
also follows that S contains all 2-intervals that contain the K sin-
gleton intervals left uncovered by I{i, j},`({i, j}) in S ({i, j}) since only
one 2-interval I{i, j},· can be afforded in budget k′. In total, we find
that the choices of I{i, j},`({i, j}) and the implied singletons already
account for the total budget: There are

(
k
2

)
gadgets S ({i, j}) and

in each we pick a 2-interval and K singletons, which gives a
total of k′ 2-intervals (by the same computation as above). We
are now prepared to prove the consistency of the edge selections.

Pick any color combination {i, j, j′} ⊆ [1, k], let e`({i, j}) = {v, u}
and e`({i, j′}) = {v′,w} with φ(v) = φ(v′) = i, φ(u) = j and
φ(w) = j′. We want to establish v = v′. Assume that this is
not the case. Then, w. l. o. g., we have v < v′. Consider the
testing gadget T ( j, i, j′), which, by assumption, is covered
by S. By tightness of the budget, we know that S contains
exactly two intervals in T ( j, i, j′). Since v < v′, the cover S
cannot use exactly the two intervals corresponding to e`({i, j})
and e`({i, j′}): By construction, the corresponding intervals
are [0, v] and [v′ + 1, n + 1] and fail to cover position v′.
This, however, yields a contradiction since S can only use
such intervals in T ( j, i, j′) that are paired up with singletons
corresponding to e`({i, j}) or e`({i, j′}). It follows that v = v′.

Thus, the
(

k
2

)
edges e`({i, j}) agree on all their endpoints of the

same color. Hence, there is only one endpoint of each color and
the edges are the edge set of a k-clique in G containing vertices
of all k colors (as given by φ). Thus, (G, φ, k) is yes, as claimed.

Let us wrap up the proof. We gave a reduction from Mul-
ticolored Clique to 1-Fold 2-Interval Cover that can be imple-
mented in polynomial time and produces an equivalent instance
with a parameter value k′ that depends only on the input parame-
ter k. This fulfills the requirements of a parameterized reduction
and implies W[1]-hardness of 1-Fold 2-Interval Cover. �

3.2. 1-intervals and short c-intervals

In contrast to Theorem 2, we can show that 1-Fold 2-Interval
Cover is fixed-parameter tractable when combining the param-
eter k with the parameter “maximum number C of positions
contained in any non-1-interval”.

Theorem 3. Given an upper bound k on the size of an optimal
solution and assuming each input c-interval to be either

• a 1-interval, or

• to contain at most C positions,

2-IntervalMulticover is solvable in O(kk · (kC)kC · |C|) time.

Our algorithm for Theorem 3 makes use of two simple data
reduction rules. The first data reduction rule exploits the fact
that a solution of size at most k can contain at most k copies of
any input c-interval.

Reduction Rule 1. If a c-interval occurs in the input more than
k times, then delete one of its copies.

The second data reduction rule exploits the fact that, if some
position i has a demand d(i) ≤ 0, then the size of an optimum
solution does not change if we delete this position from the input.

Reduction Rule 2. If there is a position i with d(i) ≤ 0, then
compute new demands d′ : {1, . . . , n − 1} → Z,

d′( j) 7→

d( j) if j < i
d( j + 1) if j ≥ i,

replace each input c-interval I ∈ C by the new c-interval

I′ := { j < i | j ∈ I} ∪ { j ≥ i | j + 1 ∈ I},

and decrement n by one.

Finally, our algorithm for Theorem 3 exploits the following
observation.

Observation 1. If a solution S contains a 1-interval I = [ j, `]
and there is a 1-interval I′ = [ j, `′] < S with `′ > `, then there is
a solution with the same size as S and containing I′ instead of I.

Proof (of Theorem 3). Given a natural number k, the algorithm
tries to find a solution of size at most k using a simple branching
strategy. In each step of the algorithm, we assume the input to
be completely reduced with respect to Reduction Rules 1 and 2.
This can always be achieved in O(n · |C|) time. Now, start with
position i := 1 and execute the following steps.

(1) Branch into all possibilities for choosing the first starting
position i′ ≥ i of a 1-interval in an optimal solution. Since all
positions have positive demand, the positions before i′ have
to be covered by non-1-intervals. Thus, i′ ≤ i + kC, since a
non-1-interval contains at most C positions and an optimal
solution contains at most k c-intervals. It follows that we branch
into at most kC possibilities for i′.

(2) Branch into all possibilities for choosing the number 1 ≤
z ≤ k of 1-intervals starting at position i′ in an optimal solution.

(3) Compute the set S of the z longest intervals starting in i′.
By Observation 1, we can assume these to be part of an optimal
solution. Hence, add the intervals in S to our solution, delete
them from our input instance, decrement k by z and decrement
each demand d(i) by the number of intervals in S containing i.

(4) If i < n and k > 0, then increment i by one and go to (1).

(5) If i ≥ n and k > 0, then branch into all possibilities of
choosing a non-1-interval I into the solution. In each case,
decrement k and the demands of the positions contained in I
by one and repeat (5).

The algorithm is correct since, for each position i, we try all
possibilities for the number z ≤ k of 1-intervals starting at i in
an optimal solution and, by Observation 1, make an optimal
choice among these z 1-intervals. When all 1-intervals are fixed,
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(5) tries all possibilities of covering the remaining positions
using at most k non-1-intervals.

It remains to analyze the running time of the algorithm.
Clearly, each search tree node can be processed in O(n · |C|) time.
For the number of search tree nodes, notice that step (1)
followed by (2) branches into at most k2C cases, in each of
which k is decremented by at least one.

In (5) all remaining positions with positive demand have
to be covered by at most k non-1-intervals, each containing
at most C positions. Hence, there are n ≤ kC positions left
or the algorithm can answer “no” in this branch. Since each
remaining non-1-interval occurs at most k times, there are at
most k · (kC)C non-1-intervals left, which is the number of cases
that step (5) branches into.

Since the depth of the search tree is bounded by k, it has
O(kk · (kC)kC) nodes, each of which can be processed in
O(n · |C|) time. �

3.3. Cutwidth-like parameters

We now consider the parameter “maximum number Q of c-inter-
vals live at any position”.

Definition 1. A c-interval I is live at position i ∈ N if there
are j, k ∈ I with j ≤ i ≤ k.

Note that a c-interval does not have to contain position i in order
to be live at position i. Similar parameters of “live objects” have
been previously exploited in interval scheduling tasks [1, 9].

We show that c-IntervalMulticover is solvable in O(4QQ ·
n) time if each position has at most Q live c-intervals. Our
algorithm actually solves the more general SetMulticover:

SetMulticover (SMC)
Input: A universe U, a multiset C ⊆ 2U , and a demand func-

tion d : U → N.
Output: Find a minimum-size set multicover S ⊆ C that cov-

ers each element u ∈ U at least d(u) times.

We show that SetMulticover can be solved in O(4tt · n) time if
a linear layout of cutwidth at most t of its universe is given.

Definition 2. A linear layout of cutwidth at most t for a Set
Multicover instance (U,C) is an injective function ` : U → N
such that, for each i ∈ N, the multiset Ci := {C ∈ C | ∃u,w ∈ C :
`(u) ≤ i ≤ `(w)} contains at most t elements.

It can be decided in linear time whether a Set Multicover
instance allows for a linear layout of constant cutwidth t [2].
Although it is open whether the corresponding layout is con-
structible in the same time, we exploit the fact that a c-Interval
Multicover instance with at most Q live c-intervals immediately
yields a SetMulticover instance with a linear layout of cutwidth
at most Q. Thus, the following theorem becomes applicable.

Theorem 4. SetMulticover is solvable in O(4tt · n) time if a
linear layout of cutwidth at most t is given.

Proof. We use dynamic programming. Given an Set Multi-
cover instance (U,C), we want to compute a minimum cover S ⊆
C. Without loss of generality, we assume U := {1, 2, . . . , n} to
be labeled in the order of the given linear layout. By assumption,
for all i ∈ N, we have |Ci| ≤ t.

For all S′ ⊆ Ci and i ∈ {1, . . . , n}, we define T [i, S′] to
be the size of a minimum-size S ⊆ C covering each ele-
ment j ∈ {1, . . . , i} at least d( j) times and satisfying S ∩ Ci = S′.
Obviously T [1, S′] = |S′| for all S′ ⊆ C1 that cover position 1 at
least d(1) times. For all other S′ ⊆ C1, we set T [1, S′] = ∞. Now,
for all i ∈ {1, . . . , n−1} and S′ ⊆ Ci+1, we show by induction that

T [i+1, S′] =


∞ if S′ covers i + 1 less than d(i + 1) times,
min
S′′⊆Ci

S′′∩Ci+1=S ′∩Ci

(T [i, S′′] + |S′ \ Ci|) otherwise.

We first show that any set S that covers {1, . . . , i + 1} satis-
fies |S| ≥ T [i + 1, S′], where S′ = S ∩ Ci+1. Observe that
Z := (S \ Ci+1) ∪ (S ∩ Ci) covers {1, . . . , i}. By the induction
hypothesis, for S′′ := Z ∩ Ci, we have |Z| ≥ T [i, S′′]. Moreover,
S′′ ∩ Ci+1 = S ∩ Ci ∩ Ci+1 = S′ ∩ Ci. Thus, by definition,
T [i+1, S′] ≤ T [i, S′′]+|S′\Ci| ≤ |Z|+|S′\Ci| = |Z∪(S′\Ci)| = |S|.

We now show that there is a set S with Ci+1 ∩ S = S′ that
covers {1, . . . , i + 1} and contains at most T [i + 1, S′] elements.
If T [i + 1, S′] , ∞, then T [i + 1, S′] = T [i, S′′] + |S′ \ Ci| for
some S ′′ ⊆ Ci. Thus, by the induction hypothesis, there is a set
Z that covers {1, . . . , i} and contains at most T [i, S′′] elements.
Moreover, S′ covers position i + 1 at least d(i + 1) times. Thus,
Z ∪ S′ covers {1, . . . , i + 1}. We next compute its size. Without
loss of generality, we assume that Z ∩ (Ci+1 \ Ci) = ∅ because
sets in Ci+1 \ Ci cannot cover positions in {1, . . . , i}. Hence,
|Z ∪ S′| = |Z ] (S′ \ Ci)| ≤ T [i, S′′] + |S′ \ Ci|.

Using the above recurrence, we can compute T [n, S′] for
all S′ ⊆ Cn in O(4tt · n) time. The optimal solution to the Set
Multicover instance is arg minS′⊆Cn T [n, S′]. �

Since a c-Interval Multicover instance with at most Q live
c-intervals is a SetMulticover instance with a linear layout of
cutwidth at most Q, we obtain the following corollary.

Corollary 1. If there are at most Q c-intervals live at any posi-
tion, then c-IntervalMulticover is solvable in O(4QQ · n) time.

4. Conclusion

We studied special cases of the well-known Set Multicover
problem. Since we showed that even very restricted variants of
the problem remain APX-hard and since a simple factor-c ap-
proximation for c-IntervalMulticover is known [10], a canon-
ical question is whether this factor c can be improved. Herein,
fixed-parameter approximation algorithms could be useful [12].

For parameterized algorithms, an interesting parameter to
investigate in future research would be the maximum distance
between the first and last position contained in a c-interval.

Finally, it would be interesting to consider the related exact
cover and packing variants of c-Interval Multicover, that is,
finding a subset of c-intervals covering each position i exactly
d(i) times or finding a maximum-size subset covering each posi-
tion i at most d(i) times.
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