
Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

Improved Algorithms for Bicluster Editing

Jiong Guo1,⋆, Falk Hüffner1,⋆, Christian Komusiewicz1,⋆⋆, and Yong Zhang2

1 Institut für Informatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany
{guo,hueffner,ckomus}@minet.uni-jena.de

2 Department of Mathematical Sciences, Eastern Mennonite University
Harrisonburg, VA 22802, USA

yong.zhang@emu.edu

Abstract. The NP-hard Bicluster Editing is to add or remove at
most k edges to make a bipartite graph G = (V, E) a vertex-disjoint
union of complete bipartite subgraphs. It has applications in the analysis
of gene expression data. We show that by polynomial-time preprocessing,
one can shrink a problem instance to one with 4k vertices, thus proving
that the problem has a linear kernel, improving a quadratic kernel result.
We further give a search tree algorithm that improves the running time
bound from the trivial O(4k + |E|) to O(3.24k + |E|). Finally, we give
a randomized 4-approximation, improving a known approximation with
factor 11.

1 Introduction

Data clustering is a classical task, where the goal is to partition a data set into
clusters such that elements within a cluster are similar, while between clusters
there is less similarity. This similarity is often modeled as a graph: Each vertex
represents a data point, and two vertices are connected by an edge iff the entities
that they represent have some (context-specific) similarity. If the data were per-
fectly clustered, this would result in a cluster graph, that is, a graph where every
connected component is a clique. However, for real-world data, there is typically
noise in the data. A simple clustering model is then the Cluster Editing prob-
lem [4, 19]: find a minimum set of edges to add or delete to make the graph a
cluster graph.

Cluster Editing is NP-hard [15]; a number of approaches have been re-
cently suggested to deal with this. After a series of improvements, the best known
polynomial-time approximation is by a factor of 2.5 [2, 21]. Another technique
is that of fixed-parameter (FPT) algorithms [7, 9, 17]. The idea is to accept the
superpolynomial running time that seems to be inherent to NP-hard problems,
but to restrict the combinatorial explosion to a parameter that is expected to

⋆ Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.

⋆⋆ Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

be small. For Cluster Editing, the number of editing operations k is a suit-
able parameter, since for data with not too much noise it should be low. Several
fixed-parameter algorithms for Cluster Editing have been suggested (see also
Hüffner et al. [14] for a survey on FPT techniques in graph-modeled cluster-
ing). The search tree algorithm of Gramm et al. [10] with a running time bound
of O(2.27k + n3) has been experimentally evaluated [6]. A recent manuscript [5]
claims a running time of O(1.83k + n3) by using a different branching strategy
and reports further experimental results.

An important tool of FPT algorithmics is kernelization [7, 9, 17]. A kernel-
ization is a polynomial-time preprocessing that reduces an instance to a size
that depends only on the parameter k, and not on the input size |G| anymore.
Clearly, such a preprocessing is useful for basically any approach to solving the
problem, be it exact, approximative, or heuristic. For Cluster Editing, after
a series of improvements [8, 10, 18], a kernel of only 4k vertices is known [11].

In some settings, the standard clustering model is not satisfactory. An im-
portant example is clustering of gene expression data, where under a number of
conditions the level of expression of a number of genes is measured. This yields
a bipartite similarity graph. Here, clustering only genes or only conditions of-
ten does not yield sufficient insight; we would like to find subsets of genes and
subsets of conditions that together behave in a consistent way. This is called
biclustering [16, 20]. A simple formulation of biclustering analogous to Cluster

Editing is Bicluster Editing. Here, as a consistency condition for a cluster,
we demand that it forms a biclique, that is, a complete bipartite subgraph. With
bipartite graphs, we mean two-colorable graphs. Further, we do not allow any
clusters to overlap.

Bicluster Editing

Instance: A bipartite graph G = (V, E) and an integer k ≥ 0.
Question: Can we delete and add at most k edges in G such that
it becomes a bicluster graph, that is, a graph where every connected
component is a biclique?

Further applications of biclustering arise in collaborative filtering, informa-
tion retrieval, and data mining. Despite its importance, there are fewer results
for Bicluster Editing than for Cluster Editing. Amit [3] proved the NP-
hardness and gave a factor-11 approximation based on the relaxation of a lin-
ear program. Using a simple branching strategy, the problem can be solved
in O(4k + m) time [18], where m is the number of edges in the graph. Protti
et al. [18] showed how to construct a problem kernel with 4k2 + 6k vertices.

Contributions. Following the work recently done for Cluster Editing, our aim
is to improve FPT and approximation algorithms also for its sister problem Bi-

cluster Editing. We first improve the size of the problem kernel from 4k2+6k
to 4k vertices (Sect. 2). The methods used are similar to those of Guo [11]. If
the input graph is not already a bipartite graph, we can still get a 6k-vertex ker-
nel by similar means. Next, we show that the trivial O(4k + m) time branching

2

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

algorithm can be improved to O(3.24k + m) time by a more refined branch-
ing strategy (Sect. 3). Finally, we give a randomized approximation algorithm
with an expected approximation factor of 4, using similar techniques as those
introduced for Cluster Editing [1].

Preliminaries. We consider only undirected graphs G = (V, E) with n := |V |
and m := |E|. Since singleton vertices do not play an interesting role in our
problems, we assume that n ∈ O(m). Let P4 denote an induced path comprising
4 vertices. Furthermore, let ijkl denote a P4 in which i and l have degree 1 and j
and k have degree 2. The neighborhood of a vertex v is denoted by N(v), and
the closed neighborhood N(v)∪{v} is denoted by N [v]. We furthermore extend
this notation to vertex sets, that is, for a vertex set S, N(S) := (

⋃
v∈S N(v))\S.

For a vertex v, N2(v) := N(N(v)) \ {v} denotes the set of vertices that have
distance exactly 2 from v.

Due to lack of space, several proofs are deferred to a full version of this paper.

2 Linear Problem Kernel

In this section, we present a kernelization algorithm for Bicluster Editing

that produces a kernel consisting of at most 4k vertices, improving the kernel
consisting of O(k2) vertices given by Protti et al. [18]. This kernelization follows
the idea of the kernelization algorithm for Cluster Editing in [11] that also
produces a kernel consisting of at most 4k vertices. However, since here we are
dealing with bipartite graphs and bicliques, the concrete handling of the data
reduction rules and the argumentation of the kernel size are different from the
one for Cluster Editing. The first step is to introduce a useful structure.

Definition 1. A set S of vertices is called a critical independent set if all ver-
tices in S have the same open neighborhood and S is maximal under this property.

Observe that every critical independent set is an independent set. The con-
nection between critical independent sets and Bicluster Editing is given by
the following lemma.

Lemma 1. For any critical independent set I, there is an optimal solution of
Bicluster Editing in which any two vertices v1 and v2 from I end up in the
same biclique.

We apply the following two data reduction rules; the second one works on
critical independent sets.

Rule 1. Remove all connected components that are bicliques from the graph.

Rule 2. Consider a critical independent set R. Let S := N(R) and T := N(S)\
R. If |R| > |T |, then remove arbitrary vertices from R until |R| = |T |.

Rule 1 is clearly correct and can be carried out in O(m) time. A situation in
which Rule 2 can be applied is illustrated in Fig. 1. Next, we prove the correctness
of Rule 2.

3

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

R S T U

Fig. 1: Example for the application of Rule 2.

Lemma 2. Rule 2 is correct and works in O(n2) time.

Proof. To prove the correctness of Rule 2, we first claim that, as long as |R| ≥ |T |,
there is always an optimal solution constructing a bicluster graph that contains
a biclique B with R ∪ S ⊆ B ⊆ R ∪ S ∪ T and, thus, deleting or inserting no
edge incident to R. Since the input graph G and the graph resulting by one
application of Rule 2 to G differ only in the size of R, the correctness of Rule 2
follows.

To show the claim, let U := N(T)\S. First, observe that R will not be “split”
(following from Lemma 1), that is, there is always an optimal solution leaving a
biclique B with R ⊆ B. Second, we prove that no vertex outside of R∪S∪T can
be in B, that is, B ⊆ R∪S∪T . To see this, if a vertex u /∈ R∪S∪T is in B, then
obviously u is from U . However, to add u to B needs at least |R| edge insertions.
Thus, as long as |R| ≥ |T |, adding u to B is never better than putting u in a
biclique different from B, which requires at most |T | edge deletions. Finally, we
show that no vertex from S can be outside of B, that is, R∪S ⊆ B. This is easy
to see, since every vertex u ∈ S has only neighbors in R and T . By |R| ≥ |T |
and B ⊆ R ∪ S ∪ T , including u in B requires at most |T | edge modifications,
namely, deleting all edges between u and N(u)∩ T and adding edges between u
and T \N(u). In comparison, excluding u from B needs at least |R| edge deletions,
since R ⊆ N(u).

Concerning the running time, one can compute all critical independent sets
in O(m) time [12]. Then, we determine the sets S and T for all independent
sets R, which can be done in O(n2) time. To check the applicability of Rule 2,
one iterates over all critical independent sets and uses the already computed
information about S and T to decide if the precondition of Rule 2 is fulfilled
by R. Note that after one application of Rule 2, one has only to consider the
critical independent sets whose vertices are in S and T and to change the sizes
of their S’s and T ’s. Therefore, each application of Rule 2 can be carried out
in O(n) time. Rule 2 can be applied at most n times, which gives the total
running time O(n2). ⊓⊔

With these two rules we can now prove a kernel consisting of at most 4k
vertices.

Theorem 1. Bicluster Editing on bipartite graphs admits a 4k-vertex prob-
lem kernel.

4

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

Proof. Let G denote a bipartite graph on which Rules 1 and 2 have been ex-
haustively applied. Furthermore, let F be a bicluster editing set with |F | ≤ k
and let G′ be the resulting bicluster graph after applying the edge modifica-
tions in F to G. We partition the vertices in G′ into two sets, X containing
the endpoints of the edges in F , and Y the rest. Clearly, |X | ≤ 2k. It remains
to upper-bound |Y |. Suppose G′ consists of l biclusters, B1, . . . , Bl. It is easy
to see that for every i ∈ {1, . . . , l}, the unaffected vertices from one partition
in Bi must have the same neighborhood in G. Hence, for every i ∈ {1, . . . , l},
the vertices in Bi ∩ Y form at most two critical independent sets in G. Let R be
one critical independent set in Bi, S := NG(R), and T := NG(S) \ R. Due to
Rule 2, |R| ≤ |T |. Due to Rule 1, all vertices of T are in X . Some of them are
in Bi after gaining some edges between them and the vertices in S and the oth-
ers are in other bicliques after losing all edges between them and S. Therefore,
summing up over all critical independent sets in all bicliques, we can conclude
that |Y | ≤ |X |, giving the claimed number of vertices in the kernel. ⊓⊔

Protti et al. [18] have considered Bicluster Editing on general graphs as
well and presented a problem kernel with O(k2) vertices. With a slight mod-
ification of Rule 2, we can improve this result to a 6k-vertex problem kernel.
The main difference to the kernelization for bipartite graphs lies in the edges
between the vertices of S: If the vertices in S have much more edges between
them than the size of R, it could be better to keep them and to remove some
edges between R and S. To take this into account, we make a partition of the
vertices in S as described below.

Modified Rule 2. Consider a critical independent set R, let S := N(R) and
T := N(S) \ R. Further partition S into two sets, S1 the set of vertices without
neighbors in S and S2 := S \ S1. If |R| > |S2| + |T |, then reduce R until |R| =
|S2| + |T |.

The correctness proof of the modified Rule 2 is almost the same as the one
for Lemma 2, namely, showing that in case |R| ≥ |S2| + |T | there is always an
optimal solution creating a biclique B, such that R ∪ S ⊆ B ⊆ R ∪ S ∪ T .
The only difference concerns the vertices in S2. Since they have neighbors in S2,
including them in B requires not only deleting and adding edges between them
and T but also deleting edges between them and their neighbors in S2. However,
if |R| ≥ |S2|+ |T |, then it is never better to exclude them from B than to include
them in B.

Theorem 2. Bicluster Editing on general graphs admits a 6k-vertex prob-
lem kernel.

3 Fixed-Parameter Algorithm

In this section, we present a search tree algorithm for Bicluster Editing in
bipartite graphs that is based on the forbidden subgraph characterization of

5

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

Bicluster Editing and has a running time of O(3.24k + m), improving upon
the trivial search tree algorithm with a running time of O(4k + m) [18].

Let ijkl be a P4 in G. The trivial search tree algorithm for Bicluster Edit-

ing branches on ijkl in 4 cases: one case corresponds to adding edge {i, l}; the
other three cases correspond to removing one of the three edges of ijkl. The
improvement of the running time of our algorithm is achieved by applying a re-
fined branching strategy on larger subgraphs that contain a P4. In this branching
strategy, we distinguish two main cases. For the first case, we show that an im-
proved branching can be achieved. For the second case, we show that it can be
solved in polynomial time. In the following, we describe this branching strategy.

Clearly, branching is only performed as long as G is not a bicluster graph.
Therefore, we assume that G contains a P4. Furthermore, we deal with each
connected component separately. Therefore, without loss of generality assume
that G is connected. We distinguish two main cases.

Case 1: There is a connected subgraph of size 5 of G that contains a P4 and
has 4 edges. Let G′ be such a subgraph, and let ijkl denote a P4 contained
in G′. Since G′ is connected and contains 5 vertices and 4 edges, it must contain
a vertex u that is connected to exactly one vertex in ijkl. Hence, the resulting
graph is either a P5—in case u is adjacent to i or l—or a so-called fork—in
case u is adjacent to j or k. We describe the branching strategy for P5’s in detail.
Branching on forks works analogously. Both branchings are depicted in Fig. 2.

Let ijklu be the P5 that we branch on. In the first branch, we delete the
edge {k, l}, the parameter is decreased by 1. In the second branch, we delete the
edge {j, k} and the parameter is decreased by 1. Since we have already considered
deleting {k, l} or {j, k}, we can mark these two edges as permanent, that is, we
may not delete these edges in the remaining branches. To destroy jklu, we must
either delete {l, u} or add {j, u}. But after performing either of these two edge
modifications the graph still contains ijkl, and {j, k} and {k, l} are marked as
permanent. Hence, for each of these two branches, we create two subbranches,
one in which {i, l} is added, and one in which {i, j} is deleted. In total, we
have 6 branches, two branches in which the parameter is decreased by 1, and 4
branches in which the parameter is decreased by 2. To estimate the size of the
search tree, we use the concept of branching vectors [17]. The branching vector
of this branching is (1, 1, 2, 2, 2, 2). The branching on a fork works analogously.

Case 2: Otherwise. Since Case 1 did not apply, every connected subgraph of
size 5 that contains a P4 has at least 5 edges. We show that in this case, no
branching is needed because G can be turned into a biclique by adding one
edge.

Lemma 3. Let G = (V1, V2, E) be a fork-free and P5-free connected bipartite
graph, and let ijkl be a P4 in G. Then, adding edge {i, l} transforms G into a
biclique.

Proof. W.l.o.g. assume that {i, k} ⊆ V1 and {j, l} ⊆ V2. We prove the lemma by
showing that with the exception of {i, l} all edges are present in G.

6

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

ii

ii

ii

i

i

j

jj

j

jj

j

j kk

kk

kk

k

k

l

ll

l

ll

l

l u

u

u

u

u

(a) Case 1.1: Branching on a P5.

i

i i

i

i

j

j

j

j

j

j

j

j

k

k

k

k

k

k

k

k

l

l

l

l

l

l

l

l

u

u

u

u

u

u

u

u

(b) Case 1.2: Branching on a fork.

Fig. 2: Branching on subgraphs of size 5 that contain a P4 and exactly 4 edges.
Dashed lines are deleted edges; bold lines are permanent edges.

First, we show that k is adjacent to all vertices in V1, and that j is adja-
cent to all vertices in V2. Clearly, if i has a neighbor u, then u is a neighbor
of k. Otherwise, G[{i, j, k, l, u}] is a P5, and G is thus not P5-free. Also, every
vertex u ∈ N(k) \ {l} is a neighbor of i. Otherwise, G[{i, j, k, l, u}] is a fork,
and G thus not fork-free. Therefore N(i) = N(k) \ {l}. Analogously, we can
show that N(l) = N(j) \ {i}. Furthermore, every vertex v ∈ N2(i) is adjacent
to j. Otherwise, suppose that there is a vertex v ∈ N2(i) that is not adjacent to j
and let u be the common neighbor of i and v. Then, the subgraph G[{i, k, l, u, v}]
is a fork, because u is also adjacent to k (since u ∈ N(i) ⊂ N(k)), and u is not
adjacent to l (since u /∈ N(j) ⊃ N(l)). Hence, G is not fork-free in this case.
Analogously, we can show that k is adjacent to all vertices in N2(l). With this
it becomes obvious that k is adjacent to all vertices in V1, and j is adjacent to
all vertices in V2.

Now we show that every pair of vertices u ∈ V1 \{i} and v ∈ V2 \{l} must be
pairwise adjacent. Suppose, there are two vertices u ∈ V1 \ {i} and v ∈ V2 \ {l}
that are not pairwise adjacent. Since i is adjacent to all vertices in V1 \ {l},
it is adjacent to v. Analogously, one can show that j and l are adjacent to u.
Therefore, G[{i, j, l, v, u}] is a P5 if v and u are not adjacent, contradicting the
fact that G is P5-free.

Since all vertices in V1 \ {i} are adjacent to all vertices V2 \ {l}, it is clear
that adding edge {i, l} transforms G into a biclique. ⊓⊔

7

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

In the following theorem, we bound the running time of the described search
tree algorithm, when it is combined with kernelization.

Theorem 3. Bicluster Editing can be solved in O(3.24k + m) time.

4 Randomized 4-Approximation Algorithm

We present a polynomial time randomized factor-4 approximation algorithm for
Bicluster Editing that is based on a technique introduced by Ailon et al. [1].
This improves the previously best factor-11 approximation algorithm by Amit
[3]. The basic strategy of the algorithm is to randomly pick a pivot vertex v,
and then to randomly destroy all P4’s that contain v. In doing so, we create
an isolated biclique that contains v, since a connected component in which one
vertex does not appear in a P4 is a biclique. This procedure is applied until the
graph is a bicluster graph. In the following, we describe how the P4’s containing
the pivot vertex v are destroyed.

Given a pivot vertex i, we create a vertex set C that initially contains N [i].
In the end this set C contains the vertices that are in the same biclique as i in
the final bicluster graph. First, we add all vertices that are in the same critical
independent set as i.

Then we randomly decide for each vertex w that is adjacent to at least one
vertex of N(i) whether w should be added to C. Since w is adjacent to neighbors
of N(i) but is not in the same critical independent set as i, there must be a P4

that contains i and w. By randomly deciding whether i and w end up in the
same biclique, we randomly decide which edge modification is made to destroy
the P4. After this is done for all such vertices, we output C and cut C from G.

This is done until G has no vertex. The pseudo-code of the algorithm is shown
in Fig. 3. In order to apply the method of Ailon et al. [1], the algorithm must
guarantee that after an edit operation is made on an edge, this edge is never
again modified during the course of the algorithm, and that for a given P4 each
edit operation has the same probability. In our case this probability is 1

4
, which

leads to an approximation factor of 4.
To prove this upper bound on the approximation factor, we first need the

notion of a fractional packing.

Definition 2. Let G = (V1, V2, E) be a bipartite graph, P the set of P4’s of G,
and w : P → R+ a weight function. The function w is called a fractional packing
of P if ∀i ∈ V1, j ∈ V2 :

∑
{p∈P |{i,j}∈p} w(p) ≤ 1.

In the following lemma, we show that given a fractional packing w, the sum
of the weights w(p) of all p ∈ P is a lower bound on the cost of optimal solutions.

Lemma 4. Let G = (V1, V2, E) be a bipartite graph, COpt the cost of an opti-
mal solution of Bicluster Editing of G, and P the set of P4’s. If a weight
function w : P → R+ is a fractional packing of P , then

∑
p∈P w(p) ≤ COpt.

8

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

ApproxBicluster(G = (V1, V2, E))
1 G′ := (∅, ∅, ∅)
2 while V1 ∪ V2 6= ∅:
3 randomly select a pivot vertex i ∈ V1 ∪ V2

4 C := {i} ∪ N(i)
5 for all j ∈ {v 6= i | N(v) ∩ N(i) 6= ∅} :

6 if N(j) = N(i) : add j to C
7 else : add j to C with probability 1/2
8 transform G[C] into an isolated biclique
9 G′ := G′ ∪ G[C] ⊲ add G[C] as new component to G′

10 G := G[V \ C] ⊲ remove C from G
11 output set of edge modifications from G to G′

Fig. 3: A randomized factor-4 approximation algorithm for Bicluster Editing.

i j

k l

pivot Pr[Eij] Pr[Eil] Pr[Ekj] Pr[Ekl]

i 0 0 1

2

1

2

j 0 1

2
0 1

2

k 1

2

1

2
0 0

l 1

2
0 1

2
0

i ∨ j ∨ k ∨ l 1

4

1

4

1

4

1

4

Fig. 4: The probabilities of edge modifications in ijkl in case one of {i, j, k, l}
is chosen as pivot. The event that there is an edge modification between two
vertices i and j is denoted by Eij .

Using Lemma 4, we can show an upper bound on the approximation factor
of ApproxBicluster, as follows. First, we show that the sum of the proba-
bilities of making edge modifications in all P4’s caused by choosing one of their
vertices as pivot equals the expected cost of the solution that is output by Ap-

proxBicluster. Then, we show that dividing these probabilities by 4 also yields
a fractional packing and thus that the expected cost of the output solution is at
most 4 times the cost of an optimal solution.

Theorem 4. ApproxBicluster is a randomized factor-4 approximation algo-
rithm for Bicluster Editing, running in O(n2) time.

Proof. Obviously, the output of ApproxBicluster is a solution of Bicluster

Editing. We thus prove the theorem by bounding the approximation factor
of the expected cost of the output of ApproxBicluster. Let C be the cost
of a solution that is output by ApproxBicluster, and let COpt be the cost
of an optimal solution. We prove the theorem by showing that the expected
cost E[C] ≤ 4 · COpt.

9

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

Clearly, the algorithm inserts or removes edges only between vertices that
appear in a P4. An edit operation is performed in a P4 ijkl only if i, j, k, and l
are still in the graph and one of them is chosen as pivot. Let Aijkl denote the
event that one vertex in {i, j, k, l} is chosen as pivot when all of them are still in
the graph. Furthermore, let πijkl denote the probability that event Aijkl occurs
during the execution of ApproxBicluster. In case that event Aijkl occurs,
we perform exactly one edge edit operation between the vertices of {i, j, k, l}.
Therefore, the expected cost E[C] of ApproxBicluster is

∑
p∈P πp.

We complete the proof by first showing that the weight function w that is
obtained by assigning the weight

πijkl

4
to the P4 ijkl is a fractional packing

of the P4’s of G, and then showing that this leads to the claimed expected
approximation factor.

Let p be a P4, and let i ∈ V1, j ∈ V2 be two vertices in p. Let Eij denote the
event that there is an edit operation between i and j.

As Fig. 4 shows, the probability Pr[Eij | Ap] = 1
4
. Therefore,

Pr[Eij ∧ Ap] = Pr[Eij | Ap] · Pr[Ap] =
1

4
πp.

Furthermore, note that after event Eij occurred, at least one of i and j is re-
moved from the graph, and thus no further editing between i and j takes place.
Therefore, for distinct P4’s p and p′, the events Eij∧Ap and Eij∧Ap′ are disjoint
and thus ∑

{p∈P |{i,j}∈p}

Pr[Eij ∧ Ap] =
∑

{p∈P |{i,j}∈p}

1

4
πp ≤ 1.

With this, it becomes obvious that assigning the weight 1
4
πp to every p ∈ P

results in a fractional packing of the P4’s of G. As shown by Lemma 4, this
means that

∑
p∈P

1
4
πp ≤ COpt. Therefore,

E[C] =
∑

p∈P

πp ≤ 4 · COpt,

which proves the upper bound on the approximation factor.
Now we prove the running time of the algorithm. In a preprocessing step,

we compute the critical independent sets of the graph, which can be performed
in O(n+m) time [12]. This is done so that the test in line 6 of the algorithm can be
performed in constant time. Determining which vertices end up in C takes O(m)
time overall, since the test for membership in the same critical independent set
can now be performed in constant time and each edge is visited at most once:
either the edge is cut or it is part of the isolated biclique that is removed from G
and added to G′. Finally, the number of added edges is in O(n2), which results
in the claimed running time bound. ⊓⊔

Note that the running time of Theorem 4 can be improved to O(m) when the
output is merely a list of the bicliques and the vertices they contain. Otherwise,
a linear running time cannot be achieved, because the output size cannot be
bounded by O(m).

10

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

5 Outlook

We have improved kernelization, parameterized algorithm, and approximation
algorithm for Bicluster Editing. It is probably possible to further improve the
bound of the FPT algorithm, albeit only at the cost of a more complicated case
distinction. Further improvement of the approximation factor and derandomiza-
tion of the result of Theorem 4 should be possible using similar techniques as
for Cluster Editing [1, 21, 22].

Together, the improvements make non-heuristic algorithm implementations
much more feasible. In particular useful seems the kernelization, which for ex-
ample is guaranteed to reduce an instance with 1000 vertices and k = 50 to
only 200 vertices, without losing optimality (note that here the quadratic ker-
nelization [18] does not give any useful bound). It is conceivable that in many
cases the kernelized instance can be solved by the branching algorithm from
Sect. 3 within reasonable time. Further, it would be interesting to see whether
the observed approximation quality of the approximation algorithm from Sect. 4
improves by the preprocessing.

Variants of Bicluster Editing are also of interest, for example considering
weights, allowing the deletion of vertices instead of adding and deleting edges, or
the generation of a prespecified number of bicliques (the corresponding variations
for Cluster Editing have received some attention, see e. g. [11, 13]).

References

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent informa-
tion: ranking and clustering. In Proc. 37th STOC, pages 684–693. ACM
Press, 2005. 3, 8, 11

[2] N. Ailon, M. Charikar, and A. Newman. Proofs of conjectures in “Aggre-
gating inconsistent information: Ranking and clustering”. Technical Report
TR-719-05, Department of Computer Science, Princeton University, 2005.
1

[3] N. Amit. The bicluster graph editing problem. Master’s thesis, Tel Aviv
University, School of Mathematical Sciences, 2004. 2, 8

[4] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learn-
ing, 56(1–3):89–113, 2004. 1

[5] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. PEACE: Parame-
terized and exact algorithms for cluster editing. Manuscript, Lehrstuhl für
Bioinformatik, Friedrich-Schiller-Universität Jena, Sept. 2007. 2

[6] F. K. H. A. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and
Y. Zhang. The cluster editing problem: Implementations and experiments.
In Proc. 2nd IWPEC, volume 4169 of LNCS, pages 13–24. Springer, 2006.
2

[7] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999. 1, 2

11

Proc. 5th TAMC, LNCS 4978, pp. 445-456, 2008

[8] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. Shaw. Efficient
parameterized preprocessing for cluster editing. In Proc. 16th FCT, volume
4639 of LNCS, pages 312–321. Springer, 2007. 2

[9] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
1, 2

[10] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data
clustering: Exact algorithms for clique generation. Theory of Computing
Systems, 38(4):373–392, 2005. 2

[11] J. Guo. A more effective linear kernelization for Cluster Editing. In
Proc. 1st ESCAPE, volume 4614 of LNCS, pages 36–47. Springer, 2007.
2, 3, 11

[12] W. Hsu and T. Ma. Substitution decomposition on chordal graphs and
applications. In Proc. 2nd International Symposium on Algorithms, volume
557 of LNCS, pages 52–60. Springer, 1991. 4, 10

[13] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-
parameter algorithms for cluster vertex deletion. In Proc. 8th LATIN, vol-
ume 4598 of LNCS, pages 711–722. Springer, 2008. 11

[14] F. Hüffner, R. Niedermeier, and S. Wernicke. Fixed-parameter algorithms
for graph-modeled data clustering. In Clustering Challenges in Biological
Networks. World Scientific, 2008. To appear. 2

[15] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clus-
tering. Acta Informatica, 23(3):311–323, 1986. 1

[16] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data
analysis: a survey. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 1(1):24–45, 2004. doi: 10.1109/TCBB.2004.2. 2

[17] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31 in
Oxford Lecture Series in Mathematics and Its Applications. Oxford Univer-
sity Press, 2006. 1, 2, 6

[18] F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decom-
position to parameterized bicluster editing. In Proc. 2nd IWPEC, volume
4169 of LNCS, pages 1–12. Springer, 2006. To appear under the title “Ap-
plying modular decomposition to parameterized cluster editing problems”
in Theory of Computing Systems. 2, 3, 5, 6, 11

[19] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.
Discrete Applied Mathematics, 144(1–2):173–182, 2004. 1

[20] A. Tanay, R. Sharan, and R. Shamir. Biclustering algorithms: A survey. In
S. Aluru, editor, Handbook of Computational Molecular Biology, pages 26–1
– 26–17. Chapman Hall/CRC Press, 2006. 2

[21] A. van Zuylen and D. P. Williamson. Deterministic algorithms for rank
aggregation and other ranking and clustering problems. In Proc. 5th WAOA,
LNCS. Springer, 2007. To appear. 1, 11

[22] A. van Zuylen, R. Hegde, K. Jain, and D. P. Williamson. Deterministic
pivoting algorithms for constrained ranking and clustering problems. In
Proc. 18th SODA, pages 405–414. SIAM, 2007. 11

12

	Improved Algorithms for Bicluster Editing
	Jiong Guo, Falk Hüffner, Christian Komusiewicz, and Yong Zhang

