
Algorithm Engineering for

Optimal Graph Bipartization

Falk Hüffner?

Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
D-07743 Jena, hueffner@minet.uni-jena.de.

Abstract. We examine exact algorithms for the NP-complete Graph

Bipartization problem that asks for a minimum set of vertices to delete
from a graph to make it bipartite. Based on the “iterative compression”
method recently introduced by Reed, Smith, and Vetta, we present new
algorithms and experimental results. The worst-case time complexity is
improved from O(3k · kmn) to O(3k · mn), where n is the number of
vertices, m is the number of edges, and k is the number of vertices to
delete. Our best algorithm can solve all problems from a testbed from
computational biology within minutes, whereas established methods are
only able to solve about half of the problems within reasonable time.

1 Introduction

There has recently been a much increased interest in exact algorithms for NP-
hard problems [23]. All of these exact algorithms have exponential run time,
which at first glance seems to make them impractical. This conception has been
challenged by the view of parameterized complexity [6]. The idea is to accept
the seemingly inevitable combinatorial explosion, but to confine it to one aspect
of the problem, the parameter. If for relevant inputs this parameter remains
small, then even large problems can be solved efficiently. Problems for which
this “confining” is possible are called fixed-parameter tractable.

The problem we focus on here is Graph Bipartization, also known as
Maximum Bipartite Subgraph or Odd Cycle Transversal. It is NP-
complete [13] and MaxSNP-hard [19]; the best known polynomial-time approxi-
mation is by a logarithmic factor [9]. It has numerous applications, for example
in VLSI design [1, 12], computational biology [21, 18], and register allocation [24].

In a recent breakthrough paper, solving a more than five years open ques-
tion [14], Reed, Smith, and Vetta [20] proved that the Graph Bipartization

problem on a graph with n vertices and m edges is solvable in O(4k · kmn)
time, where k is the number of vertices to delete. The basic idea is to construct
size-k solutions from already known size-(k + 1) solutions, the so-called iterative

compression. Their algorithm is of high practical interest for several reasons: the
given fixed-parameter complexity promises small run times for small parameter

? Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.

values; no intricate algorithmic concepts with extensive implementation require-
ments or large hidden runtime costs are used as building blocks; and being able
to “optimize” given solutions, it can be combined with known and new heuristics.

In this work we demonstrate by experiments that iterative compression is
in fact a worthwhile alternative for solving Graph Bipartization in practice.
Thereby, we also shed more light on the potential of iterative compression, which
has already found applications in other areas as well [3, 4, 11, 16]. The structure
of this work is as follows: In Sect. 3 we give a top-down presentation of the
Reed-Smith-Vetta algorithm with the goal of making this novel algorithm tech-
nique accessible to a broader audience. Moreover, it prepares the ground for
several algorithmic improvements in Sect. 4. In Sect. 5 we present experimental
results with real-world data (Sect. 5.1), synthetic application data (Sect. 5.2),
and random graphs (Sect. 5.3).

2 Preliminaries

By default, we consider only undirected graphs G = (V, E) without self-loops,
where n := |V | and m := |E|. We use G[V ′] to denote the subgraph of G induced
by the vertices V ′ ⊆ V . For a set of vertices V ′ ⊆ V , we write G \ V ′ for the
graph G[V \ V ′]. With a side of a bipartite graph G, we mean one of the two
classes of an arbitrary but fixed two-coloring of G. A vertex cut between two
disjoint vertex sets in a graph is a set of vertices whose removal disconnects these
two sets in the graph.

Definition 1 (Graph Bipartization). Given an undirected graph G = (V, E)
and a nonnegative integer k. Does G have an odd cycle cover C of size at most k,

that is, is there a subset C ⊆ V of vertices with |C| ≤ k such that each odd cycle

in G contains at least one vertex from C? Note that the removal of all vertices

in C from G results in a bipartite graph.

We investigate Graph Bipartization in the context of parameterized com-
plexity [6] (see [5, 7, 8, 17] for recent surveys). A parameterized problem is called
fixed-parameter tractable if it can be solved in f(k) · nO(1) time, where f is a
function solely depending on the parameter k, not on the input size n.

For comparison, we examined two alternative implementations: one by Wer-
nicke based on Branch-and-Bound [22], and one based on the following simple
integer linear program (ILP):

C1, . . . , Cn, s1, . . . , sn : binary variables
minimize

∑n

i=1 Ci

s. t. ∀{v, w} ∈ E : sv + sw + (Cv + Cw) ≥ 1
∀{v, w} ∈ E : sv + sw − (Cv + Cw) ≤ 1

The ILP performs surprisingly well; when solved by GNU GLPK [15], it con-
sistently outperforms the highly problem-specific Branch-and-Bound approach
by Wernicke on our test data, sometimes by several orders of magnitude. There-
fore, we use it as the main comparison point for the performance of our algo-
rithms.

3 A Top-Down Presentation of the Reed-Smith-Vetta

Algorithm

In this section we present in detail the algorithm for Graph Bipartization as
described by Reed, Smith, and Vetta [20]. While they focus on the correctness
proof and describe the algorithm only implicitly, we give a top-down description
of the algorithm while arguing for its correctness, thereby hopefully making the
result of Reed et al. more accessible.

The global structure is illustrated by the function Odd-Cycle-Cover. It
takes as input an arbitrary graph and returns a minimum odd cycle cover.

Odd-Cycle-Cover(G = (V, E))
1 V ′ ← ∅
2 C ← ∅
3 for each v in V
4 do V ′ ← V ′ ∪ {v}
5 C ← Compress-OCC(G[V ′], C ∪ {v})
6 return C

The routine Compress-OCC takes a graph G and an odd cycle cover C
for G, and returns a smaller odd cycle cover for G if there is one; otherwise,
it returns C unchanged. Therefore, it is a loop invariant that C is a minimum
odd cycle cover for G[V ′], and since eventually V ′ = V , we obtain an optimal
solution for G.

It remains to implement Compress-OCC. The idea is to use an auxiliary
graph H(G, C) constructed from G = (V, E) and C as follows (see Fig. 1 (a)
and (b)):

– Remove the vertices in C from G and determine the sides of the remaining bi-
partite graph (in Fig. 1 (a), one side comprises {b, d} and the other {e, f, h}).

– For each c ∈ C, add a vertex c1 to one side and another vertex c2 to the
other side.

– For each edge {v, c} ∈ E with v /∈ C and c ∈ C, connect v to that vertex
from c1 and c2 that is on the other side (see the bold lines in Fig. 1 (b)).

– For each edge {c, d} ∈ E with both c, d ∈ C, arbitrarily connect either c1

and d2 or c2 and d1 (for example in Fig. 1, we chose {g1, c2}).

The crucial property of the resulting graph H is that every odd cycle in G
that contains a vertex c ∈ C implies a path (c1, . . . , c2) in H . This means that
all odd cycles in G can be found as such paths in H , since the vertices in C
touch all odd cycles. For example, the triangle d, c, h in G (Fig. 1 (a)) can be
found as path (c1, h, d, c2) in H(G, C) (Fig. 1 (b)).

Therefore, if we could find a set C′ of vertices whose removal disconnects for
each c ∈ C the two vertices c1 and c2 in H , then C′ is an odd cycle cover for G.
Unfortunately, solving this multi-cut problem is still NP-complete. Consider,
however, a partition of the vertices

⋃
c∈C{c1, c2} such that for all c ∈ C the two

copies c1 and c2 are in different classes (called a valid partition for C). We can
find a vertex cut between the two classes of a valid partition in polynomial time
by using maximum flow techniques. It is clear that such a cut is also an odd
cycle cover for G, since in particular it separates c1 and c2 for each c ∈ C. It
is not clear, though, that if there is a smaller odd cycle cover for G, then we
will find it as such a cut. This is provided by the following lemma, which while
somewhat technical, does not require advanced proof techniques.

Lemma 1 ([20]). Consider a graph G with an odd cycle cover C with |C| = k
containing no redundant vertices, and a smaller odd cycle cover C′ with C′∩C =
∅ and |C′| < k. Let V ′

1 and V ′
2 be the two sides of the bipartite graph G \ C′.

Then C′ is a vertex cut in H(G, C) between {c1 | c ∈ C ∩V ′
1}∪{c2 | c ∈ C ∩V ′

2}
and {c2 | c ∈ C ∩ V ′

1} ∪ {c1 | c ∈ C ∩ V ′
2}.

That is, provided C′ ∩C = ∅, we can in fact find C′ as a vertex cut between
the two classes of a valid partition, namely the valid partition (V1, V2) that can
be constructed as follows: for c ∈ C, if c is on the first side of G \ C′, put c1

into V1 and c2 into V2; otherwise, put c2 into V1 and c1 into V2. For the proof
we refer to Reed et al. [20].

To meet the requirement of C′ ∩ C = ∅, we simply enumerate all 2k sub-
sets Y ⊆ C; the sets Y are odd cycle covers for G \ (C \ Y). We arrive at the
following implementation of Compress-OCC.

Compress-OCC(G, C)
1 for each Y ⊆ C
2 do H ← Aux-Graph(G \ (C \ Y), Y)
3 for each valid partition (Y1, Y2) of Y
4 do if ∃ vertex cut D in H between Y1 and Y2 with |D| < |Y |
5 then return (C \ Y) ∪D
6 return C

We examine every subset Y of the known odd cycle cover C. For each Y ,
we look for smaller odd cycle covers for G that can be constructed by replacing
the vertices of Y in C by fewer new vertices from V \C (clearly, for any smaller
odd cycle cover, such a Y must exist). Since we thereby decided to retain the
vertices in C \Y in our odd cycle cover, we examine the graph G′ := G\ (C \Y).
If we now find an odd cycle cover D for G′ with |D| < |Y |, we are done, since
then (C \ Y) ∪ D is an odd cycle cover smaller than C for G. To find an odd
cycle cover for G′, we use its auxiliary graph H and Lemma 1.

Example. Let us now examine an example for Compress-OCC (see Fig. 1).
Given is a graph G and an odd cycle cover C = {a, c, g}, marked with cir-
cles (Fig. 1 (a)). Observe that partitioning the remaining vertices into {b, d}
and {e, f, h} induces a two-coloring in G \ C; only the bold edges conflict with
this two-coloring in G. The function Compress-OCC now tries all subsets Y
of C; we give two examples, first Y = C. We construct the auxiliary graph H
(Fig. 1 (b)). Note how by selecting a suitable copy of the duplicated vertices

a

b bb

c

d dd

e ee

f ff

g

h hh

a1 a1

c1

g1 g1

a2 a2

c2

g2 g2

(a) (b) (c)

Fig. 1. Construction of auxiliary graphs in Compress-OCC. (a) G with C = {a, c, g};
(b) H for Y = {a, c, g}; (c) H for Y = {a, g}

from Y for the bold edges, we can honor the two-coloring (for example, we
chose a2 over a1 for the edge {a, b}). The algorithm will now try to find a vertex
cut of size less than 3 for some valid partition. Consider for example the valid
partition {a1, c2, g1} and {a2, c1, g2}. With (a1, e, b, a2), (c2, d, g2), and (g1, f, c1),
we can find 3 vertex-disjoint paths between the two classes, so there is no vertex
cut smaller than 3. In fact, for this choice of Y , there is no valid partition with
a vertex cut smaller than 3. Next, we examine the case Y = {a, g} (Fig. 1 (c)).
Here we succeed: for the valid partition {a1, g1}, {a2, g2}, the set D := {b} is
a vertex cut of size 1. Note this valid partition corresponds to a two-coloring
of G \ ((C \ Y) ∪ D). We can now construct a smaller odd cycle cover for G
as (C \ Y) ∪D = {b, c}.

Note that although Lemma 1 does not promise it, we might also find a vertex
cut that leads to a smaller odd cycle cover for some Y with Y ∩ C′ 6= ∅. For
example, had we chosen to insert the edge {c1, g2} instead of {c2, g1} in Fig. 1 (b),
we would have found the cut {b, c1} between {a1, c1, g1} and {a2, c2, g2}, leading
to the odd cycle cover {b, c}. Therefore, in practice one can find a smaller odd
cycle cover often much faster than predicted by the worst case estimation.

Running Time. Reed et al. [20] state the run time of their algorithm as O(4k ·
kmn); a slightly more careful analysis reveals it as O(3k · kmn). For this, note
that in effect the two loops in line 1 and 3 of Compress-OCC iterate over all
possible assignments of each c ∈ C to 3 roles: either c ∈ C \ Y , or c ∈ Y1,
or c ∈ Y2. Therefore, we solve 3k flow problems, and since we can solve one flow
problem in O(km) time by the Edmonds-Karp algorithm [2], the run time for
one invocation of Compress-OCC is O(3k · km). As Odd-Cycle-Cover calls
Compress-OCC n times, we arrive at an overall run time of O(3k · kmn).

Theorem 1. Graph Bipartization can be solved in O(3k · kmn) time.

4 Algorithmic Improvements

In this section we present several improvements over the algorithm as described
by Reed et al. [20]. We start with two simple improvements that save a constant

factor in the run time. In Sect. 4.1 we then show how to save a factor of k in
the run time, and in Sect. 4.2 we present the improvement which gave the most
pronounced speedups in our experiments presented in Sect. 5.

First, it is easy to see that each valid partition (Y1, Y2) is symmetric to (Y2, Y1)
when looking for a vertex cut, and therefore we can arbitrarily fix the allocation
of one vertex to Y1, saving a factor of 2 in the run time.

The next improvement is justified by the following lemma.

Lemma 2. Given a graph G = (V, E), a vertex v ∈ V , and a minimum odd

cycle cover C for G \ {v} with |C| = k. Then no odd cycle cover of size k for G
contains v.

Proof. If C′ is an odd cycle cover of size k for G, then C′ \ {v} is an odd cycle
cover of size k− 1 for G[V \ {v}], contradicting that |C| is of minimum size. ut

With Lemma 2 it is clear that the vertex v we add to C in line 5 of Odd-

Cycle-Cover cannot be part of a smaller odd cycle cover, and we can omit
the case v /∈ Y in Compress-OCC, saving a third of the cases.

4.1 Exploiting Similarity of Flow Subproblems

The idea here is that the flow problems solved in Compress-OCC are “similar”
in such a way that we can “recycle” the flow networks for each problem. Recall
that each flow problem corresponds to one assignment of the vertices in C to
the three roles “c1 source, c2 target” (c ∈ Y1), “c2 source, c1 target” (c ∈ Y2),
and “not present” (c ∈ C \ Y). Using a so-called (3, k)-ary Gray code [10], we
can enumerate these assignments in such a way that adjacent assignments differ
in only one element. For each of these (but the first one), one can solve the flow
problem by adapting the previous flow:

– If the affected vertex c was present previously, zero the flow along the paths
with end points c1 resp. c2 (note they might be identical).

– If c is present in the updated assignment, find an augmenting path from c1

to c2 resp. from c2 to c1.

Since each of these operations can be done in O(m) time, we can perform
the update in O(m) time, as opposed to O(km) time for solving a flow problem
from scratch. This improves the overall worst case run time to O(3k ·mn). We
call this algorithm OCC-Gray.

Theorem 2. Graph Bipartization can be solved in O(3k ·mn) time.

4.2 Enumeration of Valid Partitions

Lemma 1 tells us that given the correct subset Y of an odd cycle cover C, there is
a valid partition for Y such that we will find a cut in the auxiliary graph leading
to a smaller odd cycle cover C′. Therefore, simply trying all valid partitions will

be successful. However, Lemma 1 even describes the valid partition that will lead
to success: it corresponds to a two-coloring of the vertices in G \C′. This allows
us to omit some valid partitions from consideration. If for example there is an
edge between two vertices c, d ∈ Y , then any two-coloring of G \C′ must place c
and d on different sides. Therefore, we only need to consider valid partitions that
place c and d into different classes. This leads to the following modification of
Compress-OCC:

Compress-OCC’(G = (V, E), C)
1 for each bipartite subgraph B of G[C]
2 do for each two-coloring V1, V2 of B
3 do H ← Aux-Graph(G \ (C \ V (B)), V (B))
4 if ∃ vertex cut D in H between V1 and V2 with |D| < |V (B)|
5 then return (C \ V (B)) ∪D
6 return C

The correctness of this algorithm follows directly from Lemma 1. The worst
case for Compress-OCC’ is that C is an independent set in G. In this case,
every subgraph of G[C] is bipartite and has 2|C| two-colorings. This leads to
exactly the same number of flow problems solved as for Compress-OCC. In
the best case, C is a clique, and G[C] has only O(|C|2) bipartite subgraphs, each
of which admits (up to symmetry) only one two-coloring.

It is easy to construct a graph where any optimal odd cycle cover is indepen-
dent; therefore the described modification does not lead to an improvement of the
worst-case run time. However, at least in a dense graph, it is “unlikely” that the
odd cycle covers are completely independent, and already a few edges between
vertices of the odd cycle cover can vastly reduce the required computation.

Note that with a simple branching strategy, one can enumerate all bipartite
subgraphs of a graph and all their two-colorings with constant cost per two-
coloring. This can also be done in such a way that modifications to the flow
graph can be done incrementally, as described in Sect. 4.1. The two simple
improvements mentioned at the beginning of this section also can still be applied.
We call the thus modified algorithm OCC-Enum2Col.

It seems plausible that for dense graphs, an odd cycle cover is “more likely”
to be connected, and therefore this heuristic is more profitable. Experiments on
random graphs confirm this (see Sect. 5.3). This is of particular interest because
other strategies (such as reduction rules [22]) seem to have a harder time with
dense graphs than with sparse graphs, making hybrid algorithms appealing.

5 Experiments

Implementation Details. The program is written in the C programming lan-
guage and consists of about 1400 lines of code. The source and the test data are
available from http://www.minet.uni-jena.de/˜hueffner/occ.

Data structures. Over 90% of the time is spent in finding an augmenting path
within the flow network; all that this requires from a graph data structure is
enumerating the neighbors of a given vertex. The only other frequent operation is
“enabling” or “disabling” vertices as determined by the Gray code (see Sect. 4.1).
In particular, it is not necessary to quickly add or remove edges, or query whether
two vertices are neighbored. Therefore, we chose a very simple data structure,
where the graph is represented by an array of neighbor lists, with a null pointer
denoting a disabled vertex.

Since the flow simply models a set of vertex-disjoint paths, it is not necessary
to store a complete n×n-matrix of flows; it suffices to store the flow predecessor
and successor for each node, reducing memory usage to O(n).

Finding Vertex Cuts. It has now become clear that in the “inner loop” of the
algorithm, we need to find a minimum vertex cut between two sets Y1 and Y2 in
a graph G, or equivalently, a maximum set of vertex-disjoint paths between two
sets. This is a classical application for maximum flow techniques: The well-known
max-flow min-cut theorem tells us that the size of a minimum edge cut is equal
to the maximum flow. Since we are interested in vertex cuts, we create a new, di-
rected graph G′ for our input graph G = (V, E): for each vertex v ∈ V , create two
vertices vin and vout and a directed edge (vin , vout). For each edge {v, w} ∈ E, we
add two directed edges (vout , win) and (wout , vin). It is not too hard to see that a
maximum flow in G′ between Y ′

1 :=
⋃

y∈Y1
yin and Y ′

2 :=
⋃

y∈Y2
yout corresponds

to a maximum set of vertex disjoint paths between Y1 and Y2. Furthermore, an
edge cut D between Y ′

1 and Y ′
2 is of the form

⋃
v∈V (vin , vout), and

⋃
(vin ,vout)∈D v

is a vertex cut between Y1 and Y2 in G.
Since we know that the cut is relatively small (less than or equal k), we employ

the Edmonds-Karp algorithm [2]. This algorithm repeatedly finds a shortest
augmenting path in the flow network and increases the flow along it, until no
further increase is possible.

Experimental Setup. We tested our implementation on various inputs. The test-
ing machine is an AMD Athlon 64 3400+ with 2400MHz, 512KB cache, and
1GB main memory, running under the Debian GNU/Linux 3.1 operating sys-
tem. The source was compiled with the GNU gcc 3.4.3 compiler with options
“-O3 -march=k8”. Memory requirements are around 3 MB for the iterative com-
pression based algorithms, and up to 500MB for the ILP.

5.1 Minimum Site Removal

The first test set originates from computational biology. The instances were
constructed by Wernicke [22] from data of the human genome as a means to
solve the so-called Minimum Site Removal problem. The results are shown in
Table 1.

As expected, the run time of the iterative compression algorithms mainly
depends on the size of the odd cycle cover that is to be found. Interestingly,
the ILP also shows this behavior. The observed improvement in the run time

Table 1. Run times in seconds for different algorithms for Wernicke’s benchmark
instances [22]. Runs were cancelled after 2 hours without result. We show only the
instance of median size for each value of |C|. The column “ILP” gives the run time of
the ILP given in Sect. 2 when solved by GNU GLPK [15]. The column “Reed” gives the
run time of Reed et al.’s algorithm without any of the algorithmic improvements from
Sect. 4 except for omitting symmetric valid partitions. The columns “OCC-Gray”
and “OCC-Enum2Col” give the run time for the respective algorithms from Sect. 4.1
and 4.2. The “augmentations” colums give the number of flow augmentations per-
formed.

n m |C| ILP Reed OCC-Gray OCC-Enum2Col

time [s] time [s] augmentations time [s] augmentations time [s] augmentations

Afr. #31 30 51 2 0.02 0.00 7 0.00 6 0.00 5
Jap. #19 84 172 3 0.12 0.00 27 0.00 14 0.00 10
Jap. #24 142 387 4 0.97 0.00 117 0.00 46 0.00 31
Jap. #11 51 212 5 0.46 0.00 412 0.00 109 0.00 79
Afr. #10 69 191 6 2.50 0.00 1,558 0.00 380 0.00 97
Afr. #36 111 316 7 15.97 0.01 5,109 0.00 696 0.00 1,392
Jap. #18 71 296 9 47.86 0.05 59,052 0.01 7,105 0.00 568
Jap. #17 79 322 10 237.16 0.22 205,713 0.02 18,407 0.00 1,591
Afr. #11 102 307 11 6248.12 0.79 671,088 0.14 85,851 0.00 1,945
Afr. #54 89 233 12 6.48 5,739,277 0.73 628,445 0.03 20,385
Afr. #34 133 451 13 10.13 6,909,386 1.04 554,928 0.04 16,413
Afr. #52 65 231 14 18.98 22,389,052 1.83 2,037,727 0.01 11,195
Afr. #22 167 641 16 350.00 229,584,280 64.88 15,809,779 0.08 22,607
Afr. #48 89 343 17 737.24 731,807,698 74.20 54,162,116 0.06 41,498
Afr. #50 113 468 18 3072.82 2,913,252,849 270.60 151,516,435 0.05 26,711
Afr. #19 191 645 19 1020.22 421,190,990 3.70 1,803,293
Afr. #45 80 386 20 2716.87 2,169,669,374 0.14 99,765
Afr. #29 276 1058 21 0.23 56,095
Afr. #40 136 620 22 0.80 333,793
Afr. #39 144 692 23 0.65 281,403
Afr. #17 151 633 25 5.68 2,342,879
Afr. #38 171 862 26 1.69 631,053
Afr. #28 167 854 27 1.02 464,272
Afr. #42 236 1110 30 73.55 22,588,100
Afr. #41 296 1620 40 236.26 55,758,998

from “Reed” to “OCC-Gray” is lower than the factor of k gained in the worst
case complexity, but clearly still worthwhile. The heuristic from Sect. 4.2 works
exceedingly well and allows to solve even the hardest instances within minutes.
For both improvements, the savings in run time closely follow the savings of flow
augmentations.

5.2 Synthetic Data from Computational Biology

In this section we examine solving the Minimum Fragment Removal [18]
problem with Graph Bipartization. We generate synthetic Graph Bipar-

tization instances using a model of Panconesi and Sozi [18], with parame-
ters n = 100, d = 0.2, k = 20, p = 0.02, and c varying (see Table 2). We refer
to [18] for details on the model and its parameters.

The results are consistent with those of Sect. 5.1. The ILP is outperformed
by the iterative compression algorithms; for OCC-Gray, we get a speedup by
a factor somewhat below |C| when compared to “Reed”. The speedup from
employing OCC-Enum2Col is very pronounced, but still far below the speedup
observed in Sect. 5.1. A plausible explanation is the lower average vertex degree
of the input instances; we examine this further in Sect. 5.3. Note that even with
all model parameters constant, run times varied by a factor of up to several
orders of magnitude for all algorithms for different random instances.

Table 2. Run times in seconds for different algorithms for synthetic Minimum Frag-

ment Removal instances [18]. Here, c is a model parameter. Average over 20 instances
each.

c |V | |E| |C| ILP Reed OCC-Gray OCC-Enum2Col

2 24 22 1.4 0.02 0.00 0.00 0.00
3 49 58 3.1 1.40 0.00 0.00 0.00
4 75 103 4.8 1538.41 0.02 0.00 0.00
5 111 169 7.7 4.18 0.42 0.04
6 146 247 9.8 5.22 0.68 0.04
7 181 353 13.8 3044.25 238.80 1.89
8 214 447 14.9 4547.54 8.03
9 246 548 16.8 17.41
10 290 697 20.1 744.19

6 8 10 12 14 16 18 20 22 24
Size of odd cycle cover

10-2

10-1

1

101

102

103

ru
n

tim
e

in
 s

ec
on

ds

average degree 3

average degree 16

average degree 64

Fig. 2. Run time of OCC-Enum2Col (Sect. 4.2) for random graphs of different density
(n = 300). Each point is the average over at least 40 runs.

5.3 Random Graphs

The previous experiments have established OCC-Enum2Col as a clear winner.
Therefore, we now focus on charting its tractability border. We use the following
method to generate random graphs with given number of vertices n, edges m,
and odd cycle cover size at most k: Pre-allocate the roles “black” and “white”
to (n− k)/2 vertices each, and “odd cycle cover” to k vertices; select a random
vertex and add an edge to another random vertex consistent with the roles
until m edges have been added.

In Fig. 2, we display the run time of OCC-Enum2Col for different sizes
of the odd cycle cover and different graph densities for graphs with 300 ver-
tices. Note that the actual optimal odd cycle cover can be smaller than the one
“implanted” by our model; the figure refers to the actual odd cycle cover size k.

At an average degree of 3, the growth in the measurements closely matches
the one predicted by the worst-case complexity O(3k). For the average degree 16,
the measurements fit a growth of O(2.5k), and for average degree 64, the growth
within the observed range is about O(1.7k). This clearly demonstrates the effec-

tiveness of OCC-Enum2Col for dense graphs, at least in the range of values
of k we examined.

6 Conclusions

We evaluated the iterative compression algorithm by Reed et al. [20] for Graph

Bipartization and presented several improvements. The implementation per-
forms better than established techniques, and allows to solve instances from
computational biology that previously could not be solved exactly. In particu-
lar, a heuristic (Sect. 4.2) yielding optimal solutions performs very well on dense
graphs. This result makes the practical evaluation of iterative compression for
other applications [3, 4, 11, 16] appealing.

Future Work.

– Wernicke [22] reports that data reduction rules are most effective for sparse
graphs. This makes a combination with OCC-Enum2Col (Sect. 4.2) at-
tractive, since in contrast, this algorithm displays the worst performance for
sparse graphs.

– Guo et al. [11] give an O(2k ·km2) time algorithm for Edge Bipartization,
where the task is to remove up to k edges from a graph to make it bipartite.
The algorithm is based on iterative compression; it would be interesting to
see whether our improvements can be applied here, and do experiments with
real world data.

– Iterative compression can also be employed to “compress” a non-optimal
solution until an optimal one is found. Initial experiments indicate that
OCC-Enum2Col with this mode finds an optimal solution very quickly,
even when starting with C = V , but then takes a long time to prove the
optimality.

Acknowledgements. The author is grateful to Jens Gramm (Tübingen) and Jiong
Guo, Rolf Niedermeier, and Sebastian Wernicke (Jena) for many helpful sugges-
tions and improvements.

References

1. H.-A. Choi, K. Nakajima, and C. S. Rim. Graph bipartization and via minimiza-
tion. SIAM Journal on Discrete Mathematics, 2(1):38–47, 1989.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

3. F. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and K. Stevens.
An O∗(2O(k)) FPT algorithm for the undirected feedback vertex set problem.
Manuscript, Dec. 2004.

4. F. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization,
iterative compression, and modeled crown reductions: New FPT techniques, an
improved algorithm for set splitting, and a novel 2k kernelization for Vertex Cover.
In Proc. 1st IWPEC, volume 3162 of LNCS, pages 271–280. Springer, 2004.

5. R. G. Downey. Parameterized complexity for the skeptic. In Proc. 18th IEEE
Annual Conference on Computational Complexity, pages 147–169, 2003.

6. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
7. M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT.

In Proc. 29th WG, volume 2880 of LNCS, pages 1–12. Springer, 2003.
8. M. R. Fellows. New directions and new challenges in algorithm design and com-

plexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages 505–520.
Springer, 2003.

9. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25(2):235–251, 1996.

10. D.-J. Guan. Generalized Gray codes with applications. Proceedings of the National
Science Council, Republic of China (A), 22(6):841–848, 1998.

11. J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Improved fixed-
parameter algorithms for two feedback set problems. Manuscript, Feb. 2005.

12. A. B. Kahng, S. Vaya, and A. Zelikovsky. New graph bipartizations for double-
exposure, bright field alternating phase-shift mask layout. In Proc. Asia and South
Pacific Design Automation Conf., pages 133–138. ACM, 2001.

13. J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary prop-
erties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230,
1980.

14. M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and
MaxCut. Journal of Algorithms, 31(2):335–354, 1999.

15. A. Makhorin. GNU Linear Programming Kit Reference Manual Version 4.7. Dept.
Applied Informatics, Moscow Aviation Institute, 2004.

16. D. Marx. Chordal deletion is fixed-parameter tractable. Manuscript, Dept. Com-
puter Science, Budapest University of Technology and Economics, Aug. 2004.

17. R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter al-
gorithms. In Proc. 29th MFCS, volume 3153 of LNCS, pages 84–103. Springer,
2004.

18. A. Panconesi and M. Sozio. Fast hare: A fast heuristic for single individual SNP
haplotype reconstruction. In Proc. 4th WABI, volume 3240 of LNCS, pages 266–
277. Springer, 2004.

19. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43:425–440, 1991.

20. B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

21. R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and fixed-
parameter tractability for the single individual SNP haplotyping problem. In Proc.
2nd WABI, LNCS, pages 29–43. Springer, 2002.

22. S. Wernicke. On the algorithmic tractability of single nucleotide polymorphism
(SNP) analysis and related problems. Diplomarbeit, Univ. Tübingen, Sept. 2003.

23. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Proc. 5th
International Workshop on Combinatorial Optimization, volume 2570 of LNCS,
pages 185–208. Springer, 2003.

24. X. Zhuang and S. Pande. Resolving register bank conflicts for a network processor.
In Proc. 12th PACT, pages 269–278. IEEE Press, 2003.

